
Wenzhong SHI, Bisheng YANG & Qingquan LI

 423

A VIEW-DEPENDENT LEVEL-OF-DETAIL MODEL FOR RENDERING IN THREE-
DIMENSIONAL GIS

Wenzhong SHI1 Bisheng YANG1,2 Qingquan LI2

1Department of Land Surveying and Geo-Informatics The Hong Kong Polytechnic University, Kowloon, Hong Kong
lswzshi@polyu.edu.hk

2R&D Center for Spatial Information and Network Communication Wuhan University, Wuhan, Hubei, China 430079
ybs_sw@sohu.com,qqli@whu.edu.cn

Commission II, WG II/6

KEY WORDS: View-dependent LoD, hierarchical surface model, multi-resolution data model, GIS

ABSTRACT:

In a three-dimensional GIS, data volume is a critical issue particularly when we have to render the large amount data for visualizing
a city in real time. For efficient analyzing and visualizing these data in real time, this study intend to develop a solution for fast
visualizing large dataset three dimension (3D) model by a proposed view-dependent level-of-detail (LoD) model.
In this paper, we first propose a structure and corresponding algorithm to construct 3D data model of LoD for view-dependent
rendering. Second, the algorithm is implemented within a prototype software Space/Info, which is developed by authors, and these
are described in detail. Third, the performance and the newly proposed algorithm are tested via an experimental study in terms of
roaming speed. Finally, the analysis and some conclusions are drawn..

1. INTRODUCTION

Recent advances in 3D data acquisition, reconstruction,
visualization and virtual reality make the data volume and
category increase dramatically. The corresponding geographical
datasets often contain many layers or themes and with a large
data volume. The data volume of 3D model perhaps exceeds the
capability of any current computer for interactive rendering.
Obviously, the size of data volume determines the speed of
interactive rendering. In fact, the rendering speed is of vital
importance because we need a high frequency interaction with
the datasets, whether in terms of moving around, flying or using
dynamic behavior as a method to encode certain attribute data
(Spitaleri, 1993; MacEachren, 1994). To shorten the gap
between the increased 3D data volume and rendering capability
of computer, the complexity of 3D model has to be simplified.
Currently, research on the simplification complex surface model
has been motivated by attempting to shorten the gap between
real-time rendering and volume of 3D data. A series of
algorithms have been implemented for this development. These
may include, for example, triangle mesh decimation (Schroeder,
1992, 1997), vertex clustering (Rossignac, 1993), adaptive
subdivision algorithm (Eck, et al, 1995), quadric error metrics
(Garland, 1998), voxel-based object simplification (He, et al,
1995) and algorithm based on quad-tree (Lindstrom, 1996).
With the simplification algorithms, mentioned above, we can
obtain a hierarchy of approximations to original 3D data model.
Moreover, each level has a uniform resolution. These
approximations often have a number of distinct LoD while
rendering. Many of these algorithms have been used in terrain
surface simplification and achieve reasonable results. However,
many of them do not consider the viewer’s conditions at
rendering.

Several algorithms about running time LoD model have been
published. They are dynamic view-dependent simplification
(EI-Sana, 1999; Xia, 1997) and progress mesh (Hoppe, 1998).

But they were not used for digital city model simplification
directly where are with its own particular problems. For
instance, in digital city, there are several thousands of objects in
it, including complex architectural buildings, roads and terrain.
It is very likely that only a limited number of objects or models
among the whole can be seen from a particular viewpoint and at
a visualization session. Therefore the viewer conditions have to
be considered at running time. Xia (1997) constructed an
adaptive level-of-detail surface model using merge tree, which
is proved can generated continuous level-of-detail model at
running time. Moreover, the resolution is related to viewer
direction and the different region of the model can be connected
seamlessly, which is improved by EI-Sana (1999). The merge
tree can be constructed offline, at rendering, whether the node is
collapsed or split is decided by the projection error using a
Euclidean distance between the nodes, but without considering
the feature lines of surface model such as ridges, water and
others. It may cause problem if the feature lines are ignored, and
an example is given in Figure 1. In such a process, the feature
line (edge) can be lost if the feature line is not given a special
consideration. At the same time, it introduces dependencies list
for preventing surface fold at running time, which is proved that
they are very expensive (in terms of data volume and retrieve
speed) to store.

