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ABSTRACT: 
 
Automatic extraction of built-up areas from a multitemporal interferometric ERS-1/2 Tandem SAR dataset was studied. The image 
data were segmented into homogeneous regions and the regions were classified using their mean intensity and coherence values and 
additional contextual information. According to comparison with a set of reference points, an overall classification accuracy of 97% 
was achieved when classifying the dataset into three classes: built-up area, forest and open area. Reference points in densely built-up 
urban areas were recognized as built-up with 100% accuracy. In small-house areas the percentage of reference points correctly 
classified as built-up ranged from 66% to 94%, depending on the channel combination and classification rules used. Use of texture or 
rules related to classes of neighbouring objects improved the accuracy. The classification process was highly automatic; training 
areas covered only about 0.12% of the study area and did not have any overlap with the reference points used in accuracy estimation. 
Built-up areas could be recognized clearly better than in some previous studies with interferometric ERS data. Possibility to classify 
built-up areas further into subclasses was investigated using digital map data. The results suggest that the built-up classes of Finnish 
1:50 000 topographic maps (small-house areas, apartment house areas and industrial areas) are difficult to distinguish reliably from 
each other. On the other hand, a correlation was found between the percentage of an area covered with buildings and the mean 
intensity and coherence of the area in the imagery. This information was used to classify built-up areas into subclasses.  
 
 

1. INTRODUCTION 

Method development for automatic mapping and map updating 
using remotely sensed data is currently an important research 
topic. In addition to aerial photographs and optical satellite 
imagery, Synthetic Aperture Radar (SAR) data attract 
increasing attention. SAR images provide information 
complementary to that obtained from optical data and can be 
useful even if acquisition of optical images is difficult due to 
cloudiness or darkness. In the future, the importance of SAR 
data in mapping applications is expected to increase due to new 
systems providing data with high spatial resolution and with a 
variety of frequencies, polarization modes and incidence angles.  
 
Previous studies have shown that interferometric SAR data 
including both backscatter intensity and coherence information 
have high potential for land-use mapping (Wegmüller and 
Werner, 1997; Dammert et al., 1999; Strozzi et al., 2000). For 
example, Strozzi et al. (2000) used different algorithms and test 
areas in Europe and their results suggested that land-use 
classification accuracies around 75% are possible with, in the 
best case, simultaneous forest and nonforest accuracies of 
around 80-85%. The accuracy of urban areas, however, was 
only around 30%. Problems in discriminating urban areas were 
also encountered by Dammert et al. (1999). In these previous 
studies, various numbers of European Remote Sensing Satellite 
(ERS) SAR images and features extracted from them have been 
used. Classification algorithms applied have been pixel-based 
methods. 
 
The goal of the present study was to investigate how built-up 
areas could be extracted automatically from a multitemporal 
interferometric ERS-1/2 Tandem dataset and evaluate the 
applicability of the data to automatic updating of land-use 

maps. Built-up areas in SAR images are typically clearly visible 
for the human eye, but due to their heterogeneous appearance, 
automatic extraction can be difficult. For example, a suburban 
area is typically comprised of houses, roads, yards and different 
types of vegetation. In an image with spatial resolution of 20- 
30 m, this area appears as a group of mixed pixels together with 
pure pixels from various land-cover classes. For map updating, 
detection of new built-up areas is one of the most important 
tasks. 
 
An interferometric dataset created previously at the Helsinki 
University of Technology (HUT) within ESA AO3-277 project 
was used in the study. According to visual evaluation, the 
dataset is promising for land-use mapping applications. Forests, 
agricultural fields, urban areas and even main roads and 
railways are visible in the imagery. Due to the relatively low 
spatial resolution of the ERS data, automatic extraction of small 
or narrow objects, such as roads, is likely to be difficult, but for 
mapping land-use classes in a coarser scale the dataset could be 
useful. Engdahl and Hyyppä (2002) achieved an overall 
accuracy of 90% when classifying the dataset into six classes by 
using an unsupervised ISODATA classifier. 
 
