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ABSTRACT

We propose an empirical performance evaluation of five different 2D object recognition techniques. For this purpose, two novel
recognition methods that we have developed with the aim to fulfill increasing industrial demands are compared to the normalized
cross correlation and the Hausdorff distance as two standard similarity measures in industrial applications, as well as%-RatMax

an object recognition tool developed by Cognex. Additionally, a new method for refining the object’s pose based on a least-squares
adjustment is included in our analysis. After a description of the respective methods, several criteria that allow an objective evaluation
of object recognition approaches are introduced. Experiments on real images are used to apply the proposed criteria. The experimental
set-up used for the evaluation measurements is explained in detail. The results are illustrated and analyzed extensively.

1 INTRODUCTION and Fang, 1999), for example). A more complex class of object
recognition methods does not use the gray values of the model

Object recognition is used in many computer vision applicationsor object itself, but uses the object’s edges for matching. Two
Itis particularly useful for industrial inspection tasks, where oftenexample representatives of this class are the hierarchical cham-
an image of an object must be aligned with a model of the objectfer matching (Borgefors, 1988) and the Hausdorff distance (see
The transformation (pose) obtained by the object recognition progRucklidge, 1997) or (Olson and Huttenlocher, 1997)). Finally,
cess can be used for various tasks, e.g., pick and place operatiocagother class of edge based object recognition algorithms is based
or quality control. In most cases, the model of the object is generon the generalized Hough transform (GHT) (Ballard, 1981). Ap-
ated from an image of the object. This 2D approach is taken beproaches of this kind have the advantage that they are robust to
cause it usually is too costly or time consuming to create a mor@cclusion as well as clutter. Unfortunately, the GHT in the con-
complicated model, e.g., a 3D CAD model. Therefore, in indus-ventional form requires large amounts of memory and long com-
trial inspection tasks one is usually interested in matching a 20putation time to recognize the object.

model of an object to the image. The object may be transforme thi " h vzed and thei
by a certain class of transformations, e.g., rigid transformation N this paper our two néw approaches are analyzed and their per-

similarity transformations, or general 2D affine transformations. ormance IS compared 1o th‘?t. of PatM&and two of the aboye_
The latter are usually taken as an approximation to the true pelmentpneq approa_ches_. Add|t_|onally, our new method for refining
spective transformations an object may undergo. the object’s pose, i.e., improving the accuracy _of the tra_ns_forma-
tion parameters, based on a least-squares adjustment is included
A large number of object recognition strategies exist. All ap-in our evaluation. The analysis of the performance characteristics
proaches to object recognition examined in this paper — possief object recognition methods is an important issue. First, it helps
bly with the exception of PatM&X — use pixels as their geo- to identify breakdown points of the algorithm, i.e., areas where
metric features, i.e., not higher level features like lines or ellipticthe algorithm cannot be used because some of the assumptions it
arcs. Since PatM&X is a commercial software tool, a detailed makes are violated. Second, it makes an algorithm comparable to
technical description is not available and therefore no statemenisther algorithms, thus helping users in selecting the appropriate
about the used features can be made within the scope of this parethod for the task they have to solve. Therefore, in this paper an
per. Nevertheless, we included PatNfain our evaluation be-  attempt is made to characterize the performance of five different
cause it is one of the most powerful commercial object recogniobject recognition approaches, which are briefly introduced in the
tion tools. Thus, we are able to rate the performance of our twdollowing section. A more detailed description of the approaches
novel approaches not only by comparing them to standard recogan be found in the corresponding references or in (Ulrich and
nition techniques but also to a high-end software product. Steger, 2001) and (Ulrich and Steger, 2002), where also the eval-

