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ABSTRACT: 
 
Flow modelling is an important aspect of environmental protection, and it is frequently necessary to evaluate the consequences of 
proposed construction, such as roads or dams, on the surface water flow. Ideally, a watershed management decision support systems 
should be interactive: rapid enough to respond quickly to suggested changes. One requirement is a good terrain model, derived from 
contours, with plausible slope values. Another is a finite-difference flow model using random Voronoi cells to avoid directional bias. 
The third is interactive landscape modification using CAD-type operators that allow the extrusion of buildings, bridges, tunnels, etc. 
 
 

1. VISUALISATION AND DECISION SUPPORT 

The primary objective of a decision support system (DSS) is to 
assist the manager or planner to make some decision – people 
make decisions, not computers. The original computer-based 
DSS was probably a spreadsheet, and for spatial information it 
was a traditional static map – on paper or on the screen. 
However, this state of affairs is changing rapidly. Even in the 
non-spatial domain graphics are recognized as an important 
mechanism for the transfer of information, and this is even more 
true for spatial data. Nevertheless, even now many spatial 
decisions are made with the aid of only static two-dimensional 
maps. 
 
Effective decision support is a “what-if” activity. This implies 
an interaction between the manager and the computer, where 
the manager proposes some action or “scenario” and the 
computer provides some visualization or evaluation of the 
consequences. This interaction must take place within a 
reasonable time-frame: often the manager has a mental picture 
of what he would like to try – but this is only a temporary image 
in short-term memory, and must be reinforced by some response.  
 
In the simplest case this scenario is merely a change of viewer 
location, as in a “fly-through”, and computer graphics is now 
frequently able to achieve terrain visualization, for example, at 
adequate speeds. There is more difficulty, however, when the 
scenario requires the recalculation of the consequences of the 
proposed activity – here both recalculation and visualization 
must be completed in a short time-frame. Examples of this 
situation include forest harvest planning and route selection. 
Our particular interest here is in watershed and runoff 
management. 
 
1.1 2.1 Runoff Modelling – Terrain Modelling, Skeletons,   
Slopes 

Runoff modelling requires good terrain modelling; in particular, 
it is very sensitive to the representation of slope. Thus a first 
priority is to generate terrain models with plausible slope values 
– unfortunately many traditional interpolation techniques fail in 
this respect. We are interested in using available contour data, 
so we demonstrate the slope behaviour of various interpolation 

techniques for this kind of data, and select an appropriate 
method. 
 
 

2. TERRAIN 

While the generation of interpolated surfaces from contours has 
been studied for many years (e.g. Peucker 1978, Gold 1979), 
the problem remains interesting for a variety of reasons. Firstly, 
contour data remains the most readily available data source. 
Secondly, valid theorems for the sampling density along the 
contour lines have only recently been discovered (Amenta et al. 
1998, Gold 1999, Gold and Snoeyink, 2001). Thirdly, the same 
publications provide simple methods for generating the medial 
axis transform, or skeleton, which definitively solves the “flat 
triangle” problem (which often occurs when triangulating 
contour data) by inserting additional points from this skeleton. 
Fourthly, the problem of assigning elevation values to these 
additional ridge or valley points can be resolved, using the 
geometric properties of this skeleton, in ways that may be 
associated with the geomorphological form of the landscape. In 
addition, comparisons of the methods used in a variety of 
weighted-average techniques throw light on the key components 
of a good weighted-average interpolation method, using three-
dimensional visualization tools to identify what should be 
“good” results – with particular emphasis being placed on 
reasonable slope values, and slope continuity. This last is often 
of more importance than the elevation itself, as many issues of 
runoff, slope stability and vegetation are dependent on slope 
and aspect – but unfortunately most interpolation methods can 
not claim satisfactory results for these properties. The 
techniques developed here are based on the simple point 
Voronoi diagram and the dual Delaunay triangulation. 
 