 

2. DATA 

2.1 SAR imagery 

A total of 14 ERS-1/2 complex image pairs acquired during the 
ERS Tandem mission in 1995-1996 were processed at HUT to 
create the dataset used in the study. The dataset covers Helsinki 
and its surroundings with a variety of built-up areas as well as 
forests and agricultural land. Total land area covered is about         



 
 
 

 

1800 km2. Processing of the data is described in the following 
sections. The final dataset included eight channels: 

1. Temporal average of the backscattered intensity 
images 

2. Temporal average of the Tandem coherence images 
3. Average of two coherence images with long temporal 

baselines 
4. The 1st principal component (PC) calculated from the 

Tandem coherence images 
5. The 2nd PC calculated from the Tandem coherence 

images 
6. The 1st PC calculated from the backscattered intensity 

images 
7. The 2nd PC calculated from the backscattered intensity 

images 
8. Textural feature calculated from the backscattered 

intensity images (GLCM Uniformity) 
 
2.1.1 Interferometric processing and geocoding: The SAR 
data were interferometrically processed and geocoded using a 
commercial software package of Gamma Remote Sensing 
Research and Consulting AG. The Tandem data used in the 
study were acquired from two separate satellite tracks. In the 
interferometric processing a master image was chosen for both 
of the tracks and all images were co-registered with their 
respective master images. Interferograms and coherence images 
were created from the already co-registered interferometric 
pairs. Common band filtering (also called spectral-shift 
filtering) was applied in order to minimize the effects of the 
baseline geometry on coherence estimation, and multi-looking 
(5 azimuth looks) was performed in order to improve on the 
estimates of the interferometric phase and coherence. After 
multi-looking, the pixel size of the image data is approximately 
20 m in both azimuth and slant range (at the ERS nominal look 
angle of 23º). The resulting 5-look interferograms were 
flattened using high-quality orbit information distributed by the 
DLR (Deutsches Zentrum für Luft- und Raumfahrt). The 
interferometric coherence was estimated with a square 5x5 
pixels window using Gaussian weighing of the samples. In 
addition to the Tandem coherence images with a temporal 
baseline of 24 hours, two coherence images with longer 
temporal baselines were computed (35 and 245 days). Also, 5-
look intensity images were generated and radiometrically 
calibrated for range spreading loss, antenna gain, normalized 
reference area and the calibration constant. After interferometric 
processing the image data were in two different geometries 
determined by the respective master images. An INSAR 
(interferometric SAR) digital elevation model (DEM) was used 
first in co-registering all image data into one geometry and then 
in orthorectification of the image data into map coordinates. 
Judging visually, the image data from different tracks coincide 
perfectly, which implies that sub-pixel accuracy was achieved.  
 
2.1.2 Temporal filtering: The intensity and coherence 
images were filtered using a multitemporal filter described in 
Quegan and Yu (2001). Spatial filtering causes some loss of 
spatial resolution, which can be avoided in multitemporal 
filtering, at least in principle. According to visual evaluation, 
the temporally filtered images display markedly diminished 
noise with little or no reduction in spatial resolution. In fact, 
narrow linear structures are more clearly visible in the filtered 
images than in the unfiltered ones.  
 
2.1.3 Principal Components Transformation: Due to the 
large number of SAR intensity and coherence images, it was 
necessary to reduce the dimensions of the image datasets prior 

to classification. The well-known Principal Components 
Transformation (PCT) was used for this purpose. Since the 
direction of the first PC affects the directions of all the other 
PCs due to the orthogonality constraint, the data mean ought to 
be subtracted from the input data before applying the PCT. The 
so-called temporal average images were subtracted from the 
Tandem coherence and Tandem mean image datasets before 
applying the PCT. Temporal averaging refers to the simple 
procedure of computing the average of the co-registered time 
series of images. If water areas are included in the intensity and 
coherence datasets, the first PC will highlight the water bodies. 
This happens on intensity image time series because differing 
wind conditions make large differences in backscatter from 
water, and on coherence image time series because free water 
has extremely low coherence during summer and ice has often 
quite a high coherence. Since we were not interested in water, 
but land cover, the water areas were excluded by using a water 
mask that was created by thresholding backscatter intensity 
ratio images. 
 