 Edge collpase

Constraint line

Figure 1. Edge collapsing without considering

constraint line

 Surface Contents Author Index

IAPRS, VOLUME XXXIV, PART 2, COMMISSION II, Xi’an, Aug. 20-23, 2002

 424

In order to implement the merge tree algorithm for the digital
city study, this algorithm has been further extended in this study.
As a result, the extended mode is made suitable for constructing
level-of-detail model for a digital city. With our further
development, the algorithm can make the terrain feature
invariable retained and the efficiency of storage space is
improved. In the same time, the method for encoding adjacent
vertexes array and for determining the visible faces of building
model are also developed as a further extension to the original
algorithm.

The following parts are arranged as the following, in section 2
the data structure and method of the algorithm are presented; in
section 3 the implementation of the model are presented; in
section 4, the performance and results of the algorithm are
tested and analyzed. Finally some conclusions and outlook are
presented.

2. DATA STRUCTURE OF THE ALGORITHM

The data structure for an algorithm is very importance, because
it affects the efficiency of algorithm greatly. As a result, various
data structures have been developed for modeling terrain
surface and buildings. For a building model, the Layer-
Combined model (Yang, et al, 2000) was used in city modeling.
For terrain model, we use four arrays containing vertex,
triangles, edge, vertex index about edge and triangle to store the
terrain surface model and their topological relationships.
• Vertex array contains the index of vertex and its three
dimensional coordinate (x, y, z);
• Triangle array contains the index of three vertexes of a
triangle t and its normal;
• Edge array contains the index of the source and destination
nodes of an edge and the flag of constrain line (0 or 1),
moreover, the index of source node is less than that of
destination node; and
• Vertex index contains the index of a vertex (ID), triangles with
the labeling id and the edges with the labeling ID.

In our algorithm, the vertex hierarchy of terrain and the vertex
hierarchy of building are introduced for storing displayed
vertexes and triangles. In the algorithm, the vertex hierarchy has
two meanings: one is for terrain surface and the other is for
building model, because the building models are discrete
models.

Figure 2. Vertex hierarchy of a digital city model

2.1 Vertex Hierarchy of Terrain

Vertex hierarchy of terrain is constructed by the splitting or
collapsing of vertex each time, the new vertex generated by
collapsing or splitting consists of the node of vertex hierarchy.

The vertex hierarchy of terrain is different from the model of
Xia (1997). Our algorithm does not store the dependencies lists
of collapsing edge, but only keep the relation of root vertex with
neighbor vertexes at every depth. At the same time, the
encoding and compressing algorithms about neighbor vertexes
are developed to encode or compress the vertex index when
collapsing or splitting vertex. Before introduce the structure of
terrain vertex hierarchy, several terms are defined as follow.
• parentnode, which means that when one vertex pair (p1, p2)

is collapsed, a new vertex p will be generated, the vertex p
is the parent of p1 and p2, and p1 and p2 is the child of
vertex p. One is the leftChild, the other is the rightChild.

• rootnode, when a vertex p has no ParentNode, the vertex p
is the rootnode.

• adjacent vertex, all the vertexes, which is linked with the
vertex p, is named as the neighbor vertex of p, and each of
vertex of adjacent vertex and vertex p consists of one edge.

The structure of terrain vertex hierarchy is as the following.
Struct vertex{
 Int id; //the index in vertex array
 Int virtualid; //the index after collapsing
 int ParentNode; //the index of parent of vertex

int childNode[2]; // the indexes of children of
 vertex

 Int nNums; //the number of neighbor vertex
 Int* id; //the id array of neighbor vertex
 BYTE byteStatus; //the status of vertex
 Int nDepth; // the depth of vertex hierarchy
 Int nPos; //the position of right child in adjacent
vertexes array
 };

In vertex hierarchy structure, the element of byteStatus is
indicated whether the vertex is a rootnode or not. If it is not a
root vertex (parentnode is valid), the adjacent vertex array can
be encoded form its parent vertex, which is illustrated as Figure.
3.

