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ABSTRACT: 
 
We introduce herein the concept of the ill-configured object (ICO). An ICO is a geometrical object having a stable (unique) name but 
varying configurations (shape, size, components, and component layout). In addition, we introduce the concept of the neighbour set 
representation (NSR) of an object, and show that the NSR is well-fitted to the ICO. Moreover, we show that any object, either non-
ICO or ICO, can be characterized as a solution of a set theoretic equation defined on its NSR. An algorithm is thus designed to detect 
ICOs in images. Two applications of the proposed theory are then presented. The first is ICO recognition in aerial images, and the 
second is automatic matching of highly deviated landmark-less images. The latter provides a foundation for automatic land cover 
change analysis using satellite/aerial images obtained under different conditions (time, height, and direction). 
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1. INTRODUCTION 

Although number of objects of concern to us may have specific 
names, their configurations may vary. The shape, the 
components, and component layout may change depending on 
the case. For example, an aerial image of school is usually 
composed of a number of components, such as a school building, 
a playground, and a pool. However, the overall size, shape, 
components, and their layout vary, as shown in Figure 1. In this 
paper, this type of object is referred to as an ill-configured 
object (ICO). In contrast, an object that has a very stable 
configuration, such as a human face, is an example of a non-
ICO. The problem of ICO recognition in segmented images is 
examined herein. We will skip discussions on aerial image 
segmentation and refer the reader to our recent paper (Watanabe, 
2002).  The solution of this problem will contribute to various 
image analysis tasks that require object recognition, especially 
tasks that require inexact matching (Shapiro, 1981).  
In order to solve this problem, we should prepare an appropriate 
computational representation of ICO. A typical representation is 
a graph model (equivalently, a relational model) in which nodes 
represent component regions and arcs represent region 
adjacency relations (Shapiro, 1981; Vosselman, 1992; Kim, 
1991). Object recognition then becomes the problem of finding 
a sub-graph (of the larger graph representing the whole image) 
that exactly matches the model graph. In order to cope with 
ICOs in this setting, we must prepare various graph models 
corresponding to the topological variants of the ICOs. Using the 
inexact matching method, which finds a sub-graph that is similar 
to a given model, we can reduce the model set size at the 
expense of high computation cost (Shapiro, 1981; Shapiro, 
1982; Shapiro, 1985; Vosselman, 1992).  
A powerful algorithm for inexact matching of trees has recently 
been developed, however, this algorithm is as of yet 
inapplicable for general graphs (Oommen, 2001). In addition, 
non-graphical representations of objects, such as MRF (Markov 
random field) (Geman, 1984), attribute grammar (Young, 1986), 
logical rules (Ohta, 1985), and 2D string (Chang, 1987), also 
exist. However, in order to deal with ICOs, these representations 

also have high cost, with respect to either model preparation 
and/or in computation. Therefore, a new representation and a 
new matching method are required in order to solve the ICO 
recognition problem. Recently, a new method ACC (adaptive 
combination of classifiers) is proposed to deal with a kind of 
ICO having a non-fixed but stable component layout (Mohan, 
2001). It's typical target is the articulated human body 
composed of components including, head, right/left arums, 
body, and foots. ACC is composed of several low level 
component classifiers and a high level combination classifier. 
Using the fact that both the place and the extent of each 
component is stable, each component classifier monitors the 
existence of a relevant component in a relevant window and 
the combination classifier decides the existence of a human 
body using the outputs of these component classifiers. In both 
layers, classifiers are realized using SVM (support vector 
machine) (Vapnik, 1998).  Although superior performance 
than the traditional non component-based complete person 
detector is reported, very high SVM training cost of nearly 

)10( 3O  positive and )10( 4O  negative examples are required 
for each classifier. So, ACC looses its power for ICOs that 
have unstable components configuration and/or permits only 
small training examples as seen in aerial image.  
So, to solve the ICO recognition problem, we are required to 
go back to the basics and investigate the possibility of a new 
representation scheme for ICO. We introduce herein the 
concept of neighbor set representation (NSR) of objects as a 
possible solution and investigate its properties. We show that 
the number of models required for ICO representation is far 
fewer than for the graph models. We show that NSR is a 
unified representation for both non-ICOs and ICOs by proving 
that both objects can be characterized as a solution, i.e., a fixed 
point, of a set theoretic formula defined on the NSR of the 
object. Fortunately, this formula permits an iterative solution 
on which we can build an ICO search algorithm.  
We present two applications of aerial image analysis in order 
to demonstrate the usefulness of the proposed concepts: ICO 
recognition in artificial and real images (Suto, 2000), and 