Generation of Ridge and Valley Lines 

Amenta et al. (1998) examined the case where a set of points 
sampled from a curve, or polygon boundary, were triangulated, 
and then attempted to reconstruct the curve. They showed that 
this “crust” was formed from the triangle edges that did not 
cross the skeleton, and that if the sampling of the curve was less 
than 0.25 of the distance to the skeleton the crust was 
guaranteed to be correct. Gold (1999) and Gold and Snoeyink 
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(2001) simplified their algorithm for extraction of the crust, 
showing that, in every Delaunay/Voronoi edge pair, either the 
Delaunay edge could be assigned to the crust or else the dual 
Voronoi edge could be assigned to the skeleton. The Delaunay 
edge belongs to crust when there exists a circle through its two 
vertices that does not contain either of its associated Voronoi 
vertices; if not then the corresponding Voronoi edge belongs to 
the skeleton. Skeleton points may be inserted into the original 
diagram, or not, as needed. In our particular case the data is in 
the form of contour lines that we assume are sufficiently well 
sampled – perhaps derived from scanned maps. Despite modern 
satellite imaging, much of the world’s data is still in this form. 
They are clearly intended to convey information about the 
perceived form of the surface at a particular scale – and it would 
be desirable to preserve this, as derived ridges and valleys. 
  
Fig. 1a shows a close-up of the test data set, illustrating a key 
point of Amenta et a.l’s work: if crust edges (forming the 
contour boundary) may not cross the skeleton, then inserting the 
skeleton points will break up non-crust triangle edges. In 
particular, if the skeletons between different contours are 
ignored, then insertion of the remaining branch skeleton points 
will eliminate all “flat triangles” formed from points of the same 
elevation. Thus ridge and valley lines are readily generated 
automatically. The same is true in the case of closed summits 
(Fig. 1b). The challenge is to assign meaningful elevation 
values to skeleton points. 
 
 

 
 

 
 

Figure 1. Skeleton and "flat triangles" – a) ridge; b) summit 
 
Two techniques have been developed for this, each with its own 
physical interpretation. The first, following Thibault and Gold 
(2000), uses Blum’s (1967) concept of height as a function of 
distance from the curve or polygon boundary, with the highest 
elevations forming the crest at the skeleton line. This model is 
based on the idea that all slopes are identical, and thus the 
radius is proportional to the height of the skeleton point. In the 
case of a ridge or valley, the circumradius may also be used to 
estimate skeleton heights based on the hypothesis of equal 

slopes. The larger circle, at the junction of the skeleton branches, 
has a known elevation – half way between the contours – and 
may be used to estimate the local slope. The elevation of the 
centre of the smaller circle is thus based on the ratio of the two 
radii. For more details see Thibault and Gold (2000). 
 
2.2 Interpolation 

On the basis of a sufficient set of data points, we now wanted to 
generate a terrain model with satisfactory elevations and slopes, 
as the basis of a valid rainfall runoff model. Our approach was 
to interpolate a height grid over the test area, and to view this 
with an appropriate terrain visualization tool. To obtain 
perspective views we used Genesis II, available from 
www.geomantics.com. Vertical views were generated using 
version 5 of the Manifold GIS, available from 
www.Manifold.net.  
 
In general, we may ask about three components of a weighted-
average interpolation method. Firstly: what is the weighting 
process used? Secondly: what is the set of neighbours used to 
obtain the average? Thirdly: what is the elevation function 
being averaged? (Often it is the data point elevation alone, but 
sometimes it is a plane through the data point incorporating 
slope information as well.) In this paper we will only look at the 
triangulation model and the Sibson (or natural neighbour, or 
area-stealing) model. For more details see Gold (1989). Fig. 2 
shows the result for the triangulation model, including the crust 
and skeleton draped over the terrain. The flat triangles are 
readily seen. Fig. 3 shows the improved model when estimated 
skeleton points are added, and all flat triangles are removed. 
    