2.1.4 Texture: A textural feature, Grey Level Co-occurrence 
Matrix (GLCM) Uniformity, was calculated from the intensity 
images. This feature was first calculated separately for each of 
the 14 Tandem mean intensity images using a 9x9 pixels 
window and the results were then averaged. 
 
2.2 Reference data 

A set of 1313 reference points determined at HUT was used as 
reference data in estimating the accuracy of classification 
results. Aerial photographs, topographic maps and information 
from the National Forest Inventory of Finland were used to 
determine the reference points that represent seven land-cover 
classes (Engdahl and Hyyppä, 2002). 
 
Possibility to distinguish different types of built-up areas from 
each other was studied using digital map data from Topographic 
Database and 1:50 000 Map Database. These vector datasets 
were obtained from the National Land Survey of Finland. A   
9.5 km x 9.5 km subarea around Otaniemi, Espoo, 
corresponding approximately to one topographic map sheet, 
was selected as a study area for this analysis. The area is mainly 
suburban but also includes some densely built-up areas, forest 
and fields.  
 
In the 1:50 000 Map Database, most built-up areas are 
presented as polygons classified as small-house areas, 
apartment house areas and industrial areas. Some buildings are 
presented as individual buildings. For the analysis, built-up 
areas were converted into a raster map that shows small-house 
areas, apartment house areas and industrial areas with different 
labels. The pixel size of the map is 20 m and pixels correspond 
to those of the image data. The information of the map database 
in the subarea corresponds to situation in 1996 and is thus 
compatible with the image data acquired in 1995-1996.  
 
In the Topographic Database, individual buildings are 
presented. Buildings in the 9.5 km x 9.5 km area were also 
converted into raster format. Pixel size of 2 m was now selected 
to also include small buildings in the raster map. Each pixel of 
the image data thus corresponds to 100 pixels in the building 
map. The Topographic Database has been updated in 2000, i.e. 
the map data are a few years newer than the imagery, which 
probably caused some distortions in the analysis results. Some 
buildings presented in the map did not exist when the images 
were acquired. 



 

 

 
Figure 1. a) A 12 km x 12 km subarea of the imagery used in the study (Red: channel 2, Green: channel 1, Blue: channel 3). Data 

obtained from ESA AO3-277. b) Land-use classification result based on channels 2-6 and 8 (Light grey: built-up area, 
Dark grey: forest, White: open area, Black: water mask or missing data). 

 
 

3. LAND-USE CLASSIFICATION 

At the first stage of the study, the objective was to distinguish 
built-up areas from other main land-use classes. The image 
dataset was segmented and classified using the object-oriented 
image analysis software eCognition of Definiens Imaging 
GmbH (2002). The segmentation method (Baatz and Schäpe, 
2000) is based on bottom-up region merging. Objects 
corresponding to different hierarchical levels of the image can 
be created and used in further analysis. In classification, it is 
possible to use the supervised Nearest Neighbour (NN) method 
and/or membership functions defined on the basis of user’s 
knowledge related to the classification task.  
 
At first, segmentation of the data into relatively small and 
homogeneous regions was made (segmentation level 1) using 
image channels 1-3. The NN classification method was then 
used to classify the segments into three classes: built-up area, 
forest and open area (classification step 1). Water areas were 
excluded from the analysis by using the water mask (see Section 
2.1.3) as a thematic layer in segmentation and classification. 
Initial training areas for the three classes were defined on the 
basis of maps and knowledge of the region and were imported 
into eCognition as a training area mask. These initial training 
areas covered 0.12% of the total land area in the imagery and 
included four built-up areas in a suburban area containing both 
densely built-up area and small-house area, two forest areas, 
two open areas on agricultural fields and one on a golf course. 
Training areas for built-up area covered mixed pixels of 
buildings and other land covers in addition to pure densely 
built-up area. The training areas did not have any overlap with 
the reference points used in accuracy estimation. In eCognition 
sample objects were automatically created on the basis of the 
training area mask. Finally, the sample objects were checked 
manually using digital map data and some corrections were 
made. In classification, mean values of the segments in various 
image channels were used. Accuracy of results (percentage of 
reference points correctly classified) for four channel 
combinations is shown in Table 1. The channel combinations 
are: 

− Channels 1-3 that are well suited for visual 
interpretation (see Figure 1). 

