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ABSTRACT:

This paper presents a full y automated approach for area detection based on multi-spectral images and features from a topographic
database. The vectors residing in the database are refined using active contours (snakes) according to updated information provided
by the multi-spectral images. The conventional methods of defining the external energy of the snake based on statistical measures
or gradient-based boundary finding are often corrupted by poor image quality. Here a method to integrate the two approaches is
proposed using an estimation of the maximum a posteriori (MAP) segmentation in an effort to form a unified approach that is
robust to noise and poor edges. We further propose to improve the accuracy of the resulting boundary location an update of the
snake topology. A number of experiments are performed on both synthetic and LANDSAT 7 images to evaluate the approach.

1. INTRODUCTION

Topographic databases are gaining popularity as a reference
tool in many fields of application. The providers of topographic
information are currently concerned with how to maintain data
updated and also how to increase its accuracy with limited
resources. Moreover, the evolving needs for current basic
spatial data requires reliable and fast processing methods to
address these concerns. This problem could be overcome
through image processing techniques, which allow increasing
accuracy of both geometric and temporal features. An
increasing number of methods for updating spatial information
based on image processing began to appear in the latest years.
From the proposed methods, we are mostly interested with
those based on the snakes. The proposed approaches deal with
different type of images, mainly with single band satellite
(Bentabet et al, 2001; Horritt, 1999) or airborne (Auclair-
Fortier et al., 2001) images and from different type of sensors
such as radar or optical. The snake model is defined according
to the geometry of the target feature. Some works present
linear snakes to search linear features such as road (Bentabet
et al, 2001; Auclair-Fortier et al., 2001). Others present closed
snakes to obtain a description of area features such as water
regions (Horritt, 1999).

In this paper, we propose a method to update existing area
features from a given topographic database using of multi-
spectral images. The available database vectors provide an
interesting initialization for the area localization process. In
this context, the closed snake approach was presented as a
natural solution. The main contribution of this work is the
formulation of the external forces, which deform the snake by
combining both statistical and boundaries information.

The region-based and the boundary finding measures provide
us with complementary information. By reviewing the existing
works focusing on the integration of region-based information
with boundary information, we conclude that they are mainly
made within image segmentation framework (Chakraborty and
Duncan, 1999). The boundary-based methods have superior
localization properties. Also, they are robust to changes in the
gray-level distribution since they look at the derivative
information. However, they often give high rate of false edges
due to textured regions. In addition, a weak response is
produced when far from the boundaries of the area. The region-
based and especiall y statistical methods supply a good model
for textured regions and good response when far from the
edges. Furthermore, region-based methods have the advantage
of being less susceptible to noise than other methods that
involves derivative information. Unfortunately, these methods
suffer from the problems of poor localization and over-
segmentation.

As pointed out in the above discussion, the region and
boundary based methods have their different advantages and
disadvantages. This brings us to the fact that integration
methods are likely to perform better than either of the methods
alone. An integration method will combine the complementary
strength of these individual methods and decrease their
drawbacks, as pointed out in (Chakraborty and Duncan, 1999;
Pavlidis and Liow, 1990; Tek and Kimia, 1995).  Many works
have addressed the problem of combination of region-based
and boundary-based methods. Some studies focus on the AI
techniques, which define a set of rules in order to deal with
conflicting situations (Pavlidis and Liow, 1990). Another way
of achieving combination is the reaction-diffusion method (Tek
and Kima, 1995). However, the problem is that if any one of
the processes makes error (e.g., a false edge), it is propagated
to the final solution. Chakraborty et al. propose to use the game



theoretic method. The game theory as a concept has its roots in
decision making under a conflicting and often hostile
environment. This method processes by maintaining the
modularity of the system involved and by allowing the modules
(i.e., region-based and boundary-based modules) to interact by
a decentralized mode of decision making. The contribution of
each module is determined by achieving the Nash equilibrium
(Chakraborty and Duncan, 1999). This method allows high
performance when applied to noisy images, especially when
applied to deformable models. However, the existence of the
Nash equilibrium depends on weighting parameters of the goal
function. While for simple problems it might be simple to
mathematically choose right values for the weights, often, for
complicated problems, it is almost impossible.