 

 
 

 
 
Figure 2. Interpolation from Delaunay triangulation - a) 

perspective view;  b) vertical view 
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The Sibson method is based on the idea of inserting each grid 
point temporarily into the Voronoi diagram of the data points, 
and measuring the area stolen from each of a well-defined set of 
neighbours. These stolen areas are the weights used for the 
weighted-average. The method is particularly appropriate for 
poor data distributions as the number of neighbours used is well 
defined, but dependent on the data distribution. Fig. 4 shows 
the results of using Sibson interpolation. The surface behaves 
well, but is angular at ridges and valleys. Indeed, slopes are 
discontinuous at all data points (Sibson 1980, 1982).  
   
   

 
 

 
 

Figure 3.    Adding skeleton points to Fig. 2 a) perspective view; 
b) vertical view 

 
 

 
      

Figure 4.  Sibson interpolation - vertical view 

 
One subject is often ignored in selecting a method for terrain 
modelling – the slope of the generated surface. In real 
applications, however, accuracy of slope is often more 
important than accuracy of elevation – for example in runoff 
modelling. However, in our weighted-average operation we can 
replace the height of a neighbouring data point by the value of a 
function defined at that data point – probably a planar function 
involving the data point height and local slopes. Thus at any 
grid node location we find the neighbouring points and evaluate 
their planar functions for the (x, y) of the grid node. These z 
estimates are then weighted and averaged as before. 
 
 

        
 

Figure 5. Sibson interpolation using slopes at data points  
 
Fig. 5 shows the result of using Sibson interpolation with data 
point slopes. The form is good, but slight breaks in slope can be 
seen at contour lines. When using smoothing and slope 
information together, the surface is smooth, but has unwanted 
oscillations. Clearly an improved smoothing function is 
desirable to eliminate these side-effects. Adding slopes to the 
simple TIN model (i.e. using the position in the triangle to 
provide the weights) produced results that were almost as good 
as the Sibson method when the sample points were closely 
spaced along the contours. However, the Sibson method is 
much superior for sparser data, or where the points do not form 
contour lines. The gravity model does not provide particularly 
good slope estimates, but even here including the data point 
slope function produces a significant improvement. 
 
 

3. RUNOFF MODELLING 

The second issue concerns the runoff modelling techniques 
themselves. Finite element techniques are difficult to implement, 
and many runoff models are based on finite difference methods 
on a grid. As is well known, this produces a north-south and 
east-west bias to the simulated flow (or sometimes 45 degrees). 
We resolve this issue by using a random set of cells based on 
the Voronoi diagram, and using these for finite-difference 
modelling. This eliminates the directional bias, and allows us to 
keep our original data points within the flow model, while 
adding the random interpolated heights. Our objective at this 
stage is to produce flow over a relatively smooth surface that 
behaves reasonably and shows no artefacts due to the data, the 
interpolation technique or the flow modelling. We demonstrate 
results that visually satisfy this requirement. 
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Fig. 6a shows a 3D view of a simple TIN model based on 
simple contour data and Fig. 6b shows the Voronoi diagram, 
crust and skeleton.  Fig. 6c shows the enriched TIN model with 
the added ridge and valley lines. Fig. 7a shows the densified 
terrain model, with interpolation at additional random Voronoi 
cells. Fig. 7b shows the results of a simple finite-difference flow 
model on this terrain, after a few time steps, with darker colours 
representing deeper water. 
  

 
 

 
 

 
 
Figure 6.    a) Simple TIN; b) Crust, skeleton and Voronoi cells; 

c) Enriched TIN. 
 

 

 

Figure 7. a) Densified model; b) Runoff  results 
 
 

4. WHAT-IF: LANDSCAPE MODIFICATION 

A decision support system is intended to assist in making 
choices. For runoff modelling we wish to examine the 
behaviour of the surface under various rainfall scenarios, and 
then modify the landscape with dams, diversions, etc. in order 
to reduce flooding, increase reservoir capacity, or produce other 
desirable improvements. 
 