−  Channels 2-6 with and without texture channel 8; 
these were the most useful channels according to 
preliminary analysis of training area statistics. 

−  Channels 1-8, i.e. all channels.  
 
Classification result obtained when using channels 2-6 and 8 is 
presented in Figure 1. Confusion matrix and accuracy estimates 
for this classification are shown in Table 2. In Table 2, the 
reference points have been combined into three classes 
corresponding to those used in classification: open area 
contains points of fields, forest contains points of sparse and 
dense forest and built-up area contains points of small-house 
area, apartment house area, urban area and industrial area. 
 
Recognizing built-up areas, especially small-house areas, as 
built-up using only the mean intensity and coherence values of 
the segments is difficult. In small-house areas a remarkable part 
of the land is covered with vegetation and contextual 
information related to the neighbourhood of the segments is 
needed to include these vegetated areas into the land-use class 
built-up area. The texture channel of the image dataset provided 
this type of contextual information. As another alternative, use 
of information on the classes of neighbouring segments was 
tested (classification step 2). Segmentation level 2 that was 
identical to level 1 was created to allow another classification to 
be performed for the same segments. Level 2 segments were 
first classified according to the level 1 result and segments 
classified as forest or open area were further divided into urban 
forest, other forest, urban open and other open using 
neighbourhood relationships (Definiens, 2000). Membership 
functions and a feature ‘Relative border to built-up neighbour 
objects’ were used. Urban open and urban forest were then 
grouped together with the built-up area. Rural forest and 
agricultural areas as well as larger green areas inside towns 
should still become classified as forest or open area. 
Classification step 2 proved to be useful in most classifications 
performed without the texture channel. Accuracy of the final 
result when using channels 1-3 or 2-6 and classification step 2 
is shown in Table 1. 

a)  b)  



 
 
 

 

Table 1.  Accuracy of land-use classification results compared 
with reference points. 

 
Reference 
class 

Correct 
classif. 
result 

% of points in reference class 
correctly classified 

  Channels used 
  1-3 

1) 
1-3 
2) 

2-6 
1) 

2-6 
2) 

2-6 
8 1) 

1-8 
1) 

Field Open 96 92 98 96 97 94 
Sparse 
forest 

Forest 91 91 96 96 94 96 

Dense 
forest 

Forest 98 98 98 98 98 99 

Small-
house area 
(residential) 

Built-up 66 79 67 74 94 93 

Apartment 
house area 
(residential) 

Built-up 87 97 93 98 96 96 

Urban area 
(city centre) 

Built-up 100 100 100 100 100 100 

Industrial 
area 

Built-up 93 94 97 98 99 99 

All classes  91 92 94 94 97 96 
1) Accuracy after classification step 1 
2) Accuracy after classification step 2 
 
Table 2. Confusion matrix and accuracy estimates for land-

use classification based on channels 2-6 and 8. 
 
Classification result Reference class 
 Open Forest Built-

up 
Sum 

Open  567 5 3 575 
Forest 3 182 14 199 
Built-up 12 2 524 538 
Unclassified 1 0 0 1 
Sum 583 189 541 1313 
     
Interpretation 
accuracy 

97% 96% 97%  

Object accuracy 99% 91% 97%  
Mean accuracy 98% 94% 97%  
Overall accuracy    97% 
 
 