Figure 3. Adjacent relationships among vertex after
collapsing or splitting

In figure 3, the adjacent vertex and the position (nPos) are
recorded, adjacent vertex of node indicates the link relationship
of the node, nPos is used to encode the adjacent vertex of
leftChild and rightChild of the node. The vertexes prior the
position of nPos is the adjacent vertex of leftChild, the other is
the adjacent vertex of rightChild. For example in figure 3, nPos
equals 4 and the adjacent vertex of vertex p is{a5, a1, a2, a3, a4,
b2, b1}, based on the regulations above, the adjacent vertex of

3D city
model

Terrain Building

Wenzhong SHI, Bisheng YANG & Qingquan LI

 425

p1 (the leftChild of p) is {a5,a1,a2,a3,a4} and the adjacent
vertex of p2 (the rightChild of p) is {b2,b1}.

In vertex hierarchy, only the root adjacent vertexes of each
depth are stored, the adjacent of other nodes in vertex hierarchy
are not stored. However, their adjacent vertexes can be encoded
dynamically during running period. For compressing, the
adjacent vertexes of child are stored in their parent node when
edge is collapsed. At the same time, right child position in the
adjacent vertex of parent node is recorded, then the left child
adjacent vertexes are released if its depth equals zero. Here, we
define the depth of vertex in full resolution model equals zero.
When edge (p1, p2) collapses into p, we do not calculate new
vertex but select p1 or p2 as new vertex for p. The validity of
edge collapse (for details see Xia 1997). The criterion of select
is (1) if p1 and p2 are not boundary point, the minor error of
vertex will be deleted. The method of calculating error is in
Garland (1999), (2) If p1 or p2 is a boundary point, then delete
interior point, so as to keep the integrity of whole model.
Whether the vertex is split or collapsed based on it’s project
error on the screen.

On the other hand, we can see that at each depth of vertex
hierarchy only the parent node contains adjacent vertex array.
Although the adjacent vertex array of the left child and right
child are not kept in vertex hierarchy, the adjacent vertex array
of theirs can be easily encoded from their parent node adjacent
vertexes array. It is easy to see that the adjacent vertexes array
occupied a large portion of whole vertex hierarchy storage
space, so at every depth the parent-child relationship should be
decided among as many vertexes as possible. The encode
algorithm of adjacent vertexes array will be explained detail in
the Section 3.

2.2 Vertex Hierarchy of Building

For the reason that the building model is stored as LC model
(Yang, et al 2000), moreover, Lod information is stored
between different layers and each layer consists of a single
object such as roof, window or others. All the building models
comprise the total model in digital city. In fact, we can think the
vertex hierarchy of building as object hierarchy (a complex
building model can be divided several simple objects according
to LC model), so every building model consists of a tree
structure, the overall building model is composed of a forest
data structure. The overall building model can be illustrated as
Figure 4.

Figure 4. Hierarchy relationships among vertex in the
building mod

In Figure 4, each tree of the forest is a building model, leafs of
each tree consist of the layers of single complex building model.
Moreover, every tree contains certain level of error and attribute
information such as material and texture of the building surface.
The information about error of each layer of a building is stored

in leaf of the tree. For instance figure 4, supposing the limited
error of B2-1, B2-2 and Bn are all within the set error at a
certain visualization session, they can be rendered at the same
time, others will not be rendered. On the other hand, it is easy to
see that only certain number of faces of each visible layer can
be seen during rendering, the other faces are invisible – the
faces that are behind of visible faces of the object. In fact, the
normal of face plays an important role in visualization, the
determination if a face is visible is explained in detail in Section
3.

