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ABSTRACT:

This pape presers a fuly automatd approach foarea atedion based on niti-spectrd images and featurs fram a topographic

databaseThe vectos residimg in the database are refih@isirg adive contous (snakesaccordirg to updatel informaion provided

by the muti-spectrd images The convetiond methods d defining the externhenery of the snake baskon stéistical measures
or gradient-bas# bounday finding are often carupted ly poor image qudity. Here a methd to integraé the two goproachs is

proposé usirg an egimation o the maxmum a posteriar (MAP) segmentton in an &ort to form a unified approach thais

robug to noie and por edges We furthe propog © improwe the acuray of the resiting baunday locaion an upda d the

shale topobgy. A numbe of experimens ae performe on both synthéc and LANDSAT 7 image o evaluag¢ the pproach.

1. INTRODUCTION

Topographic database ae gainirg pqulaity as a reference
tod in mary fields d application. The providers d topographic

information ae curertly concernd with hov to maintan data
updated and ale hav to increa® its accuray with limited

resources. Moreover, the evolving needs far current basic
spdial dat requires rdiable and fas processirg method to
address thes concerns This problen coud be overcome
throudh imag praessirg tediniques which dlow increasing
accuray of both geomett and temporh features An

increasig numbe of method far updding spdial information

base& on ima@ procesing bega to gopea in the lates years.
From the proposel methods we ae mosly interestd with

those basd on the snakesThe proposd approache ded with

different type d images mainly with singe band satdite

(Bentabé et al 200% Horritt, 1999 or airborre (Auclair-

Fortier et al., 2001) images and fram differert type d sensors
sudt & rada or ogtical. The snake modes defin& according
to the geomety of the targe feature Sorme works present
linea snaks © warth linea featurs sub a roa (Bentabet
et al, 2002, Auclair-Fottier et al., 2001) Othes presert closed
shake t obtah a descrifion o area feature sut e water
regiors (Horritt, 1999).

In this paper we propose a metldoto updae exiding ara
featurs from a given topogrgphic databas usirg o multi-

spectré images The avdlable database vectrpiovide an
intereging initialization for the area lodé&zation procas In

this context the closel snale gproath was presentd e a
naturd solution The man contribdion o this wok is the
formulaion o the externhforces which defom the snake by
combinirg boh stdisticd and boundaris informdion.

The region-bas® and tle bainday finding measure piovide

us with complementarinformaion. By reviewirg the exiging

works focusig on the integréion o region-basd informaion

with bounday information, we concude tha they are mainly
mace within imag segmention framewok (Chakrabory and

Duncan 1999) The baindary-basd method hawe superior

locdization propeties Also, theg are rdoug to changs in the

gray-levé distribution sine the/ look a the derivaive

information. However they often give hich rae d false edges
due  texturel regions In addtion, a we& respons is

produce when fa from the baundaries d the areaThe region-
basel and especiby staisticd method pply a goad model

for textura regiors and goad respons when far from the

edges Furthermore, region-bagenethod hae the advantage
of being less suscejble © noie than othe method that
involves derivdive informdion. Unfortunately the® methods
sufer from the problenrs d poor locdization and over-

segmaetation.

As pointel ou in the atlove discission the regim and
bounday basel method hawe ther different advantage and
disadvantagesThis brings us d the fa¢ that integration
method ae likely to perfom bdter than @ther of the methods
alone An integraion method Wl combine the complementary
strengh o thes individud method axd decea® their
drawbacks as pointe ou in (Chakrabory and Duncan 1999;
Pavidis and Liow, 1990 Tek andKimia, 1995) Mary works
hawe aldressal the problen of combindion o region-based
and boundary-bask methods Sone stidies focus a the Al
techniques which defire asd of rules in orde to ded with
conflicting stuatiors (Pavidis and Liow, 1990) Anothe way
of achievirg canbination is the reation-diffusion method Tek
and Kima, 1995) However, te problen is tha if any ore of
the procsses makes eor (e.g, a false edge)it is propagated
to the find solution Chakrabory et al. propog © use the game



theoretic method. The game theory as a concept has its roots in
decision making under a conflicting and often hostile
environment. This method processes by maintaining the
modul arity of the system involved and by allowing the modules
(i.e., region-based and boundary-based modules) to interact by
a decentralized mode of decision making. The contribution of
each module is determined by achieving the Nash equilibrium
(Chakraborty and Duncan, 1999). This method allows high
performance when applied to noisy images, especialy when
applied to deformable models. However, the existence of the
Nash equilibrium depends on weighting parameters of the goal
function. While for simple problems it might be simple to
mathematically choose right values for the weights, often, for
complicated problems, it is almost impossible.