4. CLASSIFICATION OF BUILT-UP AREAS INTO 
SUBCLASSES 

Possibility to distinguish different types of built-up areas from 
each other was investigated using the 9.5 km x 9.5 km subarea 
and raster maps described in Section 2.2. Larger segments than 
those used in the land-use classification were created in 
eCognition by using image channels 1-3. The 1:50 000 map 
data were used as a thematic layer in segmentation, which 
assured that each segment belonged completely to one class in 
the map and comparing properties of segments from different 
classes was possible. The segmentation result together with 
various attributes of the segments (e.g. mean values and 
standard deviations in each channel, textural information) were 
exported from eCognition, and histograms of the attribute 
values were formed for different types of built-up areas. It was 
found out that the built-up classes of the 1:50 000 map cannot 
be distinguished well from each other with the tested attributes. 

Histograms of segment mean values in image channel 5 (the 2nd 
PC calculated from the coherence images) are shown in Figure 
2. This was one of the best results obtained. 
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Figure 2. Histograms of segment mean values in image 

channel 5 in the built-up classes of the 1:50 000 
topographic map.  

 
Another segmentation was performed without map data, but 
otherwise with similar parameters as the previous one. For each 
segment, the built-up percentage, i.e. the percentage of the area 
covered with buildings, was then calculated using the building 
map derived from the Topographic database, and the 
correspondence between this built-up percentage and various 
attributes of the segments was studied. More promising results 
than above were now obtained. According to scatter plot 
figures, there was a clear dependence between the built-up 
percentage and intensity and coherence of the area in the image 
data. Figure 3 shows the relationship between segment 
brightness (calculated as the mean value of the segment mean 
value in channels 1-5) and the built-up percentage. Segments of 
the subarea were divided into three classes on the basis of the 
built-up percentage: < 10%, 10-20% and ≥ 20%. Histograms of 
segment brightness in these classes are shown in Figure 4.  
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Figure 3. Scatter plot showing the relationship between 

segment brightness and the relative proportion of the 
segment covered with buildings. 
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Figure 4. Histograms of segment brightness in three building-

density classes.  
 
Classification of all built-up areas in the imagery further into 
‘building-density classes’ was tested using the eCognition 
software and threshold values determined from the histograms 
of Figure 4. A new segmentation level was created between the 
small segments used in land-use classification and large 
segments determined on the basis of the classification result 
(Section 3). The size of the segments on the new level was 
comparable to the size of the segments used in the analyses 
described above, but a somewhat different homogeneity 
criterion was used in segmentation. Built-up areas of the 
classification result based on channels 2-6 and 8 (Figure 1) 
were divided into three subclasses using the brightness values 
of the segments and the threshold values. The final result is 
shown in Figure 5. 
 

 
 
Figure 5. Classification of built-up areas into three building-

density classes using brightness of segments. Built-
up areas are shown in grey (light grey: sparsely 
built-up, dark grey: densely built-up). Forests and 
open areas are shown in white. 

5. DISCUSSION 

Results in Table 1 show that a high accuracy was achieved 
when classifying the dataset into three classes: built-up area, 
forest and open area. All channel combinations tested in the 
study gave an overall classification accuracy better than 90%. 
The best result was obtained using channels 2-6 and 8, i.e. all 
channels containing coherence information, the first PC 
calculated from the intensity images and texture. In this result, 
the overall accuracy compared with the reference points was 
97%. Table 2 shows that the accuracy was high for each of the 
three classes; the mean accuracies for built-up area, forest and 
open area were 97%, 94% and 98%, respectively. 
 
Reference points in urban areas were recognized as built-up 
with 100% accuracy in each classification (Table 1). In small-
house areas and apartment house areas the percentage of 
reference points correctly classified as built-up was 66-94% and 
87-98%, respectively. The texture channel 8 appeared to be 
useful in recognizing built-up areas, especially small-house 
areas, as built-up. The best results in small-house areas were 
obtained when channel 8 was used. It is worth noting that the 
mean value of the texture feature for each segment was used in 
classification, but due to the pixel-based calculation of the 
texture channel with a relatively large window size of 9x9 
pixels, the mean value for a given segment was based on data 
both from the segment and its neighbourhood. Use of the 
texture channel thus brought some contextual information 
related to the neighbourhood of the segments into classification. 
When the texture channel was not used, the interpretation 
accuracy of built-up areas could be clearly improved by using 
information on the classes of neighbouring segments. For 
example, when using channels 1-3, the second classification 
step with the neighbourhood information improved the 
percentage of small-house areas and apartment-house areas 
recognized as built-up from 66% to 79% and from 87% to 97%, 
respectively. On the other hand, this classification step 
decreased the percentage of fields classified as open area; that 
is, some fields were incorrectly classified as built-up. 
 