Our goal here is to develop a fully automated formalism for
integrating boundary finding and region-based methods. This
formalism will be used to model the external force acting on
the deformable model. The region-based modeling is achieved
at a global level by a statistical characterization. Thus, the
cluster of interest could be considered as being a mixture of
distributions. The boundary finding part is handled by the
gradient information. Since the gradient defines a measure of
non-homogeneity in the pixel neighborhood, its response is
modeled as a potential function, that generates a Gibbs
distribution of a Markov random field (MRF). The
combination relies on an approximate maximum a posteriori
(MAP) estimate that gives the likely segmentation according to
the observed data. In order, to resolve the conflicting situation
that could appear, each part of the MAP is weighted by a
measure that ensures the selection of the suitable MAP
configuration. The paper is organized as follows. Section 2
gives a brief overview of the deformable model approach as
introduced by Kass et al., 1988 and the snake discretization
using finite element used in this framework. Section 3 details
the methods for both region-based and multi-spectral boundary
finding formulation respectively. In section 4, we introduce the
MAP combination and conflict resolving formulation for the
external forces calculation purpose. In section 5, we resume the
final algorithm. Finally, in the rest of the paper, we show and
discuss the results obtained on both synthetic and LANDSAT7
images. A conclusion is given with the possible extensions of
our work.

2. DEFORMABLE MODELS APPROACH

Active contours models or snakes were introduced by Kass et
al., 1988 as a novel solution to the low-level imaging task of
finding step edges. A snake is defined, in the image plane
(n,m), as a parametric curve of the curvilinear abscise, r, by
v(n,m)=v(n(r,t),m(r,t)). The snake is allowed to deform from
some arbitrary initial location within an image towards the
desired final location. Thus, the use of snakes involves a two
steps process being an initialization and the iterative
minimizing process. To initialize the snake, we first perform
the discretization of the database vectors. The final snake
location is obtained through minimization process acting upon
the global energy of the snake defined as follows (Kass et al.,
1988):

( ) ( ) ( )tEtEtE extinttot += (1)

where Eext(t) is the external energy, Eint(t) the internal energy.
As described in classical snake modeling approach (Kass et al.,

1988), the internal energy acts as a stabilizer to the external
data irregularities. The standard internal formulation is given
as follow:
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where α and β are Tikhonov stabilizers which controls
respectively the elasticity and rigidity of the snake. In active
contours framework, the external energy, Eext(t), is used to
derive the external forces, Fext(t), which act on the snake to
deform its shape and location. The relationship between
external energy and forces is given by the following equation:

( ) ( )( )∫= dst,rvFtE extext (3)

As mentioned earlier, the initial location of the snake is
provided by the database vectors. In the next step, the initial
vectors are approximated by parametric curves. This task is
undergone by the use of the finite elements method (FEM).
The FEM enables accurate discretization of derivatives and
smooth shape representation for the snake. The interested
reader will find all details in (Bentabet et al., 2001). To
summarize, the discretizing of the parametric curve v(r) by
FEM leads to an expression for each element given by:
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where, Ni(r) define a vector of interpolation polynomials. In
our case, the interpolation is carried out using a Hermite basis

function. The two-columns matrix ( )eee Y,XV =  contains the
coordinates of the control nodes which are inserted at regular
intervals of the initial curve issued from the database.
Consequently, both snake topology and location will be entirely
defined by the knowledge of the control nodes. Therefore, the
segmentation purpose can be described as being a process of
estimating the suitable values for the control nodes coordinates
that minimize the global energy of the snake energy defined in
equation (1). The estimation of these parameters to find the
boundary is posed as an optimization process, where a MAP-
based objective function measures the strength of the boundary
given the set of control nodes. The snake evolution is governed
by a partial derivative equation of motion obtained by resolving
the Euler Lagrange equation (∇Etot=0) which can be expressed
as follows (Bentabet, 2001):
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where �  controls the speed of evolution of the snake. A
discretized form of Equation (5) can be derived using the finite
elements formalism, which yields the following iterative
process:
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where I is the N×N identity matrix. K is an N×N matrix which

depends on � , �  and the shape of the interpolating curves. e
nTV

gives the location of the element nodes at iteration n.

3. EXTERNAL FORCES CALCULATION

The calculated external force is defined as a function of the
region and the boundary information. We assume that the
image can be modelled as a collection of homogeneous regions
of uniform or slowly varying intensities. Let the image data be
described by a random field Y defined on a rectangular grid, S,
of N points, and the value of Y at a point s ∈ S will be written
as Ys. When necessary the points in S will be explicitly written
as integer pairs (n,m). X will denote the random field of a
given segmentation of Y into uniform regions. Lowercase x and
y will be realizations of the X and Y respectively. The
probability P(Z=z) is written as p(z).