 

automatic matching of highly deviated landmark-less aerial 
images (Nishikawa, 2001), which provides a fundamental 
function in realizing automated land cover change monitoring.   
In the present paper, basic concepts are discussed in section 2 
and applications are presented in section 3. For the sake of 
simplicity, primary discussions are limited to two-dimensional 
and two-level hierarchical objects, although extensions to more 
general objects are possible.  
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Figure 1. Ill-configured objects (ICOs) 
(a) School; (b) segmented image; (c) and (d) layout change; (e) layout 
and component change; and (f) size change. An example representation 
of  b is, 

),,(..),,,,(.,. hwsizeareaOhwyxareaOschoolattribO ===
}.,,{.),,(.. WGBsubsOyxbaseareaO == We should prepare different 

layoutO.  for each of b, c, d, and e. For f, sizeareaO ..  should be 
changed also. 
 
 

2. BASIC CONCEPTS 

2.1 Ill-configured Object 

Assume O  denotes a geometrical object contained in an image 
I  which can be approximately represented by a tuple:  

),.,.,.,.( layoutOsubsOareaOattribOO ≡  
where attribO.  is the attribute, such as the name, of .O  

),,,(. hwyxareaO =  denotes the minimum bounding rectangle 
(MBR) of O  (Samet, 1993). Occasionally, we use sizeareaO ..  
and baseareaO ..  to represent the size ),( hw  and the base point  

),( yx  (north-west corner) of the MBR in ,I  respectively. 

subsO.  denotes the set of components (sub-objects) of .O  
layoutO.  is the layout of .. subsO   

In the case in which O  is a terminal object (having no sub-
objects), ,.. φ== layoutOsubsO  where φ  denotes a null set. As 
we are concentrating on two-level hierarchical objects, subsO.  
are composed of terminal objects. We refer to O  as well-
configured (or not ill-configured) if O  can be represented by a 
small set of such models. For example, trademarks and human 
faces are well-configured objects. However, as shown in 
Figure 1, several objects of concern to us are not well-
configured, and these objects are referred to as ill-configured 
object (ICO). As discussed before, traditional representations 
such as graphs and others are not useful for ICOs because the 
number of models required in representing an ICO becomes 
very large (as shown later) and/or the cost of model 
application (matching) to real data becomes very large. 
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Figure 2. Neighbour set representation (NSR) 
(a) School image; (b), (c), and (d) neighbor set of the building, water, 
and ground, respectively, when their placements are fixed (non-ICO); 
(e), (f), (g) neighbor set when the building is fixed at left but other 
components can move (ICO); (h), (i) and (j) neighbor set when all three 
components can move freely (ICO). In this example, model size 

.3|).|( == subsO  
 
2.2 Neighbor Set Representation 

First, we introduce the neighbor set representation of an object 
,O  denoted as .)(ONSR  

 
Definition 1: ,)(ONSR  the neighbor set representation of an 
object of ,O  is defined as follows: 

),.,.,.,.()( nsetOsubsOareaOattribOONSR ≡  
Note that, the term layoutO.  in the original definition of O  is 
changed to ..nsetO nsetO. is a neighbor set of .O  In other 



 

words, nsetO. is a set of MBRs, each element of which 
represents the possible extension of O  around each child 
element in .. subsO  See Figure 2. More specifically,  

},.|).,(*{. subsOcareaOcMBRnsetO ∈≡  

where ).,(* areaOcMBR  is a union of all the possible 
extensions of areaO.  around .c  
For NSR to be an effective representation scheme of ICO, the 
following properties must be satisfied. 
(1) The size of )(ONSR for ICO representation is not so large. 
(2) Computationally efficient ICO search is possible. 
In the following, Theorem 1 assures (1). Theorem 2 and 3 give 
fundamental properties of NSR upon which we can assure (2). 
Proofs are omitted due to page limitation. 
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Figure 3. areaO.  is always identical to the core of nsetO.  
(a) Non-ICO ( nsetO.  is Fig.2: b, c, d); (b) and (c) ICOs having partially 
fixed components ( nsetO.  is Fig.2: e, f, g); (d), (e), (f) and (g) ICOs 
having no fixed components ( nsetO.  is Fig.2: h, i, j). 
 