3. IMPLEMENTATION OF THE ALGORITHM

According to the above discussed data structure, the algorithm
was implemented for rendering LoD digital city model.
According to Section 2, the vertex hierarchy is constructed by
edge collapsing or splitting. Initially, the terrain model and
building model are stored in full resolution in the model. The
edge collapsing method is then applied to construct vertex
hierarchy offline. At the same time, considering the constrain
line when edge collapsing. The neighbor region of collapsed
edge effected should not contain constrain lines. Although it
effects the simplification of terrain surface, it can keep the
important feature of terrain. In splitting a vertex, the encoding
algorithm has to be implemented to acquire the adjacent
vertexes array. At the same time, according to the analysis
above, the vertex hierarchy tree is constructed based on vertex
split or collapsed. In the algorithm, the criterion of vertex split
or collapsed is determined by the projection error of vertex split
or collapsed. Projection error indicates the changes on the
project screen after the vertex is split, on the average, the pixel
is used as the unit of projection error. It is evident that when the
part of model is far way the viewer, it occupies little area on the
project screen, so the project error is related with the viewing
conditions (viewer height and direction). In the following parts,
the relationship between viewing conditions and projection
error is explained in detail.

 p1 p2 p

 h1 h2 h΄

 collapse

Figure 5. Height error after vertex collapse

3.1 The Criterion of Projection Error

The projection vertex error of the vertex plays a vital role when
building the vertex hierarchy tree. So as to keep the maximal
similarity of model between adjacent two Lod model, the
projection error on the projection plane, which is brought by the
vertex collapse/split, should not exceed a limited value between
adjacent two Lod model, otherwise, the “pop” will emerge. For
terrain, no matter what the vertex collapse/split, the plane
position(x,y) does not vary, but the value in z direction is
variable, so the projection error is defined as the size on the
projection plane of height error, which is brought by the change
in z direction of different resolution model. Figure 5 illustrate

IAPRS, VOLUME XXXIV, PART 2, COMMISSION II, Xi’an, Aug. 20-23, 2002

 426

the height error, which is the result because of vertex
collapse/split, the height error will inevitable bring a certain
value (projection error) on the projection screen. Next, we will
demonstrate the relationship between projection error and
viewer conditions.

In Figure 5, the right part is the result of vertex collapse. After
vertex collapse, there is a variable value in Z direction. In order
to calculate the variable value, we independently calculate the
distance of collapsing vertex (p1 and p2) to the plane, which is
comprised by the adjacent vertex array, Supposing the distance
is h1 and h2. After the p1 and p2 is collapsed, the distance of
vertex p to the plane also is calculated, supposing the result is h΄.
So the height error of vertex collapse is

 (1)

Figure 6 illustrates the relationship between height error and
viewer conditions, β is the pitch angle of observer direction
center, α is the angle between observer direction of height error
and observer direction center, h is the height error, f is the
distance between observer and projection plane, and d is the
perpendicular distance between observer and the center of
height error. Supposing the projection value on the projection
plane of the height error h is δ. According to figure 6, the next
relationships can be reasoned. Supposing the scale between
projection plane and display screen is 1:1, the δ is the pixel size
of height error on the screen.

Figure 6. The relationship between height error and projection

error

Based on the Eq.2, it is evident that the projection error not
only is related with the viewer distance, but also it is related
with the viewer direction and height error. So once the
threshold of projection error is determined, when vertex
hierarchy tree is built, the projection error of vertex is
calculated before compared with the threshold, if the projection
error does not exceed the threshold, the vertex will not be split,
otherwise it will be collapsed.

3.2 Encoding Adjacent Vertex Relationships

In rendering, the vertex hierarchy is traversed every frame. If
project error of the distance between parent node and child
nodes exceeds the specified threshold, this parent node has to
be split. On one hand, the triangles contain the parent node will
be deleted from the triangle list. The triangles that the child of
its constructed will be added in the triangle list for rendering,
the encoding algorithm is detailed as the following.

Supposing the parent node contains adjacent vertexes array a
={a1, …, aN}, and the position of its right child at this array is
m(0<m <N), and the index of its rightChild is p2 , the index of
leftChild is p1. According to the regularity of Section 2.1, the
adjacent vertexes array of rightChild is R={am,..aN,a1,p1},
moreover any adjacent two point (Rn-1,Rn) with p2 consist of
a triangle, if the adjacent vertexes array of its leftChild is zero,
the adjacent vertexes array is L = {a1, a2, ..., am, p2} and any
adjacent two point (Ln-1, Ln) with p1 consist of a triangle,
otherwise, adjacent vertexes array of leftChild equal its adjacent
vertexes array.