The classification results, especially for built-up areas, were 
clearly better than those obtained in some previous studies with 
interferometric ERS-1/2 Tandem data (e.g. Strozzi et al. 2000), 
although it must be noted that direct comparison of 
classifications with different class definitions and different 
number of classes is impossible. The main explanation for the 
high accuracy achieved in the present study was probably the 
good quality of the interferometric dataset. Engdahl and 
Hyyppä (2002) achieved an overall accuracy of 90% when 
applying an unsupervised pixel-based classification to the same 
dataset. In their classification, two built-up classes (mixed 
urban and dense urban) were included and interpretation 
accuracies for these classes were 80% and 91%, respectively. If 
the classes were combined in the final result, the accuracy of 
built-up would increase near to that obtained in the present 
study. It can be expected, however, that the object-oriented 
approach applied in the present study has some benefits 
compared with pixel-based classification. Classification of 
segments is easier than classification of single pixels, especially 
in a built-up area with both man-made structures and vegetated 
surfaces. Object-oriented classification also gives homogeneous 
regions as a result without any postprocessing. 
 
Despite the high accuracy achieved, visual comparison of the 
results with digital map data revealed that some built-up areas 
were missing in the results. These areas are not clearly visible in 



 
 
 

 

the imagery, probably mainly due to a dense forest cover. On 
the other hand, small areas in forest, especially rocky or hilly 
areas, were sometimes misclassified as built-up. Some 
preliminary numerical comparisons between the classification 
results and the 1:50 000 map data were also made. A raster map 
showing fields, meadows and open areas in addition to the 
different classes of built-up areas was created for the 9.5 km x 
9.5 km subarea (see Section 2.2) and used in the comparisons. 
The percentages of small-house areas, apartment house areas 
and industrial areas correctly classified as built-up when using 
channels 2-6 and 8 were 78%, 96% and 99%, respectively. The 
percentages of fields, meadows and open areas classified as 
open were 93%, 54% and 38%, respectively. Boundary pixels 
of the classes in the map were excluded from the analysis. The 
accuracies seem to be somewhat lower than those obtained 
using the reference points. Further investigations on the subject 
are needed, but it can be expected that problems arise e.g. from 
generalization of information in the map and definition of 
classes such as open area that may include different types of 
areas. Some areas that appear similar in the imagery can also 
belong to different classes in the map; for example, one grass-
covered area can be a park classified as open area in the map 
but another similar area can be a garden assigned to small-
house area. 
 
When studying the possibility to classify built-up areas into 
subclasses, the classes of the 1:50 000 maps appeared to be 
difficult to distinguish from each other as shown in Figure 2. 
On the other hand, results presented in Figure 3 suggest that 
intensity and coherence values of an area in the imagery are 
clearly related to the building density of the area and could thus 
be used to recognize areas with different building densities. 
According to visual evaluation, the classification result obtained 
when using this information was promising (Figure 5). 
Accuracy of the result, however, has not yet been tested. 
 
 

6. CONCLUSIONS 

Good results were obtained when multitemporal interferometric 
ERS data were used to distinguish built-up areas from forest 
and open areas using an object-oriented classification approach. 
The dataset also appeared to be promising for classifying built-
up areas into subclasses according to building density. Further 
development of methods for automatic land-use mapping and 
map updating thus seems to be possible. It can be expected that 
such methods have high potential in the future, especially when 
interferometric SAR data with high spatial resolution becomes 
available. 
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