3.1 Statistical Measure

By definition, topographic features could be described by more
than one texture. Indeed, for example, both hardwood and
coniferous trees are included in a vegetation region definition.
Also, these two types of forest can appear separately or in
mixed areas. Thus, the statistical properties of the targeted
area are computed assuming the region of interest is described
by a number of textures being normally distributed. We
propose a mixture estimation process independent but
necessary for the region localization. Indeed, the definition of
the mixture parameters for different type of topographic feature
in an image can be recorded in a database and used as a prior
knowledge. This information is essential to the snake process
but can be defined in an earlier step.

The statistical information is described trough a number k of
Gaussian distributions with the mixture proportion, pj, the
expected value of the argument, µj, and the covariance matrix,�

j  with j ∈ [1, k]. The dimension of µj and 
�

j are related to the
number of bands available in the multi -spectral imagery.
Indeed, the definiti on of these parameters through n bands
provides µj vectors of dimension n and 

�
j matrix of size n×n.

3.1.1 Statistical prior knowledge

The goal is to define the ideal number of textures contained in
a sample region witch describes the data. Recent studies
(Oli vier et al., 1999) propose an iterative algorithm for normal
mixture definiti on. This operation is a two steps iterative
process. It is done using the Expectation – Maximization (EM)
algorithm assuming an adequate initi ali zation of the
parameters values for a given number of distributions. The
objective of the EM algorithm is to maximize the log-
li kelihood in an iterative manner. The second step consists of
evaluating the balance between the accuracy of the model and
the number of components. Evaluating the Minimum
Description Length (MDL) of the model provides this measure
as described by Oli vier et al., 1999.

The mixture model that minimizes the MDL criterion
corresponds to the appropriate mixture model for the region of
interest.

Since the statistical characteristics of the area are estimated, a
goodness function based on these statistical features can be
derived. Indeed, this function will define the region probabilit y
measure part of the external energy.

3.1.2 Region Probabilit y Measure

Considering a reali zation of the field Y noted, y, the aim here is
to evaluate p(y|x). The statistical goodness measure is based on
the calculation of a distance, ψ(y), that evaluates the proximity
of a pixel to the statistical properties of the region. This value
can be defined using the Mahalanobis distance.

Having k textures for a given region, we associate to the
sample y the smallest distance from all k distributions defined
within the region. In order to consider this value in a generic
way, one must take into consideration the number of bands
from the multi -spectral image involved. Since we assume that y
follows a Gaussian distribution, we know that the Mahalanobis

distance follows a 2χ  distribution (Saporta, 1990) with n

degrees of freedom (n being the number of bands for the multi -
spectral image). Thus, we can set a threshold value based on
some confidence value (0.005% for instance). This threshold
value will serve to normali ze the calculated distance for tested
samples and also to identify outli ers. Thus, the goodness
function, ψ(y), can be defined as follow:
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where ψt is a threshold given by the 2χ  table value according
to the dimension of the data and the desired confidence value.
From Baysian inference, the joint probabilit y distribution,
p(y,θ), comprises two parts, a prior distribution p(θ) and a
li kelihood p(y|θ). In this framework, we do not consider the
prior distribution of θ, p(θ) in the evaluation of the closest
distribution nor for the goodness function. The idea is to
consider the closest texture according to the Mahalanobis
measure for a candidate as the unique potential.

By observing the distance defined by equation (7), we find that
when it is greater than 1, odds are that this pixel is outside the
region. On the opposite, as the value decreases near zero, the
indication of being inside the region increases. This
information allows the definiti on of the direction of growth.

Finall y, the li kelihood p(y|x) when the snake evolves inside the
considered region (i.e., ψ(y)<1), is given by a Gaussian
distribution as follows:
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For cases, where the snake is outside the considered region
(i.e. ψ(y)>1), the li kelihood is described by a translated form
of the Gaussian given in equation (8). The general case is
defined as follows:
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where 2i is the translation applied and for a given integer, i,
ψ(y) ∈ [2i-1, 2i+1].