 
Theorem 1:  The size of nsetO.  which must be specified in 
order to represent an ICO is |).(| subsOO  where |.| subsO  
denotes the size of .. subsO  
 
Discussion 1: See Figure 2. It should be noted that, if we resort 
to a relational model (see Figure 1) to represent all the possible 
layouts of ICO, we are forced to prepare )!|.(| subsOO  models in 

.. layoutO  In order to verify this, select an object O  
having ),(.. mhnwsizeareaO =  and nmsubsO =|.|   (each 
element of subsO.  has different attribute but are identically 
shaped, i.e., width = ,w  height = ,h and hw ≠ ). Further 
suppose that r  of mn  elements are located at fixed positions 
and that the remaining rmn −  elements can be placed at any of 
the rmn −  positions. Then, the number of possible 
configurations becomes ),!)|.((| rsubsOO −  or ).!|.(| subsOO  
 
Theorem 2: Any object O  satisfies the following set theoretic 
equation: 

))..,((.. *
. areaOcMBRnsetOareaO subsOc∈≡= II  

We refer to the right-hand side of this equation as the core of 
..nsetO  

 
Discussion 2: Theorem 2 states that areaO. is identical to the 
core of O  for both non-ICOs and ICOs. See Figure 3 for 
examples. 
 
Theorem 3: Let ).,(** areaOcMBR be an expansion of  

).,(* areaOcMBR satisfying  

),.,().,( *** areaOcMBRareaOcMBR ⊂  then we obtain 

))..,(. **
. areaOcMBRareaO subsOc∈⊂ I  

 
Discussions 3: Theorem 3 states that we can enclose the 

areaO.  in the core of the enlarged ..nsetO  See Figure 4 for 
some examples.  
 
2.3 ICO Recognition using NSR 

In this section we discuss the method of recognizing ICO using 
the above definitions and Theorems. Since real-world ICOs 
have a number of variations, we discuss methods for dealing 
with these variations. 
 
The Problem: Let I  and )(ISEG  denote an image and its 
segmented version, respectively. We assume each segment in 

)(ISEG is approximately represented by an MBR. Thus, 
)(ISEG  is a set of records of the form 

,}|).,.{( SGsareasattrivs ∈  where SG  denotes the set of 
segments in .I  attrivs.  is the attribute (e.g., water, ground, 
house, etc.) of the segment ,s  and ),,,,(. hwyxareas =  where 

),( yx  and ),( hw denote the base point (e.g., northwest corner) 
and the size (e.g., width and height) of the MBR of s  in ,I  
respectively. 
The goal is to find task objects TO  in .I  
The model set (MS) for TO  is assumed to be provided using 
the NSR scheme. Thus,  

}.|).,.,.,.{( TOOnsetOsubsOareaOattribOMS ∈≡  
Notice that in ,MS  the base point parameters ),( yx  in areaO.  
are undefined, because they can not be determined until the 
model is instantiated (matched to an object) in .)(ISEG  
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Figure 4: Effect of expanding the neighbor set 
(a), (b) and (c) Expanded neighbour set (dotted line); (d) the core of the 
expanded neighbour set fully enclose the fastened layout of ;. subsO  (e) 
and (f) the expanded core can also contain unfastened layout of .. subsO  
 
Finding Objects: An object finding function can be designed 
using Theorem 2. Suppose we seek an object .O Theorem 2 
states that we can determine areaO.  by logically conjuncting 

every element of ,.nsetO i.e., ),.,(* subsOcMBR for all 
.. subsOc∈  Therefore, we select a first candidate component 

subsOc .1 ∈  in )(ISEG and find the next component 

subsOc .2 ∈  in )..,()( 1
* subsOcMBRISEG ∩   

The ).,( 1
* subsOcMBR  used here is defined in .MS  Repeating 

this process, we finally find areaO.  containing all elements of 
.. subsO  This process is referred to as narrowing. Figure 5 

illustrates object finding via narrowing.  
 