Several methods have been proposed to recognize objects in jfation’is described more extensively.
ages by matching 2D models to images. A survey of matching
approaches is given in (Brown, 1992). In most 2D matching ob-
ject recognition implementations the search is usually done in
a coarse-to-fine manner, e.g., by using image pyramids (Tani-
moto, 1981). The simplest class of object recognition methods igirst of all, we introduce some definitions that facilitate the com-
based on the gray values of the model and image itself and usgmrison between the seven techniques. All recognition methods
normalized cross correlation or the sum of squared or absoluteave in common that they require some form of representation of
differences as a similarity measure (see (Brown, 1992) or (Lathe object to be found, which will be calledodelbelow. The
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model M is generated from an image of the object to be recog{Rucklidge, 1997), which uses the symmetric partial undirected
nized. A region of interesROI) R specifies the object’s location Hausdorff distance to reduce the sensitivity to outliers applying a
in the image. The image part defined Byis calledreference im-  forward and a reverse fraction of points that must fulfill a certain
agel". The image, in which the object should be recognized, willdistance criterion. Only translations of the object can be recog-
be referred to as theearch imagd®. Almost all object recogni- nized and no subpixel refinement is included. Although the pa-
tion approaches can be split into two successive phaseofthe rameter space is treated in a hierarchical way there is no use of
fline phaseincluding the generation of the model and t@ine  image pyramids, which makes the algorithm very slow.

phase in which the constructed model is used to find the object

in the search image. 2.3 PatMax®

Thetransformation clasg’, e.qg., translations or euclidean, sim- ) . .

ilarity, affine, or arbitrary projective transformations, specifiesAS described inits documentation (Cognex, 2000) PatMases

the degrees of freedom of the object, i.e., which transformation§€ometric information. The model representation, which can be
the object may undergo in the search image. For all similarity/isualized by PatMa®, apparently consists of subpixel precise
measures the object recognition step is performed by transfornfdge points and respective edge directions. From this we can
ing the model to a user-limited range of discrete transformation§onclude that PatM&X uses similar features as the shape-based
T, € T within the transformation class. For each transformedMatching. To speed up the search, a coarse-to-fine approach is
model M! — T, M the similarity measure is calculated between implemented. To indicate the quality of the match, Patfax
M* and the corresponding representation of the search imag€°mputes a score value between 0.0 and 1.0.

The representation can, for example, be described by the raw gray

values in both images (e.g., when using the normalized cross co2.4 Shape-Based Matching

relation) or by the corresponding binarized edges (e.g., when us-

ing the Hausdorff distance). The maximum or minimum of theln this section the principle of our novel similarity measure is
match metric then indicates the pose of the recognized object. briefly explained. A detailed description can be found in (Steger,

The first method to be analyzed is tNermalized Cross Corre- 2002).

lation (Brown, 1992) because it is a rather widely spread method’he model consists of a set of points and their corresponding di-
in industry and therefore well known in the application area ofrection vectors. In the matching process, a transformed model
object recognition. Thelausdorff Distanc€Rucklidge, 1997) is  is compared to the image at a particular location by a similarity
the second candidate, which is also the core of many recognitiomeasure. We suggest to sum the normalized dot product of the
implementations, because of its higher robustness against occldirection vectors of the transformed model and the search image
sions and clutter in contrast to the normalized cross correlatiorover all points of the model to compute a matching score at a par-
Additionally, PatMax® and two novel approaches, which are re- ticular point of the image. The normalized similarity measure has
ferred to asShape-Based Matchin@teger, 2001) antModified  the property that it returns a number smaller than 1 as the score
Hough Transform(Ulrich, 2001, Ulrich et al., 2001a, Ulrich et of a potential match. A score of 1 indicates a perfect match be-
al., 2001b) below, are included in our analysis. The least-squaregsveen the model and the image. Furthermore, the score roughly
adjustment of the object’s pose assumes approximate values foorresponds to the portion of the model that is visible in the im-
the transformation parameters and therefore, is no self-containeaje. Once the object has been recognized on the lowest level of
object recognition method. Thus, it can be used to improve thehe image pyramid, its position, rotation, and scale are extracted
accuracy of the returned parameters from any recognition techte a resolution better than the discretization of the search space
nique that uses the edge position and edge orientation as featureg fitting a second order polynomial (in the four pose variables
by a subsequent execution of the least-squares adjustment. horizontal translation, vertical translation, rotation, and scale) to
our current study we use the shape-based matching as basis fbe similarity measure values in a833 x 3 x 3 neighborhood

the least-squares adjustment. The development of our new apround the maximum score.