Our goal here is to develop a fully automated formalism for
integrating boundary finding and region-based methods. This
formalism will be used to model the externa force acting on
the deformable model. The region-based modeling is achieved
at a global level by a statistical characterization. Thus, the
cluster of interest could be considered as being a mixture of
distributions. The boundary finding part is handled by the
gradient information. Since the gradient defines a measure of
non-homogeneity in the pixel neighborhood, its response is
modeled as a potential function, that generates a Gibbs
distribution of a Markov random field (MRF). The
combination relies on an approximate maximum a posteriori
(MAP) estimate that gives the likely segmentation according to
the observed data. In order, to resolve the conflicting situation
that could appear, each part of the MAP is weighted by a
mesasure that ensures the selection of the suitable MAP
configuration. The paper is organized as follows. Section 2
gives a brief overview of the deformable model approach as
introduced by Kass et a., 1988 and the snake discretization
using finite element used in this framework. Section 3 details
the methods for both region-based and multi-spectral boundary
finding formul ation respectively. In section 4, we introduce the
MAP combination and conflict resolving formulation for the
external forces calculation purpose. In section 5, we resume the
final agorithm. Finally, in the rest of the paper, we show and
discuss the results obtained on both synthetic and LANDSAT7
images. A conclusion is given with the possible extensions of
our work.

2. DEFORMABLE MODELSAPPROACH

Active contours models or snakes were introduced by Kass et
a., 1988 as a novel solution to the low-level imaging task of
finding step edges. A snake is defined, in the image plane
(n,m), as a parametric curve of the curvilinear abscise, r, by
v(n,m)=v(n(r,t),m(r,t)). The snake is allowed to deform from
some arbitrary initial location within an image towards the
desired final location. Thus, the use of snakes involves a two
steps process being an initialization and the iterative
minimizing process. To initialize the snake, we first perform
the discretization of the database vectors. The final snake
location is obtained through minimization process acting upon
the global energy of the snake defined as follows (Kass et d.,
1988):

Eiot (t) =Ejnt (t) +Ext (t) )

where Eeq(t) is the externa energy, Ein(t) the internal energy.
As described in classical snake modeling approach (Kass et al.,

1988), the internal energy acts as a stabilizer to the external
data irregularities. The standard internal formulation is given

as follow:
Ent)= fEJ|V' (r ,t)|2 ' ,qz Eds @

where a and B are Tikhonov stabilizers which controls
respectively the elasticity and rigidity of the snake. In active
contours framework, the external energy, Eeq(t), is used to
derive the external forces, Feq(t), which act on the snake to
deform its shape and location. The relationship between
external energy and forces is given by the following equation:

Er )= fFoa s @

As mentioned earlier, the initial location of the snake is
provided by the database vectors. In the next step, the initial
vectors are approximated by parametric curves. This task is
undergone by the use of the finite elements method (FEM).
The FEM enables accurate discretization of derivatives and
smooth shape representation for the snake. The interested
reader will find al details in (Bentabet et a., 2001). To
summarize, the discretizing of the parametric curve v(r) by
FEM leads to an expression for each element given by:
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where, Ni(r) define a vector of interpolation polynomials. In
our case, the interpolation is carried out using a Hermite basis

function. The two-columns matrix V€ =|X€,Y®) contains the
coordinates of the control nodes which are inserted at regular
intervals of the initial curve issued from the database.
Consequently, both snake topology and location will be entirely
defined by the knowledge of the control nodes. Therefore, the
segmentation purpose can be described as being a process of
estimating the suitable values for the control nodes coordinates
that minimize the global energy of the snake energy defined in
equation (1). The estimation of these parameters to find the
boundary is posed as an optimization process, where a MAP-
based objective function measures the strength of the boundary
given the set of control nodes. The snake evolution is governed
by a partial derivative equation of motion obtained by resolving
the Euler Lagrange equation ([JE:x:=0) which can be expressed
as follows (Bentabet, 2001):

2 4
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where y controls the speed of evolution of the snake. A
discretized form of Equation (5) can be derived using the finite
elements formalism, which yields the following iterative
process:
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where | isthe NxN identity matrix. K is an Nx N matrix which
depends on «, B and the shape of the interpolating curves. Vne.l.
gives the location of the element nodes at iteration n.