Coping with Object Shape Variation: In real images, 
instances of O having the same attrivO.  may have different  

sizeareaO ..  due to intrinsic size variations and/or the scale 
change of the image .O  This problem can be addressed using 
Theorem 3, which states that if a revised nsetO.  containing an 

expanded ).,(** subsOcMBR  is used, we can trap the areaO.  in 

the core )..,(**
. subsOcMBRsubsOc∈I   

Therefore, expanded ).,(** subsOcMBR  should be used in 
defining the model set .MS  After a successive narrowing, we 
can determine the MBR of the found subsO.  as an estimation 
of ..areaO  Furthermore, it is often the case that objects in an 
image I are rotated from their models in .MS  We can cope with 
this problem by extending the MS  to *MS containing rotated 
models. 
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Figure 5. Finding ICOs by a successive narrowing 
 The neighbour set of Figure 2: h, i, j is used. 
(a) Segmented image; (b) narrowing by using the neighbour of B; (c) 
narrowing by using the neighbour of G; (d) narrowing by using the 
neighbour of W. 
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Figure 6. Classification of component shapes 

(a) and (b) The minimum area MBR among vertical and the diagonal  
)45( o candidates is useful to enhance the approximation accuracy of 

the component shape (area and aspect ratio); (c) classification of 
components by area and aspect ratio. This classification is effective for 
computerization of infinitely varying shapes. 
 
Coping with Component Variations: Instances of O  having 
the same attrivO.  may not have identical subsO. due to 
component variations. Typical variations include changes in 
size and component deletions/additions. The size change 
problem is addressed by adding shape attributes to each 



 

component, as shown in Figure 6. The shape type is defined so 
as to reflect the area and aspect ratio of the component. In order 
to enhance the precision, we enclose the original component by 
two MBRs that are rotated by o0 (non-rotation) and ,45o  and 
select the MBR having the lesser area (Figure 6: a, b). The area 
and aspect ratio of the chosen MBR is used to define the 
component shape type (Figure 6: c). By using this extended 
attribute in component identification, we can extend the 
applicability of MS to objects composed of components with 
changed size. The problem of component deletion/addition is 
addressed by introducing a likelihood measure between the 
model O and the found object .FO  More specifically, let 

subsO.  and subsFO.  be their components, respectively, 
classified by their attributes. Then, we introduce the following 
likelihood function to measure their similarity: 

)...(/)..(),( subsOsubsFOsubsOsubsFOOFOL ∪∩≡  
Note that 0.1),( =OFOL  when FO  has components identical to 
those of .. subsO  This function can be refined by adding a 
measure of area similarity between areaO.  and .. areaFO An 
example refinement LL  is (using || FO to denote the area of  

,FO  etc.): 

|).||,(|max/|)||,(|min),(

)..,..,,(

OFOOFOOFOL

saOsaFOOFOLL

×

≡

 

Note that 0.1)..,..,,( =saOsaFOOFOLL when both FO  and O  
have identical components and sizes.  
 

3. APPLICATIONS 

3.1 Object Recognition 

Purpose: ICO recognition in artificial and real images is 
performed in order to verify that the NSR can find highly 
varying ICOs using only a few models. 
 
Method: We perform two experiments, OR.ex1, and OR.ex2. In 
OR.ex1, an artificial color map I  contains three types of 
ICOs: ,.,.,. 321 apartmentattrivOparkattrivOstadiumattrivO ===   
each having four instances of varying configurations (Figure 7). 
Image segmentation is performed using pixel color classification 
to yield ).(ISEG  Uppermost objects are used to build the NSR 
model set ),,90(* MSrotMSMS o∪=  where MS  is the topmost 

three objects in the figure and ),90( MSrot o   is a rotated version 
of MS  So the model set *MS  contains two models for each 
ICO. Assuming that every configuration of components is 
possible and shapeareaO .. varies, the 

expanded ).,(** subsOcMBR  of the maximum extension is used 
(see Figure 2 (h, i, and j) and Figure 4). 
In OR.ex2, apartment recognition is performed using an actual 
aerial image. The small window in Figure 8 shows the site used 
to define .MS  Including the rotated variant, *MS  contains two 
models )).,90(( * MSrotMSMS o∪=  
 
Results and Considerations: Figure 7 shows the result of 
OR.ex1. All 12 ICOs were successfully recognized using only 
two models for each ICO. In addition, for OR.ex2, Figure 8 
shows that although not completely free of recognition failure, 
most of the visually recognizable apartments could be 
recognized automatically using only two models. 
 

 
 

Figure 7. OR.ex1 
Artificial map including 12 ICOs (stadiums, parks, and apartments). 
Uppermost three ICOs are used to define NSR models. All 12 ICOs are 
successfully recognized. For each ICO, the MBR covering subsO.  is 
shown as the estimated .. areaO  Components not in subsO.  might 
hang out of the MBR. 
 