3.2 Boundary Probability

The aim here is to provide a single gradient image given as
input a multi-dimensional set of images. In order to integrate
the contrast information contained in the various channels into
one meaningful result, Drewniok, 1994 extended in a formal
way a gray-level edge detector to multidimensional image data.
The integrating approach combines the contrast information
coming from the different spectral channels in a well-founded
way. The resulting gradient image gives a suitable description
of area boundaries well adapted to the purpose of our
framework. Assuming that the i th channel produces an image
I i(n,m):

( ) ( ) ( )m,nNm,nRm,nI iii += (10)

where Ri(n,m) is the ground truth and Ni(n,m) is an additive
Gausssian noise. The produced gradient image, G(n,m), is
corrupted by false-edges due to noise. The plausibility of false
edges follows a Rayleigh distribution (Voorhees and Poggio,
1987). In order to distinguish real edges from false ones,
Voorhees  proposed to estimate statistically a threshold that
separate these two populations. The threshold is calculated
according to the estimation of the peak of the Rayleigh
distribution. The threshold, κ, required to remove noise with a
confidence value of 99% is defined as follows:

µ
π

κ 2
3≈ (11)

where µ is the mean of the Rayleigh distribution. We assume
the plausibility of the true edges being described by a single
distribution. Let gµ be its expected mean value. As for the

Mahalanobis distance discussed in Section (3.1.2), one need to
normalize the gradient values in order to keep both measures
(gradient and statistics) in the same numerical range.
Therefore, we define the normalized gradient at a given
position ys as follows:
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The segmentation field, x, has an isotropic nature and its
distribution is strictly defined in a local neighborhood.
Thereafter, we use an MRF to model it (Bouman and Sauer,
1993). Using the Hammersley-Clifford theorem, the density of
x is given by a Gibbs density on the form:
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Here, Z is a normalizing constant and the summation is over all
cliques C. A clique is a set of points that are neighbors of each

other. The clique potentials VC  depend only on the pixels that
belong to clique C. They are inversely proportional to the
homogeneity of the contour plausibility in the immediate
neighborhood of the considered pixel, xs, (Bouman and Sauer,
1993).

Since the gradient defines a measure of non-homogeneity and
is evaluated in the immediate neighborhood of ys, its response
could be handled as being a transformation that maps the gray-
level of ys to the potential function Vc(xs) . This relation is
carried out in a proportional manner as follows:

( ) ( )ssc yG
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In view of this, the MRF field will henceforth be written in the
following, simplified form (where the constant of
proportionality in (14) is dropped for the sake of computational
ease):
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4. COMBINATION

As mentioned earlier, the segmentation purpose can be
described as being a the estimation of the suitable values for
the control nodes coordinates that minimize the global energy
of the snake. The estimation of these parameters to find the
boundary is posed as an optimization process, where a MAP-
based objective function measures the strength of the boundary
given the set of control nodes. The maximization of p(x|y)
given the control nodes could be written as follows:
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By applying the Bayesian formulation, the combined
probability p(x|y) in equation (16) can be expressed as follows:
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In the following, we ignore the term p(y) because it is
supposed to be a prior knowledge and it does not modify the
MAP estimation. Thus:
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By replacing p(xs) and p(ys|xs) by their respective expressions,
x̂ could be evaluated in terms of the snake curvilinear abscise,
r, as follows:
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It is clear that equation (19) combines the statistical and the
gradient-based measures in order to find the optimal
segmentation. The main question is to know if the formulation
given below allows a constructive integration of both provided
measures. In other words, we intend to investigate the behavior



of the MAP and determine if the two parts acts in such a
manner to preserve the same objective everywhere in the
image. This could be carried out by a qualitative analysis of the
MAP. Indeed, when inside a textured region but far from the
area boundaries, the statistical part may indicate that a pixel
under investigation have a high confidence to belong to the
region of interest. However, the gradient value can indicate
that the pixel belongs to the area boundaries. This means that
the gradient do not distinguish between the right area edges
and those generated by the texture or the noise. In such
situation, the gradient and the statistics are in conflict. Since,
the MAP estimation is obtained by the product of these two
parts, the decision made will be altered. Otherwise, when the
pixel under investigation belongs to the area boundaries, its
membership given by both gradient and statistics will be low.
The two parts behave simultaneously to exclude this pixel from
the segmented area. Knowing that the statistics suffers from a
poor edges localization, the joint decision made could be
affected.

To resolve this conflict, we propose the use of a weight to set
the contribution of each part into the MAP estimation. The
weight will act as a smooth switch, which gives priority to
statistics when the pixel is far from the area boundaries. Also,
when the pixel is closer to the edge, the priority will be
transferred to the gradient. The modified MAP is given as
follows:
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where τ is a weight parameter resolving the conflict as
described above. In the experimental results section, we
propose a formulation to set this parameter.