3. EXTERNAL FORCESCALCULATION

The calculated external force is defined as a function of the
region and the boundary information. We assume that the
image can be modelled as a collection of homogeneous regions
of uniform or slowly varying intensities. Let the image data be
described by a random field Y defined on a rectangular grid, S
of N points, and the value of Y at a point s [7 Swill be written
as Ys. When necessary the pointsin Swill be explicitly written
as integer pairs (n,m). X will denote the random field of a
given segmentation of Y into uniform regions. Lowercase x and
y will be redlizations of the X and Y respectively. The
probability P(Z=2) is written as p(2).

3.1 Statistical Measure

By definition, topographic features could be described by more
than one texture. Indeed, for example, both hardwood and
coniferous trees are included in a vegetation region definition.
Also, these two types of forest can appear separately or in
mixed areas. Thus, the statistical properties of the targeted
area are computed assuming the region of interest is described
by a number of textures being normally distributed. We
propose a mixture estimation process independent but
necessary for the region localization. Indeed, the definition of
the mixture parameters for different type of topographic feature
in an image can be recorded in a database and used as a prior
knowledge. This information is essential to the snake process
but can be defined in an earlier step.

The statistical information is described trough a number k of
Gaussian distributions with the mixture proportion, p;j, the
expected value of the argument, |, and the covariance matrix,
2 withj O[1, K]. The dimension of | and X are related to the
number of bands available in the multi-spectral imagery.
Indeed, the definition of these parameters through n bands
provides ; vectors of dimension n and X} matrix of size nxn.
311 Satistical prior knowledge

The godl is to define the ided number of textures contained in
a sample region witch describes the data. Recent studies
(Olivier et a., 1999 propose an iterative dgarithm for normal
mixture definition. This operation is a two steps iterative
process It is done using the Expectation —Maximization (EM)
agorithm assuming an adequate initidization of the
parameters values for a given number of distributions. The
objective of the EM agaithm is to maximize the log
likelihood in an iterative manner. The second step consists of
evaluating the balance between the aauracy of the model and
the number of components. Evaluating the Minimum
Description Length (MDL) of the model provides this measure
as described by Olivier et al., 1999

The mixture model that minimizes the MDL criterion
corresponds to the gpropriate mixture model for the region of
interest.

Since the statistical characteristics of the aea ae estimated, a
goadness function based on these statistical feaures can be
derived. Indedd, this function will define the region probability
measure part of the external energy.

3.1.2 Region Probability Measure

Considering aredization of the field Y noted, y, the @&m here is
to evaluate p(y|x). The statistical goadnessmeasure is based on
the calculation of a distance, ((y), that evaluates the proximity
of a pixel to the statistical properties of the region. This value
can be defined using the Mahalanobis distance.

Having k textures for a given region, we aciate to the
sample y the small est distance from al k distributions defined
within the region. In order to consider this value in a generic
way, one must take into consideration the number of bands
from the multi -spectral image involved. Since we as3ume that y
follows a Gausgan dstribution, we know that the Mahalanobis

distance follows a x? distribution (Saporta, 1990 with n
degrees of freedom (n being the number of bands for the multi-
spectral image). Thus, we can set a threshold value based on
some confidence value (0.005% for instance). This threshold
value will serve to normali ze the calculated distance for tested
samples and aso to identify outliers. Thus, the goadness
function, ¢(y), can be defined as foll ow:

(v)= \/miniD[l,k]((y_ zt)T 2, '1(y K ))

where x is a threshold given by the x2 table value according
to the dimension of the data and the desired confidence value.
From Baysian inference, the joint probability distribution,
p(y,0), comprises two parts, a prior distribution p(6) and a
likelihood p(y|6). In this framework, we do not consider the
prior distribution of 8, p(6) in the evaluation of the closest
distribution nor for the goadness function. The idea is to
consider the closest texture acording to the Mahalanobis
measure for a candidate & the unique potential.

W

()

By observing the distance defined by equation (7), we find that
when it is gredaer than 1, odds are that this pixel is outside the
region. On the opposite, as the value decreases nea zero, the
indication of being inside the region increases. This
information all ows the definiti on of the direction of growth.

Finaly, the likelihood p(y|x) when the snake evolves inside the
considered region (i.e, Y(y)<l), is given by a Gausdan
distribution as foll ows:

plylx) o ﬁexv (ﬂ(y)z) 8)
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For cases, where the snake is outside the considered region
(i.e. Y(y)>1), the likelihood is described by a translated form
of the Gaussan given in equation (8). The genera case is
defined as foll ows:
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where 2i is the trandation applied and for a given integer, i,
Y(y) O [2i-1, 2i+1].