3.2 Automatic Matching of Highly Deviated Landmark-
less Images 

Purpose: In a number of applications of aerial/satellite image 
analysis, the image matching function is fundamental. Land 
cover change monitoring, hazard map generation, and map 
revision are only a few examples. Since adjustment of camera 
conditions, such as the height and the direction is very difficult 
when the images are taken on different occasions, we are given 
two images of differing shift, scale, and rotation. Moreover, 
landmarks that are usable in image matching are not usually 
provided in normal images. Therefore, the problem of 
automatic matching of two highly deviated landmark-less 
images must be solved in order to automate these tasks. We 
examine the applicability of NSR to this open problem. 
 
Method Two images, 1I  and ,2I  can be automatically 
matched using NSR. First, we automatically extract NSR 
models ))(( 1ISEGMS  out of )( 1ISEG  and find them in 

).( 2ISEG  Notice that we must find varying (shifted, scaled, 
and rotated) ICOs out of )( 2ISEG  using the model extracted 
from ).( 1ISEG We then try to define similar triangles in 

)( 1ISEG  and )( 2ISEG  using modeled and found objects, 
respectively. In generating )),(( 1ISEGMS  we introduce a 
regular grid in )( 1ISEG  and generate one NSR object out of 
each partition. We choose a fixed number of components (we 
used three components having larger areas) out of 



 

)( 1ISEG contained in the partition, which were then used as 
.. subsO  Since this problem is sensitive to image rotation, we 

used the minimum area MBR among rotated candidates, as 
described in Figure 6 in determining component attributes. 
Using )),(( 1ISEGMS  we find objects ))(( 2ISEGFO  in )( 2ISEG  
and then attempt to find similar triangles in  )( 1ISEG and 

)( 2ISEG  having an identical object arrangement on three 
vertices. If this fails, 1I  and 2I  are judged not to match. In 
fact, we used 3  similar triangle pairs in order to enhance the 
matching accuracy, and if none of the three pairs are judged to 
be similar, matching failure has occurred. Otherwise, we 
determine the average translation (shift, scale, and rotation) of 

2I  from 1I  using found (at least two) similar triangles. 
Finally, the two images are matched using the estimated 
parameters. 
 

 
 

Figure 8. OR.ex2 
Apartments in a real aerial image (Tama New Town in Tokyo) are 
recognized. The small rectangle is the site used to define an NSR model. 
 
Results and Considerations: Figures 9 (a and b) are a sample 
pair of task images, which are generated by cutting two 
overlapping images out of an aerial image, and applied an 

artificial translation of (scaling, rotation) )60,25.1( o=  to the 
image of Figure 9 (b). Figure 9 (c and d) are segmented versions. 
The most similar triangle pair found is shown with their gravity 
centers and the matching result is shown in Figure 
 9 (e). In this example, we obtained a very accurate estimation 

of (scaling, rotation) ).60,24.1( o=  Ten experiments were 
performed using different task images and the result of which 

are summarized in Table 1. The accuracy of scaling/rotation 
parameter estimation was very high. The average error rate 
was %.99.1/%51.0  
 
 

Case Scale Rotation S. Error R. Error
1 0.51/0.5 45.8/45 2.0 1.8 
2 0.80/0.8 51.1/50 0.0 2.2 
3 1.60/1.6 5.4/5 0.0 8.0 
4 1.25/1.25 310.1/310 0.8 0.0 
5 2.00/2.0 311.0/315 0.0 1.3 
6 0.63/0.63 354.9/355 0.2 0.0 
7 1.98/2.0 43.4/45 1.0 3.6 
8 1.24/1.25 60.0/60 0.8 0.0 
9 0.63/0.63 15.4/15 0.3 2.7 
10 0.50/0.5 316.0/315 0.0 0.3 

Mean ------ ------ 0.51 1.99 
 

TABLE 1. Accuracies Scale and Rotation 
Estimated/Real data , rotations are in degrees, and errors are in %. 