proaches was motivated by the increasing industrial demands like

real-time computation and high recognition accuracy. Thereforez 5 Modified Hough Transform

the study is mainly concerned with the robustness, the subpixel

accuracy, and the r_equired computaFion time of the six candidatg),q \weakness of the Generalized Hough Transform (GHT) (Bal-
algorithms under different external circumstances. lard, 1981) algorithm is the — in general — huge parameter
space. This requires large amounts of memory to store the ac-
2.1 Normalized Cross Correlation cumulator array as well as high computational costs in the online
phase caused by the initialization of the array, the incrementa-
For the purpose of evaluating the performance of the normalizetion, and the search for maxima after the incrementation step. In
cross correlation (see (Brown, 1992), for example) we use — a@Jlrich, 2001), (Ulrich et al., 2001a), and (Ulrich et al., 2001b)
one typical representative — the current implementation of thewe introduce our novel approach that eliminates the major draw-
Matrox Imaging Library(MIL), which is a software development backs of the GHT using a hierarchical search strategy in combi-
toolkit of Matrox Electronic Systems Ltd(Matrox, 2001). In  nation with an effective limitation of the search space. The result-
this implementation image pyramids are used for speed up. Thiag pose parameters of position and orientation are refined using
quality of the match is returned by mapping the normalized crosshe method describe in Section 2.4. To evaluate the quality of a
correlation to a score value between 0.0 and 1.0. Subpixel accumatch, a score value is computed as the peak height in the accu-
racy is obtained by a subsequent refinement of the position anehulator array divided by the number of model points.
orientation parameters by interpolation.
2.6 Shape-Based Matching Using Least-Squares
2.2 Hausdorff Distance Adjustment

The Hausdorff distance measures the extent to which each pixdlo improve the accuracy of the transformation parameters, we
of the binarized reference image lies near some pixel of the binadeveloped a method that minimizes the distance between tan-
rized search image and vice versa. We use the implementation gents of the model shape and potential edge pixels in the search



image using a least-squares adjustment (see also (Wallack and
Manocha, 1998)). Approximate transformation parameters are
assumed to be known, which can be obtained by any preceding
object recognition method that uses the edge position and orien- 2 'é‘ﬁuf:mm
tation as features, e.g., the shape-based matching or the modified Nk

Hough transform. The minimization is realized using a single
step algorithm (Press et al., 1992). This approach is described
more extensively in (Ulrich and Steger, 2002). We implemented
the least-squares adjustment as an extension of the shape-based
matching, which returns the requested approximate values accu-
rately enough.
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Figure 1: An IC is used as the object to be recognized.

3.2 Experimental Set-Up

3 EVALUATION . . . L
In this section the experimental set-up for the evaluation is ex-

) o plained in detail. We chose an IC, which is shown in Figure 1,
3.1 Evaluation Criteria as the object to be found in the subsequent experiments. Only
the part within the bounding box of the print on the IC formes
We use three main criteria to evaluate the performance of the sithe ROI, from which the models of the different recognition ap-
object recognition methods and to build a common basis that faproaches are created. For the recognition methods that segment
cilitates an objective comparison. edges during model creation (Hausdorff distance, shape-based
) o ] ) matching, modified Hough transform, least-squares adjustment)
The first criterion to be considered is thebustnesf the ap-  tne threshold for the minimum edge amplitude in the reference
proach. This includes the robustness against occlusions, WhiQFhage was set to 30 during all our experiments. The images we
often occur in industrial applications, e.g., caused by overlappingised for the evaluation are 8 bit gray scale of size 65294
objects on the assembly line or defects of the objects to be iNpixels. For all recognition methods using image pyramids, four
spected. Non-linear as well as local illumination changes are alsﬂyramid levels were used to speed up the search, which we found
crucial situations, which cannot be avoided in many applicationgg pe the optimum number for our specific object. When using
over the entire field of view. Therefore, the robustness againspaima®, there is no parameter that allows to explicitly spec-
arbitrary illumination changes is also examined. A multitude Ofify the number of image pyramids to use. Instead, the parameter
images were taken to simulate different overlapping and illumi-coarse grain limitcan be used to control the depth of the hier-
nation situations (see Section 3.2). We measure the robustneggchical search, which has a similar meaning as, but can not be
using the recognition rate, which is defined as the number of imaquated with, the number of pyramid levels. Since this parame-
ages in which the object was correctly recognized divided by thger can be set automatically, we assumed the automatically deter-
total number of images. mined value as the optimum one and did not use a manual setting.