3.2 Boundary Probability

The aim here is to provide a single gradient image given as
input a multi-dimensional set of images. In order to integrate
the contrast information contained in the various channels into
one meaningful result, Drewniok, 1994 extended in a formal
way a gray-level edge detector to multidimensional image data.
The integrating approach combines the contrast information
coming from the different spectral channels in a well-founded
way. The resulting gradient image gives a suitable description
of area boundaries well adapted to the purpose of our
framework. Assuming that the i channel produces an image
li(n,m):

i (n,m) = R; (n,m)+ N; (n,m) (10)

where R(n,m) is the ground truth and Ni(n,m) is an additive
Gausssian noise. The produced gradient image, G(n,m), is
corrupted by false-edges due to noise. The plausibility of false
edges follows a Rayleigh distribution (Voorhees and Poggio,
1987). In order to distinguish real edges from false ones,
Voorhees proposed to estimate statistically a threshold that
separate these two populations. The threshold is calculated
according to the estimation of the peak of the Rayleigh
distribution. The threshold, «, required to remove noise with a
confidence value of 99% is defined as follows:

K= 3\/2 u (11)
T

where p is the mean of the Rayleigh distribution. We assume
the plausibility of the true edges being described by a single
distribution. Let p1g be its expected mean value. As for the

Mahalanobis distance discussed in Section (3.1.2), one need to
normalize the gradient values in order to keep both measures
(gradient and statistics) in the same numerical range.
Therefore, we define the normalized gradient at a given
position ys as follows:

Blys)=ls) (12)
Hg

The segmentation field, x, has an isotropic nature and its
distribution is strictly defined in a local neighborhood.
Thereafter, we use an MRF to model it (Bouman and Sauer,
1993). Using the Hammersley-Clifford theorem, the density of
X is given by a Gibbs density on the form:

-5 v (o)
p(x)=2e EZV E (13)
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Here, Z is anormalizing constant and the summation is over all
cliques C. A cliqueis a set of points that are neighbors of each

other. The clique potentials Vc depend only on the pixels that
belong to clique C. They are inversely proportional to the
homogeneity of the contour plausibility in the immediate
neighborhood of the considered pixel, Xs, (Bouman and Sauer,
1993).

Since the gradient defines a measure of non-homogeneity and
is evaluated in the immediate neighborhood of ys, its response
could be handled as being a transformation that maps the gray-
level of ys to the potential function V¢(xs) . This relation is
carried out in a proportional manner as follows:

Ve (xs) O G(ys) (14

In view of this, the MRF field will henceforth be written in the
following, simplified form (where the constant of
proportionality in (14) is dropped for the sake of computational
ease):

plxs)=eC0e) 19)

4. COMBINATION

As mentioned earlier, the segmentation purpose can be
described as being a the estimation of the suitable values for
the control nodes coordinates that minimize the global energy
of the snake. The estimation of these parameters to find the
boundary is posed as an optimization process, where a MAP-
based objective function measures the strength of the boundary
given the set of control nodes. The maximization of p(x|y)
given the control nodes could be written as follows:

x=argmax[] Pl vo)- (1s)
Ve [0S C

By applying the Bayesian formulation, the combined
probability p(x]y) in equation (16) can be expressed as follows:

p(XIy)=iXF))%(y|rX) (17)

In the following, we ignore the term p(y) because it is
supposed to be a prior knowledge and it does not modify the
MAP estimation. Thus:

X =arg ma@ﬂ p(xs)p(ys|xs)E (18)

Ve [0S C
By replacing p(xs) and p(ys|xs) by their respective expressions,
X could be evaluated in terms of the snake curvilinear abscise,
r, as follows:

X =arg ma% |_| ie—G(V(I’ ))e‘l/.l 2 (v(r )) E (19)
(nos
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It is clear that equation (19) combines the statistical and the
gradient-based measures in order to find the optimal
segmentation. The main question is to know if the formulation
given below alows a constructive integration of both provided
measures. In other words, we intend to investigate the behavior



of the MAP and determine if the two parts acts in such a
manner to preserve the same objective everywhere in the
image. This could be carried out by a qualitative analysis of the
MAP. Indeed, when inside a textured region but far from the
area boundaries, the statistical part may indicate that a pixel
under investigation have a high confidence to belong to the
region of interest. However, the gradient value can indicate
that the pixel belongs to the area boundaries. This means that
the gradient do not distinguish between the right area edges
and those generated by the texture or the noise. In such
situation, the gradient and the statistics are in conflict. Since,
the MAP estimation is obtained by the product of these two
parts, the decision made will be altered. Otherwise, when the
pixel under investigation belongs to the area boundaries, its
membership given by both gradient and statistics will be low.
The two parts behave simultaneously to exclude this pixel from
the segmented area. Knowing that the statistics suffers from a
poor edges localization, the joint decision made could be
affected.