The MAP estimation will be maximized during the evolution
of the snake. This is performed by setting the external force
proportionally to the combined probability p(xs|ys). The final
expression of the external forces will be:
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Finally, the partial derivative equation that govern the snake
motion given by equation (5) can be rewritten as:
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This is equivalent to say that the evolution of the snake is
equivalent to the estimation of the control nodes that maximize
the criterion given by equation (20). This estimation is
constrained by the snake topology described by the terms in the
left side of equation (22)

5. ALGORITHM

Assuming the evaluation of the statistical mixtures done, the
localization step defines the new position of every existing area
of the database on the image. The operations performed over
each area vector can be summarized as follow:

• Set the initial snake parameters.
• Until the snake energy is not minimum:

• Set the external force of the snake from equation (21);
• Compute the new snake location using equation (22).

While the minimization process is running, the snake �  and β
parameters are decreased in parallel in order to enable the
snake to fit accurately to the high curved parts of the area
borders. This decrease of the snake parameters is done by
multiplying them with a constant factor, ∆, smaller than one
(0.75 for instance). Also, updating the control nodes of the
snakes optimizes the iterative energy minimization process.
Indeed, two principal operations are performed: addition of
new control points as the snake expands and deletion of control
points whenever parts of the snake shrink at a point where
control points overlap. Finally, the external energy factor is
moderate considering the changes of direction for a node. The
idea is to slow down when oscillations occur until it reaches its
stable point.

6. EXPERIMENTAL RESULTS

From the experience of existing works, it has been established
that it is difficult to set the rigidity and the elasticity
parameters of the internal energy of the snake correctly
(Horritt, 1999). In this work, we calculate the rigidity
parameter β from the average curvature of the initial database
vectors as proposed in (Bentabet, 2001):
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where βmax is the maximum value assigned to the rigidity

parameter, curv  is a measure of the average curvature of the
snake initialization using the segment of the database. The
parameter q defines the degree of relationship between the
curvature and the rigidity parameter. The elasticity parameter
α is set to a value near zero in order to allow the snake to
stretch according to the external energy only.

We propose a formulation for the τ parameter based on the
idea of giving priority to statistics when the snake evolves far
from the boundaries and transfer this priority to the gradient
when near the area boundaries. In this context, , the τ
parameter is set by an estimation of the proximity to the area
boundaries that could be deduced from the normalized
Mahalanobis, ψ, as follows:
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The proposed approach was first tested on synthetic images
presented in figure 1. The first result presents a region defined
by 2 textures on 3 different layers. The initial vector that
served to initialize the snake is shown in white on image (a).
An intermediate image of the iteration process shows the snake
on images (b) and the final result is presented in image (c).
Specific parameters values for this result were 0.85 as the
decreasing factor, ∆, the Mahalanobis threshold value was
based on a confidence value of 0.0005, internal parameters �  at
0.05 and �  at 30.



The approach was then experimented on Landsat 7 images
using 7 bands (30m resolution, we ignored band 6) to update
features of the Canadian National Topographic Database
(NTDB). The presented result in figure 2 show a homogeneous
water region. The vector initi ali zing the snake is shown in
white on image (a) over enhanced band 2 of the Landsat7
image. Notice the li ghter region inside the water area due to
dense vegetation covering part of the lake and mostly obvious
on this specific band. The mixture evaluation clearly defined
two textures for this type of area that initi all y seems to be
homogeneous on other bands. Over the enhanced image of
band 4, an intermediate result of the snake process is presented
on image (b) and the final result is presented on image (c). The
specific parameters values for this result are the same as the
previous example.

Finall y, results of the experiment on 7 bands of Landsat 7
images for textured regions li ke vegetation are shown in Figure
3. Notice that is diff icult to visuall y delineate this kind of area
on any of the bands. We present the result on an enhanced
image of band 8 (15m resolution). The initi al snake is
presented in image (a), an intermediate image of the snake
process is shown on image (b) and image (c) presents the final
result. The only specific parameter different from the previous
examples is the decreasing factor, ∆ , that was set to 0.7.

7.  CONCLUSION

Our work demonstrates the importance of using snakes and
multi -spectral images for updating existing spatial area
information. We propose a promising automatic approach for
the update of existing vectors in topographic databases. The
combined statistics and gradient information for the external

energy allows the snake to grow in both directions and
provides complementary measures to precisely guide its
deformation. Indeed, the proposed weighted MAP estimation
strategicall y takes advantages of their respective strengths and
overcomes their drawbacks. An eff icient implementation using
finite elements has been proposed for accurate locali zation.
Finall y, experimental results demonstrate the reliabilit y of the
approach.
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