The second criterion is treccuracyof the methods. Most appli-
cations need the exact transformation parameters of the object 82-1 Robustness To apply the first criterion of robustness and
input for further investigations like precise metric measurementsdetermine the recognition rate two image sequences were taken,
In the area of quality control, in addition, the object in the searchone for testing the robustness against occlusions the other for test-
image must be precisely aligned with the transformed referencéd the sensibility to illumination changes. We defined the recog-
image to ensure a reliable recognition of defects or other variabition rate as the number of images, in which the object was rec-
tions that influence certain quality criteria, e.g., by subtracting thé®gnized at the correct position divided by the total number of
gray values of both images. We determine the subpixel accurad{nages.

by comparing the exact (known) position and orientation of th

®The first sequence contains 500 images of the IC, which was oc-
object with returned parameters of the different candidates. N 9 ’

cluded to various degrees with various objects, so that in addition

The computation timeepresents the third evaluation criterion. t© occlusion, clutter of various degrees was created in the im-
Despite the increasing computation power of modern micropro29€- Figure 2 shows two of the 500 images that we used to test
cessors, efficient and fast algorithms are more important thaf1€ robustness against occlusion. For the approaches that seg-
ever. This is particularly true in the field of object recognition, Ment edges in the search image (modified Hough transform and
where a multitude of applications enforce real time computationausdorff distance) the minimum edge amplitude in the search
Indeed, it is very hard to compare different recognition methoddmage was set to 30, i.e., to the same value as in the reference
using this criterion because the computation time strongly delmage. The size of the bounding box is 180120 pixels at the
pends on the individual implementation of the recognition meth/owest pyramid level, i.e., at original image resolution, contain-
ods. Nevertheless, we tried to find parameter constellations (sé@d 2127 edge points extracted by the Sobel filter. In addition to

Section 3.2) for each of the investigated approaches that at leaté recognition rate, the correlation between the actual occlusion
allow a qualitative comparison. and the returned score values are examined, because the corre-

lation between the visibility of the object and the returned score
Since the Hausdorff distance does not return the object positiodalue is also an indicator for robustness. If, for example, only
in subpixel accuracy and in addition does not use image pyrahalf of the object is visible in the image then, intuitively, also the
mids resulting in unreasonably long recognition times, the cri-score should be 50%, i.e., we expect a very high correlation in
teria of accuracy and computation time are only applied to thehe ideal case. For this purpose, an effort was made to keep the
five remaining candidates. The least-squares adjustment is imMi€ in exactly the same position in the image in order to be able
plemented as a subsequent refinement step in combination witb measure the degree of occlusion. Unfortunately, the IC moved
the shape-based matching. Therefore, only the accuracy and thery slightly (by less than one pixel) during the acquisition of
recognition time of the least-squares adjustment are analyzethe images. The true amount of occlusion was determined by ex-
since the robustness is not affected and hence is the same as thecting edges from the images and intersecting the edge region
robustness of the underlying recognition approach. with the edges within the ROI in the reference image. Since the



racy of 0.7’ (0.011667). Three image sequences were acquired:
In the first sequence, the IC was shifted in 26 increments

to the left in the horizontal direction, which resulted in shifts of
about 1/7 pixel in the image. A total of 40 shifts were performed,
while 10 images were taken for each position of the object. The
IC was not occluded in this experiment and the illumination was
not changed. In the second sequence, the IC was shifted in the
vertical direction with upward movement in the same way. How-
ever, a total of 50 shifts were performed. The intention of the

. . hird sequence was to test the accuracy of the returned object ori-
Figure 2: Two of the 500 images that were used to test the robus 'ntatior? For this purpose, the IC was Zotated 50 times forja total

NEess against occlusions. of 5.83. Again, 10 images were taken in every orientation.

During all accuracy tests, euclidean motion was used as transfor-
mation class. The search angle for all approaches was restricted
to the range of [-30,+30°], whereas the range of translation pa-
rameters again was not restricted. The increment of the quantized
orientation step was set td lwhich results in the models con-
taining 61 rotated instances of the template image at the lowest
pyramid level. Since no occlusions were present the threshold
for the minimum score could be uniformly set to 80% for all ap-
proaches.