To resolve this conflict, we propose the use of a weight to set
the contribution of each part into the MAP estimation. The
weight will act as a smooth switch, which gives priority to
statistics when the pixel is far from the area boundaries. Also,
when the pixel is closer to the edge, the priority will be
transferred to the gradient. The modified MAP is given as
follows:

%:argma%n ge—ré(v(w)e—(l—r)p%v(r))E o0
(r)as

Ve

where 1 is a weight parameter resolving the conflict as
described above. In the experimental results section, we
propose a formulation to set this parameter.

The MAP estimation will be maximized during the evolution
of the snake. This is performed by setting the external force
proportionally to the combined probability p(xslys). The final
expression of the external forces will be:

()0 LS b0 )

Fext

Finally, the partial derivative equation that govern the snake
motion given by equation (5) can be rewritten as:

yM —av (rt)+ v (rt)=

ot
) % él%e_ré(v(r ,t))e—(l—T)lfz(V("vt))@ (22)

This is equivalent to say that the evolution of the snake is
equivalent to the estimation of the control nodes that maximize
the criterion given by equation (20). This estimation is
constrained by the snake topol ogy described by the terms in the
left side of equation (22)

5. ALGORITHM

Assuming the evaluation of the statistical mixtures done, the
localization step defines the new position of every existing area
of the database on the image. The operations performed over
each area vector can be summarized as follow:

» Set theinitial snake parameters.

« Until the snake energy is not minimum:
* Set the external force of the snake from equation (21);
» Compute the new snake location using equation (22).

While the minimization process is running, the snake a and 3
parameters are decreased in parallel in order to enable the
snake to fit accurately to the high curved parts of the area
borders. This decrease of the snake parameters is done by
multiplying them with a constant factor, A, smaler than one
(0.75 for instance). Also, updating the control nodes of the
snakes optimizes the iterative energy minimization process.
Indeed, two principal operations are performed: addition of
new control points as the snake expands and deletion of control
points whenever parts of the snake shrink at a point where
control points overlap. Finally, the external energy factor is
moderate considering the changes of direction for a node. The
ideaisto slow down when oscillations occur until it reaches its
stable point.

6. EXPERIMENTAL RESULTS

From the experience of existing works, it has been established
that it is difficult to set the rigidity and the elasticity
parameters of the internal energy of the snake correctly
(Horritt, 1999). In this work, we calculate the rigidity
parameter 3 from the average curvature of the initial database
vectors as proposed in (Bentabet, 2001):

1
B= Bmax%_ feurv)q E (23)

where Bmax is the maximum value assigned to the rigidity
parameter, curv is a measure of the average curvature of the
snake initialization using the segment of the database. The
parameter q defines the degree of relationship between the
curvature and the rigidity parameter. The elasticity parameter
a is set to a value near zero in order to allow the snake to
stretch according to the external energy only.

We propose a formulation for the T parameter based on the
idea of giving priority to statistics when the snake evolves far
from the boundaries and transfer this priority to the gradient
when near the area boundaries. In this context, , the 1
parameter is set by an estimation of the proximity to the area
boundaries that could be deduced from the normalized
Mahalanobis, , as follows:

L, wv(r)oo.es.1.08|
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The proposed approach was first tested on synthetic images
presented in figure 1. The first result presents a region defined
by 2 textures on 3 different layers. The initia vector that
served to initialize the snake is shown in white on image (a).
An intermediate image of the iteration process shows the snake
on images (b) and the final result is presented in image (c).
Specific parameters values for this result were 0.85 as the
decreasing factor, A, the Mahalanobis threshold value was
based on a confidence value of 0.0005, internal parameters o at
0.05 and g at 30.