Landscape modification is an awkward problem for decision 
support. Grid height models suffer from the artefacts mentioned 
above and lose the link with the original input data, so they 
must be rebuilt each time. TIN models preserve the input data, 
but are not usually easy to modify to add the new structures, 
such as dams, that are required. In particular, 3D visualization 
techniques usually consist of superimposing buildings and other 
structures on top of the terrain, without any topological 
connection, so modification of flow is not possible. We have 
developed CAD-type operators for the modification of TIN 
models, including the extrusion of buildings and the 
construction of bridges and tunnels, that appear to resolve this 
problem. The terrain is modified in such a way that water can 
flow between cells and interact with the proposed structures. 
 
In our current work we are using the CAD-type b-rep structure 
and Euler Operators to create a connected TIN model with holes, 
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e.g.  bridges or tunnels (Tse and Gold, 2001). Starting with the 
well-known TIN model, we have built a set of Euler Operators, 
which are easy to implement with  the Quad-Edge structure of 
Guibas and Stolfi (1985). All basic TIN modification operations 
may be performed with Euler Operators. An additional Euler 
Operator may be used for the insertion and deletion of holes 
that give the basic forms of bridges and tunnels. Our work 
consists of four stages: 
• Definitions of three levels of operators to achieve our desired 

system; 
• The use of Quad-Edge structures to implement CAD-type 

Euler Operators; 
• The use of Euler Operators to implement basic triangulation 

functions; 
• The extension of our triangulation models to permit bridges 

and holes. 
 
4.1 

4.2 

4.3 

4.4 TINs and CAD 

The examination of CAD modelling techniques does not seem 
attractive at first sight. The intersection of cubes and tubes, as in 
Constructive Solid Geometry modelling, hardly applies to 
terrain models. However, manifold-based “b-rep” CAD models 
appear to be feasible for our purposes, as the careful 
specification of Euler-Operators that guarantee the topological 
validity of the bounding surface seems particularly appropriate. 
As stated by Mantyla (1981, 1988), “in a “b-rep” model, an 
object is represented indirectly by a description of its boundary. 
The boundary is divided into a finite set of faces, which in turn 
are represented by their bounding edges and vertices.” 
According to his definition, b-reps are best suited for objects 
bounded by a compact (i.e. bounded and closed) manifold.  
 

Simplicity of Implementation – the Quad-Edge 
Structure 

We have used the Quad-Edge structure of Guibas and Stolfi 
(1985) to implement a set of Euler Operators that have been 
shown to suffice for the maintenance of surface triangulations. 
These Euler Operators form the basis of the standard (two-
dimensional) incremental triangulation algorithm. In addition, 
Euler Operators can serve to generate holes within our surfaces, 
thus permitting the modelling of bridges, overpasses etc. that 
are so conspicuously lacking in the traditional GIS TIN model. 
The individual Quad-Edge and Euler Operators take only a few 
lines of code each.   “Make-Edge” and “Splice” are the two 
simple operations on the Quad-Edge structure, which is formed 
from four connected “Quad” objects, using the simple 
implementation of Tse and Gold (2001). The Make Edge 
operator creates a new independent edge. The Splice operation, 
which is its own inverse, either splits a face loop and merges 
two vertex loops or else splits a vertex loop and merges two 
face loops. This operation suffices to maintain any connected 
graph on an orientable manifold, such as is the case for CAD b-
rep models, and TINs. 
 

Selection of a Set of Euler Operators 

According to Lee (1999), five spanning Euler Operators suffice 
to specify the six elements in any b-rep model. These elements 
are: vertices; edges; faces; loops (or rings); holes; and bodies 
(or shells). However, in TINs there are no loops (holes in 
individual faces), leaving five elements, so four spanning Euler 
Operators (and their inverses) suffice for TINs with holes. In the 
traditional TIN models there are no holes, so three Euler 

Operators and their inverses will serve for our initial model: 
MEVVFS/KEVVFS, MEF/KEF and SEMV/JEKV. 
 