Figure 3: Two of the 200 images that were used to test the robus&-2.3 Computational Time In order to apply the third crite-
ness against arbitrary illumination changes. rion, exactly the same configuration was employed as it was used

for the accuracy test described in Section 3.2.2. The computa-
tion time of the recognition processes was measured on a 400
objects that occlude the IC generate clutter edges, this actualfyiHz Pentium Il for each image of the three sequences and for
underestimates the occlusion. each recognition method (excluding again the Hausdorff distance
for the reason mentioned above). In order to assess the corre-
The transformation class was restricted to translations, to reduqgtion between restriction of parameter space and computation

the time required to execute the experiment. However, the alime, additionally, a second run was performed without restrict-
lowable range of the translation parameters was not restricteghg the angle interval.

i.e., the object is searched in the entire image. Different values = ] -

for the parameter of the minimum score were applied, which cadn this context it should be noted that the modified Hough trans-
be chosen for all approaches. The minimum score specifies tHerm is the only candidate that is able to recognize the object,
score a match must at least have to be interpreted as a found gden if it partially lies outside the search image. The translation
ject instance. The forward fraction of the Hausdorff distance wagange of the other approaches is restricted automatically to the
interpreted as score value. Initial tests with the forward and repPositions at which the object lies completely in the search image.
verse fractions set to 30% resulted in run times of more than threBarticularly in the case of large objects this results in an unfair
hours per image. Therefore, the reverse fraction was set to 50%Pmparison between the Hough transform and the other candi-
and the forward fraction was successively increased from 50% tflates when computation time is considered.

90% using an increment of 10%. The parameter for the maxi-

mum forward and reverse distance were set to 1. For the othé}.3 Results

three approaches the minimum score was varied from 10 to 90

percent. In this section we present the results of the experiments described
in Section 3.2. Several plots illustrate the performance of the

second sequence of images of the IC was taken, which include amined recognition methods._ The descr_iption anql the_analysis

various illumination situations. Two example in%ages are dis-ogf the plots are structured as in the previous section, L., first
A ) . the results of the robustness, then the accuracy, and finally the

played in Figure 3. Due to a smaller distance between the IC an mputation time are presented

the camera, the ROI is now 256 140 pixels containing 3381 ’

model points on the lowest pyramid level. The parameter setting

for the six methods is equivalent to the settings for testing th

robustness against occlusions.

To test the robustness against arbitrary illumination changes,

.3.1 Robustness

Occlusion. First, the sequence of the occluded IC was tested.
3.2.2 Accuracy In this section the experimental set-up tha,[Acomplete comparison of all approaches concerning the robust-

we used to determine the accuracy of the algorithms, is explainedi‘.ess agamst OCCIUS.'On.'S shpwr_1 in Figure 4. In the left p.|°t the
’Tecognltlon rate, which is an indicator for the robustness, is plot-

This criterion is not applied to the Hausdorff distance, becaus ed depending on the minimum score (see Section 3.2.1). Here,

subpixel accuracy is not achieved by the used implementatio h iority of ¢ | hes to the standard

Generally, it seems to be very difficult to compute a refinement o e suhperlgrl y 0 ourl WO nﬁvf ?Eptr?ﬁc ez Ot €s afnthar a%'.
the returned parameters directly based on the forward or rever oaches becomes clear. Note that the robustness ot the modi-
fraction. Since PatMaX and the shape-based matching are the led Hough transform hardly differs from the robustness achieved

- : ; the shape-based matching. Looking at the other approaches,
| h | | L
only candidates that are able to recognize scaled objects, On%Iy PatMa® reaches a comparable result, which is, however,

the position and orientation accuracy of the five approaches were. AT . ;
P Y PP slightly inferior in all cases. Furthermore, when using a restricted

tested. ST . .
parameter space, which is limited to only translations as described