3.3 Determining Visible Faces in Building Model

According to vertex hierarchy of building model, the layer of
each building can be decided whether it is to be rendered. The
project error on the screen can be calculated by the minimum
box enveloped it. If the project error is less than set the
specified threshold, it will be omitted. The visible faces of the
visible layer in a building will be further determined by using
surface’s normal. For the reason that the building models
occupy a large portion of the overall region, it is necessary to
judge the visibility of faces. For instance, what is illustrated in
figure 7. Supposing the building is in the view scope, the visible
faces can be judged by its normal.

Figure 7. Determination of visible faces

Based on the viewer position (x, y, z) and face center point (xf,
yf, zf), the normal NV = (x-xf, y-yf, z-zf) can be acquired. Thus
the angle Φ between NV and Nf (normal of face) equals.

 Φ=acos(NV•Nf) (3)

In Eq.3, if Φ > π/2, the face is invisible. When rendering, all the
faces of visible layer in each building are calculated by Eq.3.
The visible surfaces are added in triangle list for rendering,
others will not be tackled.

)2)).......(cos(*))cos(*)cos(*2h2d*α)/((4sin(β*d*f*h*4δ αββ−−=

)1(

}2,1min{' hhhh −=∆

Wenzhong SHI, Bisheng YANG & Qingquan LI

 427

Table 1. The running time of under different threshold

4. EXPERIMENTAL STUDY AND ANALYSIS

Based on the algorithm we discussed in this paper, the
algorithm was implemented in c++ language and OpenGL. It is
also tested with several datasets. In the following, several
experimental results are listed. These results are obtained from a
model of real world.

Table.1 illustrates the running time about the simplification of
terrain surface at different set threshold (T). Figure 9 illustrate
the snapshot of 3D city model in Hongkong, which is created in
Space/Info software.

Figure 9. The 3D city model

5. CONCLUSIONS

In this paper, a data structure and corresponding algorithm for
construct 3D data model in Lod rendering process was proposed.
The algorithm was then implemented within a prototypes
software Space/Info and these are described in detail. The
performance and the newly proposed algorithm were tested via
an experimental study in terms of its running time at various
thresholds and the comparison was made about the triangles
between terrain and buildings at different running time.

The developed algorithm can be used to build LoD model of
digital city in real time. It can also be used to build continuous
multi-resolution model for digital city. Moreover, the resolution
is related with viewer conditions. Compared with the previous
algorithms, one of the advantages of this algorithm is that it can
retain the important feature of the terrain surface to be built.
The other advantage is the storage structure of adjacent
relationships during splitting and collapsing is improved.

Furthermore, the method for determining the visible faces of the
buildings was implemented in this study, which proved is able

to reduce the rendering triangle numbers greatly and improve
the rendering speed. This method is especially efficient for
digital city modeling with high density of buildings.

Although exciting results have been achieved from this
algorithm, there are still problems unsolved in this algorithm,
for example the criterion about selecting the collapsing edge is
worth to be further studied, since different criterion can
generate different results and running time. Moreover, temporal
coherence needs to be further exploited, for the reason that a
high degree of frame to coherence during the roaming session is
very important. It can eliminate the “pop” aircraft and improved
the rendering speed.

ACKNOWLEDGEMENTS

The work described in this paper was substantially supported by
funds from The Hong Kong Polytechnic University (Project No.:
1.34.9709), RGC of Hong Kong (Project No.: PolyU5050/98E)
and China National Natural Science Foundation (No.69833010).

REFERENCES

Andreas Voigtmann, L. Becker, 1997. A hierarchical model for
multiresolution surface reconstruction, Graphical models and
Image Processing ,Vol.59, No.5, pp.333-348.

EI-Sana Jihad, A.Varshney, 1999.Generalized view-dependent
simplification. Eurographics’99, Vol.18 ,No.3, pp.1-12.