 
 
 

4. CONCLUSIONS 

We introduced the concept of the ill-configured object (ICO) 
and proposed the concept of neighbor set representation (NSR) 
of an object to represent the ICO. Several important properties 
of NSR were clarified mathematically, especially the 
possibility of characterizing an ICO (including non-ICO) as a 
solution (fixed point) of a set theoretic equation of NSR of the 
object. Using this property, we proposed an iterative algorithm 
by which to find an ICO in an image. In addition, we reported 
two applications of NSR. The first being ICO object 
recognition in artificial and real images, and the second being 
automatic matching of highly deviated landmark-less images. 
In the former, we illustrated that ICO objects of varying 
configurations can be recognized using only a small NSR 
model set. In the latter, we illustrated that highly deviated 
landmark-less images can be automatically matched with high 
accuracy. This function provides a foundation of automatic 
land cover change analysis using satellite/aerial images 
obtained under different camera conditions. Future research 
includes extension and applications of the NSR concept to a 
wider range of media data. 
 
 
REFERENCES 
 
Watanabe, T. and Sugawa, K., and Sugihara, H., 2002.  
A new pattern representation scheme using data compression. 
IEEE trans. PAMI, 24(5), pp. 579-590. 
 
Shapiro, L. G. and Haralick, R. M., 1981.  
Structural descriptions and inexact matching.  
IEEE trans. PAMI, 3(5), pp. 504-519. 
 
Shapiro, L. G. and Haralick, R. M., 1982.  
Organization of relational models for scene analysis.  
IEEE trans. PAMI, 4(6), pp. 595-603. 
 
Shapiro, L. G. and Haralick, R. M., 1985.  



 

A metric for comparing relational descriptions.  
IEEE trans. PAMI, 7(1), pp. 90-94. 
 
Vosselman, G., 1992.  
Relational matching. LNCS 628, Springer-Verlag, Berlin. 
 
Kim, W. Y and Kak, A. C., 1991.  
3-D object recognition using bipartite matching embedded in 
discrete relaxation. IEEE trans. PAMI, 13(3), pp. 224-251. 
 
Oommen, B. J. and Loke, R. K. S., 2001.  
On the pattern recognition of noisy subsequence trees.  
IEEE trans. PAMI, 23(9), pp. 929-946. 
 
Geman, S. and Geman, D., 1984.  
Stochastic relaxation, Gibbs distribution and the Bayesian 
restoration of images. IEEE trans. PAMI, 6, pp. 721-741. 
 
Young, T. Y. and Fu, K. S. Eds., 1986. Handbook of pattern 
recognition and image processing. Academic Press, San Diego. 
 
Ohta, Y., 1985. Knowledge-based interpretation of outdoor 
natural color scenes, Pitman Publishing, Boston. 
 
Chang, S. K., Shi, Q. Y., and Yan, C. W., 1987.  
Iconic indexing by 2-D strings.  
IEEE trans. PAMI, 9(3), pp. 413-428. 
 
Mohan, A., Papageorgiou, C., and Poggio, T., 2001.  
Example-based object detection in image by components.  
IEEE trans. PAMI, 23(4), pp. 349-361. 
 
Suto, T., Nishikawa, Y., Watanabe, T., and Sugawara, K., 2000. 
Recognizing objects in aerial images. 
Proc. JSPRS 2000, pp.263-266. (in Japanese). 
 
Nishikawa, Y., Kubo, T., Watanabe, T., and  Shinada, T., 2001. 
MLDI: Matching largely deviated landmark-less images.  
Proc. JSPRS 2001, pp.149-152. (in Japanese). 
 
Vapnik, V., 1998.  
Statistical learning theory. John Wiley & Sons, Inc., New York. 
 
Samet, H., 1993.  
Applications of spatial data structures, Addison-Wesley. 
 
 
ACKNOWLEDGEMENTS 
 
T. Suto, Y. Nishikawa and T. Kubo, students in our laboratory, 
are acknowledged for prototyping several applications of the 
NSR theory. Mr. F. Komura at Hitachi is acknowledged for 
discussions on aerial image registration problems. Prof. Dr. A. 
Gruen at ATH, who suggested to post this work to PCV’02, is 
also acknowledged. 

 
 

Figure 9. Matching experiment using real images 
(a) and (b) Task images;  

(a) )606408( ×  pixels.  (scaling, rotation) ),0,00.1(
o

=   

(b) (scaling, rotation) ),60,25.1(
o

=  
(c) and (d) the most similar triangles found in two segmented images 
are shown. The vertices are gravity centers of found ICOs. Gravity 
centers of triangles are also shown; 
(e) matching result 
 
 
 