To test the accuracy, the IC was mounted onto a table that can be Section 3.2, the recognition rate of PatMxvas up to 14%

shifted with an accuracy of Am and can be rotated with an accu- lower as when using a narrow angle tolerance interval 6{+5°].
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Figure 4: The recognition rate of different approaches indicates nimum Score [%]

the robustness against occlusions. The left figure shows thejgure 6: The recognition rate of the different approaches indi-
recognition rate of the five candidates depending on the minimurgates the robustness against arbitrary illumination changes. This
score. In the right figure the receiver operating characteristic isigure shows the recognition rate of the five candidates depending
shown. on the minimum score.

lower recognition rate in comparison to our approaches, which
was mentioned above. The normalized cross correlation also
shows positive correlation but the points in the plot are widely
spread and many objects with high visibility were not recognized.
In contrast, the plots of our new approaches show a point distri-
bution that is much closer to the ideal: The positive correlation
is evident and the points lie close to a fitted line, the gradient of
i which is close to 1. In addition, objects with high visibility are

_ recognized with a high probability. Also PatM&xresults in a
nearly ideal point distribution. Nevertheless, in some occlusion
cases the object was not found even though the visibility was sig-
nificantly higher than 30%.
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lllumination.  Figure 6 shows a comparison of the robustness
of all approaches. The recognition rate of the normalized cross

T e T Tt Tl correlation is now substantially better than in the case of occlu-
Figure 5: Extracted scores plotted against the visibility of thesions. This can be attributed to its normalization, which compen-
object. sates at least global illumination changes. The Hausdorff distance

shows also good results especially in the case of large values for

the minimum score, but could not reach the performance of the
To avoid that this peculiarity results in an unfavorable compari-shape-based matching approach by far. If the minimum score
son for PatMa® we decided to take the angle tolerance intervalis set low enough, the recognition rate of the modified Hough
into account when using PatM&x The recognition rate of the transform surpasses that of the shape-based matching, however,
normalized cross correlation does not reach 50% at all, even fior higher values its recognition rate rapidly falls. Here, also
the minimum score is chosen small. In the right plot of FigurePatMaX® shows very good results: the recognition rate is nearly
4 the receiver operating characteristic curve is shown, i.e., theonstant when increasing the minimum score from 10% to 60%
false positive rate is plotted depending on the recognition ratebut also drops down during further increase.
Even for a small recognition rate the number of false positives
dramatically increases up to 32% (not visible in the plot due t03.3.2 Accuracy Since the Hausdorff distance does not return
axis scaling) when using the Hausdorff distance. The normalize¢he object position in subpixel accuracy, only the accuracy of the
cross correlation also tends to return false positives if the recogfive remaining candidates are evaluated in this section. To assess
nition rate approaches the maximum value of about 50%. Fothe accuracy of the extracted model position and orientation a
high recognition values even PatMareturns wrong matches. straight line was fitted to the mean extracted coordinates of posi-
Also here, the best results are obtained using the modified Hougibn and orientation. This is legitimated by the linear variation of
transform and the shape-based matching. the position and orientation of the IC in the world as described in
Figure 5 displays a plot of the returned score value against thgectlon 3.2. The residual errors of th? I|r_1e f'.t’ shown in th_e Fig-

: LN . ) . dres 7 and 8, are an extremely good indication of the achievable
estimated visibility of the object, i.e., the correlation between theaCCuraC
visibility of the object and the returned score value is visualized. 4
The instances in which the model was not found are denoted bjs can be seen from the Figure 7 the position accuracy of the nor-
a score of 0, i.e., they lie on the axis of the plot. For all ap- malized cross correlation, PatM&x the modified Hough trans-
proaches except for the Hausdorff distance the minimum scoréorm, the shape-based matching and the least-squares adjustment
was set to 30%, i.e., in those images in which the object has and are very similar. The corresponding errors are in most cases
visibility of more than 30%, it should be found by the recognition smaller than 1/20 pixel. The two conspicuous peaks in the error
method. For the Hausdorff distance a minimum forward fractionplot of Figure 7 occur for all three approaches with similar mag-
of 50% was used. In the plot of the Hausdorff distance the wrongitude. Therefore, and because of the nearly identical lines, it is
matches either have a forward fraction of 0% or close to 50%probable that the chip was not shifted exactly and thus, the error
because of some false positives. Here, a noticeable positive camust be attributed to a deficient acquisition. Since the errogs in
relation can be observed, but several objects with a visibility ofduring a vertical translation approximately have the same magni-
far greater than 50% could not be recognized. This explains thude as the errors in we refrain from presenting these plots.
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Figure 7: Position accuracy as the difference between the actufigure 8: Orientation accuracy as the difference between the ac-
« coordinate of the IC and thecoordinate returned by the recog- tual object orientation of the IC and the returned angle by the
nition approach while shifting the chip successivelylhy pixel ~ recognition approach while rotating the chip successively by ap-

to the left. prox. 1/9° counterclockwise.