Eck M, et al, 1995. Multi-resolution analysis of arbitrary mesh,
In: Computer Graphics, Vol.29, ACM Press, New York
pp.173-182.

Floriani Leila, Paola Magillo, 2000.VARIANT: A System for
Terrain Modeling at Variable Resolution, GeoInformatic,
Volume 4 ,Issue 3, pp.287-315.

Floriani Leila, Paola Magillo, 2000. Compressing trianglulated
irregular networks. GeoInformatic, Volume 4 ,Issue 1, pp.67-88.

Garland M, P. Heckbert, 1998. Simplifying surfaces with color
and texture using quadric error metrics, Visualization’98, Oct
1998.

GAHEGAN, M, 1999.Four barriers to the development of
effective exploratory visualization tools for geosciences. INT. J.
Geographical Information Science, vol.13, No.4, pp.289-309.

Hoppe, H., 1996. Progressive meshes, In: SIGGRAPH’96
Proceeding, pp99-108.

Terrain
Triangle

Building
Triangle

Screen
Resolution

Threshold
pixel
(T1)

Threshold
pixel
(T2)

 Time1
(Second)

 Time2
 (Second)

32385 0 800x600 2.0 4.0 2.23 5.78

534607 4000 800x600 2.0 4.0 29.30 63.43

IAPRS, VOLUME XXXIV, PART 2, COMMISSION II, Xi’an, Aug. 20-23, 2002

 428

Hoppe, H., 1998. Smooth view-dependent level_of_detail
control and its application to terrain rendering. In: IEEE
Visualization ,pp.35-42.

He T, et al. 1995.Voxed-based objects simplification. In:Proc.
Visualization95 IEEE CS Press, Los Alamitos Calif pp296-303.

Koninger, A.,1998. 3D-GIS for urban purpose. GeoInformatic
2,pp.1 79-103.

Luebke David, C,Erikson,1997.View-dependent simplification
of arbitrary polygonal environments. In: Computer Graphics.
ACM press, New York pp.199-208.

Lindstrom Peter, et al, 1996. Real-time continuous level of
detail rendering of height fields. Computer Graphics Vol.20
ACM Press New York,pp. 109-118.

Lindstrom Peter, G.,Turk, 2000.Image-driven simplification.
ACM Trans.Graphics Vol.19 No.3 ,pp.203-241.

Maceachren AM 1994 Times as a cartographic variable.
In:Visualization. In: Geographical Information Systems.
England:Wiley, pp.115-130.

Mahdi Abdelguerfi, WYNNE Chris 1998 Representation of 3-D
elevation in terrain databases using hierarchical triangulated
irregular networks: a comparative analysis. INT. J.
Geographical Information Science Vol. 12 No.8 ,pp.853-873.

Popvie Jovan, Hoppe Hugues 1997 Progressive simplicial
complexes. In: SIGGRAPH 97 Proceeding ,pp.217-224.

Rossignac J, Borrel Paul 1993 Multi-resolution 3d
approximations for rendering complex scene. Modeling In:
Computer Graphics. Springer-Verlag, Berline ,pp.455-465.

Schroeder W, Jonathan A Zarge 1992 Decimation of triangle
meshes. Computer Graphics (SIGGRAPH’92 Proceeding).
26(2),pp.65-70.

Spitaleri R 1993 Reference models for computational visual
simulations. In: P.Palamidese(eds) Scientific Visualization
Advanced Software Techniques, pp.3-14.

Xia J, El-Sana J, et al 1997 Adaptive real-time level-of-detail-
based rendering for polygonal model. IEEE Transactions on
Visualization and computer graphics.Vol.3 No.2 ,pp.171-183.

Yang, B.S, Q.Q,Li, 1999. Buildings modeling for 3d city model.
Geo-Spatial Information Science, Vol.2, No.1,pp.109-114.

Yang, B.S, Q.Q.Li ,2000. Building model creating and storing
in 3d urban GIS. In:International Archives of Photogrammetry
and Remoting.Vol.XXXIII, Part B4 ,pp.341-349.