(a) Initial vector
Experimental results on synthetic images

(b) After 35 iterations  (¢) Final result

The gproach was then experimented on Landsat 7 images
using 7 bands (30m resolution, we ignored band 6) to update
feaures of the Canadian National Topographic Database
(NTDB). The presented result in figure 2 show a homogeneous
water region. The vector initializing the snake is sown in
white on image (a) over enhanced band 2 of the Landsat7
image. Notice the lighter region inside the water area due to
dense vegetation covering part of the lake and mostly obvious
on this gecific band. The mixture evaluation clealy defined
two textures for this type of areathat initially seans to be
homogeneous on other bands. Over the enhanced image of
band 4 an intermediate result of the snake processis presented
on image (b) and the final result is presented on image (c). The
specific parameters values for this result are the same & the
previous example.

(ia "
(a) Initial vector (c) Final result

(b) After 70 iterations

Figure 2. Experimental results for water region on
Landsat 7 images

Finaly, results of the experiment on 7 kands of Landsat 7
images for textured regions like vegetation are shown in Figure
3. Notice that is difficult to visualy delineae this kind of area
on any of the bands. We present the result on an enhanced
image of band 8 (15m resolution). The initial snake is
presented in image (&), an intermediate image of the snake
processis iown on image (b) and image (c) presents the final
result. The only specific parameter different from the previous
examples is the decreasing factor, A, that was st t0 0.7.

(b) After 40 iterations

Experimental results for vegetation area on
Landsat 7 images

(a) Initial vector (¢) Final result

by

Figure 3.

7. CONCLUSION

Our work demonstrates the importance of using snakes and
multi-spectral images for updating existing spatial area
information. We propose apromising automatic approach for
the update of existing vectors in topographic databases. The
combined statistics and gradient information for the eternal

energy alows the snake to gow in both drections and
provides complementary measures to precisely guide its
deformation. Indeed, the proposed weighted MAP estimation
strategicall y takes advantages of their respective strengths and
overcomes their drawbacks. An efficient implementation using
finite dements has been proposed for accurate localization.
Finaly, experimental results demonstrate the reliability of the
approach.

8. REFERENCES

Audlair-Fortier, M.F., Ziou, D., Armenakis C., and Wang., S.,
2001 Automated Correction and Updating o Road Databases
from High-Resolution Imagery. Canadan Journal of Remote
Sensing, vol. 27, no. 1, pp. 76-89.

Bentabet, L., S. Jodouin, D. Ziou and J. Vaill ancourt, 2001
Automated Updating of Road Databases from SAR Imagery:
Integration of Road Databases and SAR Imagery information.
Proceadings of the Fourth Internationd Conference on
Information Fusion, vol. WeA1, pp. 3-10.

C.A. Bouman and K. Sauer, “A Generalized Gausdan Image
Model for Edge-Preserving MAP Estimation”, |EEE
Transactions on Image Processng, val. 2, no. 3, pp. 296-310,
1993

Chakraborty, A., and Duncan, J.S., 1999 Game-Theoretic
Integration for Image Segmentation. |IEEE Transactions on
Pattern Analysis and Machine Intelli gence, vol. 21, no. 1, pp.
12-30.

Drewniok, C., 1994 Multi-Spectral Edge Detection: Some
Experiments on Data from Landsat-TM. Internationa Journal
of Remote Sensing, vol. 15, no. 18, pp. 37433765

Horritt, M.S., 1999 A statistical active contour model for SAR
image segmentation. Image and Vision Computing, vol. 17, pp.
213224

Kass M., Witkin, A., and Terzopoulos, D., 1988 Snakes:
Active Contour Models. Internationd Journa of Computer
Vision, val. 1, no. 4, pp. 321-331

Olivier, C., Jouzel F., and El Matouat, A., 1999 Choice of the
number of component clusters in mixture models by
information. Vision Interface, pp. 74-78.

Pavlidis, T., and Liow, Y., 199Q Integrating Region Growing
and Edge Detection. |[EEE Transactions on Pattern Analysis
andMachine Intelligence, vol. 12, pp. 225233

Saporta, G., 199Q Probabilité aadyse de données et
statistique. Edition Technip, ISBN: 2-710805650.

Tek, H. and Kimia, B.B., 1995 Image Segmentation by
Reaction Diffusion BubHdes. Procealings of the Internationd
Conference On Computer Vision (ICCV), pp. 156162

Voorhees, H., and Poggo, T., 1987 Detecting Textons And
Texture Boundaries in Natural Images. Internationd
Conference On Computer Vision (ICCV), pp. 250258