Figure 8 shows the corresponding errors in orientation. Here, the Shifted IC Rotated IC
least-squares adjustment and Patfaare superior to all other RI UR| A R{ UR| A
candidates reaching maximum errors of £/3@d 1/100 in this [ms] | [ms] | [%] || [ms] | [ms] | [%]
example. In comparison, when looking at the result of the shape | SBM 57| 126 121 50 | 100 | 100
based matching, the improvement of the least-squares adjustment | LSA 65| 133 105 60| 110| 83
is evident: the maximum error is reduced to T/&@mpared to MHT 72| 112 | 56 62 80 | 29
the result of the shape-based matching without least-squares ad- | PM 55 88 | 60 80| 193 | 141
justment, which was about 1/16 The error magnitude of the NCC 132 | 281 | 113 | 294 | 373 | 27

other three approaches is higher°1(60') in this example. Table 1: Mean computation times of the shape-based matching

(SBM), the least-squares adjustment (LSA), the modified Hough

.3'353 Comput_atiorj Tim? hThe last ‘FF”G”O” that Evas ?pf’l_“%? iransform (MHT), PatMa® (PM), and the normalized cross cor-
IS the computation time of the recognition approaches. In Table 1o 540 (NCC) on a 400 MHz Pentium II. Additionally, the time
the mean recognition times of all approaches using the sequena:?

. . ) 4 creaseA from the restricted (R) to the unrestricted (UR) angle
with the shifted IC as well as using the sequence with the rotate terval is printed in percent
IC are listed. Additionally, the time increagefrom the restricted '

to the unrestricted angle interval is printed in percent. that the more the IC is rotated relatively to the reference orienta-

First the angle interval was restricted to [23830°]. In this re-  tion the longer the computation time of the normalized cross cor-
spect the shape-based matching approach, the least-squares eglation. Obviously, the implementation of (Matrox, 2001) does
justment, the modified Hough transform and Patflaare sub-  not scan the whole orientation range at the highest pyramid level
stantially faster than existing traditional approaches using the nolefore the matches are traced through the pyramid but starts with
malized cross correlation. The results when using an unrestricted narrow angle range close to the reference orientation. Thus,
angle interval are shown in an extra column of table 1. Here, théhe computation time of the normalized cross correlation is not
modified Hough transform is slightly faster than the shape-basedirectly comparable to the other approaches, because the orien-
matching approach, which indicates an advantage of the modifietition range of [-30;+30°] or [0°;+36(0"] is not really scanned,
Hough transform over the shape-based matching if the transfoi-€., a comparable computation time would be still higher. Also
mation space increases. This assumption is also supported wh#e correspondingh-values would be higher.

looking at the percental time increase of the modified Hough
transform: The computation time merely increases by 56%, whic
is the smallest value in this test. Also PatNRushows only a
small increase, whereas the computation time of the normalize
cross correlation increases more dramatically. In this exampl
the computation times of our new approaches are only 0.2 to 0.

times as high as those of the traditional methods but about 1.0 tr%nge of 7 to 10 milliseconds and does not depend on the size of

1.5 times as high as that of PatMax the parameter space. Therefore, the larger the parameter space
For the most methods, a similar behavior is obtained when searcthe less the influence of this constant part, which is the reason for
ing for the rotated IC. What we recognized during evaluation ishe smalleA-values in Table 1 of the least-squares adjustment in

Iso in the case of the rotated IC, the modified Hough transform
eems to be the method that is most suitable when dealing with
large parameter spaces because of its small time increase — in
is case — of only 29%. To get the effective computation time
f the least-squares adjustment we have to subtract the computa-
on time of the shape-based matching. The difference is in the
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