MEVVFS adds an edge, two vertices, one face and one shell to 
an empty model. Its inverse KEVVFS removes them. One 
Quad-Edge Operator is used to implement MEVVFS (which is 
simply “Make-Edge”) to create a single edge. MEF and KEF 
are used to create (make) an edge and a face, and to delete (kill) 
them. In MEF we need to give two quads as parameters to make 
a new face by splitting an old one. In KEF we need to give an 
edge as a parameter for removing the edge, and one face will be 
destroyed as this edge is removed. SEMV and JEKV are used to 
split one edge into two pieces, or merge it by adding or 
removing a point on an edge. SEMV splits edge “e” into two 
parts, and two parts are joined by JEKV. For further details see 
Tse and Gold (2001). 
 

TIN Modelling Using Euler Operators 

In the TIN model we have three main functions, which are: 
create a first triangle; insert a point; and swap an edge. The 
Euler Operators are used to implement triangulation functions, 
which are “Big Triangle”, “Insert Point” and “Swap” with 
inverse process. The initial frame triangle is created by 
operators  “MEVVFS”, “MEF” and “SEMV”.  “Insert point” is 
implemented using “MEF”, “SEMV” and “MEF”. “Swap” is a 
procedure for swapping two edges inside the TIN model: 
“KEF” kills the edge and “MEF” recreates the edge so as to 
connect the other diagonal of the original triangle pair. These 
operations are shown in Fig. 8. 
 
 

                      
 

Figure 8. “Big Triangle”, “Insert Point” and “Swap” 
 
4.5 Extension to Bridges and Tunnels 

So far we have merely re-formulated the traditional incremental 
algorithm, but with this background existing Euler Operators 
are used to modify the TIN surface in other ways, e.g. by the 
insertion and deletion of holes. The operator “Make Edge Hole 
Kill Face” (MEHKF) consists of exactly the same code as MEF, 
but instead of taking two Quad-Edges that are part of the same 
face loops as parameters, it takes Quad-Edges that are parts of 
separate face loops. The two triangles concerned are deleted, an 
edge is formed between the two triangles, and a new face is 
formed that loops through each of the deleted triangles and both 
sides of the new edge. 
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Fig. 9a shows the result of the first step MEHKF, and Fig. 9b 
shows the result after MEF – one new edge and face is made. 
Fig. 9c shows the result of the final MEF – again, one new edge 
and face are created. There are now three faces inside the hole, 
but the connectivity is preserved and you can walk through the 
hole while remaining on the outside of the object. Three more 
MEFs are used to split the faces inside the hole into triangles. 
Fig. 10 shows a simple terrain, with a bridge and a tunnel added. 
We can use the same idea to create a building and other 
complex structures. A triangle is selected on a TIN model and 
gives a specified height to extrude a building.  
 
 

       
 

Figure 9. Creating a hole using MEHKF,  MEF  and  MEF 
 
 

 

 
 
Figure 10.  Upper: Top view of TIN model. Lower:  A Hole and 

a bridge on the TIN 
 
 

5. CONCLUSIONS – DECISION SUPPORT FOR 
INTERACTIVE RUNOFF MODELLING 

The main components of a watershed management decision 
support system have been described: terrain modelling with 
valid slopes, runoff modelling without directional bias, and 
interactive terrain modification tools. All of these components 
may be programmed directly using Quad-Edges, Euler 
Operators and Voronoi diagrams, and thus could be 
incorporated within other, more general-purpose, systems. 
 
While all these components for the visualizing and decision 
support system for runoff modelling have already been 
developed, they are not yet integrated into a production system. 
However, they have been individually demonstrated, have a 
variety of advantages, and appear to have a significant potential 

for the rapid evaluation of watershed management scenarios, 
leading to effective decision making. We hope to continue with 
the integration and development of these methods, so that they 
may easily be used for full-scale environmental planning. 
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