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ABSTRACT:

Surveying complex shapes or very large entities by laser scanners often requires the registration of a sufficient number of partial 3-D
range images in order to completely reproduce the model of the real object. If redundancy exists among the partial models composing
the measured entity, a global adjustment of the model components improves the final accuracy with respect to a simple pairwise
registration.
To this regard, a new solution for the optimal least squares registration of range images, based on the Generalised Procrustes
Analysis techniques, has been recently developed by the authors and can be found in the literature. The method, using the classical tie
point correspondence, has proven to be very efficient since it does not require any prior information of the geometrical relationship
existing among the particular reference frames in which the different partial 3-D models are expressed. Considering its computational
advantages, it does not involve linearisation of equation systems nor matrix inversions, the only requirement is the singular value
decomposition (SVD) of matrices of order 3 x 3.
In this paper a significant analytical enhancement of the Procrustean method is presented, to manage the stochastic properties of the
tie point coordinates in a more complete and exhaustive way.
In the previous formulation the possibility to assign a different isotropic weighting factor to the single tie points, according to their
specific accuracy, was considered. With the new proposed method, also the positional components, i.e. each coordinate, can be
weighted separately. In this way a complete anisotropic and inhomogeneous factored stochastic model can be introduced in the
Procrustes procedure.
The generalisation of the stochastic model is recommended for certain practical applications, particularly for joining aerial laser
scanners strips produced with low sampling density. In these cases, matching correspondence points of low resolution range images
generates poorly accurate tie point coordinate estimation. Indeed, this event introduces an uncertainty in the 3-D position that must be
considered anisotropic, i.e. not affecting the three components of the same amount. In fact, considering one tie-point laying on a
surface perpendicular to the laser beam, the effective position of the laser footprint on the correspondence element affects the
planimetric position more than the related altimetric component. In these situations, the different quality of the tie points position
components must be correctly and advantageously preserved, performing the global registration adopting the anisotropic model here
presented.
A suitable application is discussed in the paper to illustrate the registration problem and the expected advantages of the method
proposed.

1.  INTRODUCTION

In a previous paper an original mathematical model for the
optimal global registration of different and partially overlapping
3-D range images produced by laser scanners, by way of the
classical tie-point correspondence, has been proposed by the
authors (Beinat and Crosilla, 2001).
The method, based on the algorithms of the Procrustes analysis,
has proven to be particularly efficient. It provides the direct
estimation of the similarity transformation parameters (rotation,
translation and dilation) reciprocally linking the distinct
reference frames in which the various partial 3-D models are
expressed, without the need of any prior information of their
reciprocal orientation. On these basis, the global adjustment is
then obtained by an iterative and fast converging procedure,
fitting on turn every partial model with respect to the averaged
sum of the remaining ones.
Other important advantages are evident from the computational
point of view. The singular value decomposition (SVD) of
matrices of order 3 x 3 that characterises the Procrustes
procedure avoids the need for linearisation of equation systems
and large matrix inversions, thus determining a fast and easy
software implementation.

In the formulation already presented an isotropic distribution of
the measurement errors has been considered. Since this aspect
could be considered a limit of the method for certain
applications, in this paper we formulate an anisotropic approach
for the global registration problem so to assign in a more
accurate and flexible way different weighting factors to the tie
points coordinates.
The idea is to consider a factored structure model for the
covariance matrix of the tie point coordinates (Goodall, 1991).
According to this model a factored structure model of the
weight matrix can also be taken into account.
The first weight matrix, already defined in the previous
formulation, contains the isotropic weights assigned to the
single tie-points of every different model, according to their
specific accuracy of measurement or definition. The second one,
introduced hereon, accounts for the different accuracy that
globally characterises each one of the three coordinates
components of the tie points belonging to a specific partial
model.
For example, with this formulation a possible registration
problem, often arising when dealing with low resolution aerial
range images, can be afforded in a more proper way. In fact,
when determining the position of one tie-point laying on a
surface perpendicular to the laser beam, as simplified in Fig. 1,



for geometrical reasons the real vs. the nearest measured
location of the laser footprint on the correspondence element
affects the planimetric position more than the related altimetric
component. In these situations, the different accuracy of the tie
points position coordinate components must be correctly and
advantageously taken into account, performing the global
registration adopting the anisotropic model here presented.

Figure 1. Tie-point position error and its influence on the
coordinate components

2. ISOTROPIC ERROR CONDITION

Let we consider m partial models of the same object, produced
by a laser scanner at m different base station locations. To link
the different point clouds one to each other a total number of p
tie-points have been selected.
We could therefore define m tie-point coordinate matrices A1 …
Am of size p×3, each one containing the coordinates of the same
set of p corresponding 3-D tie-points, defined in their own m
different R3 reference frames.
Since not all the tie-points appear in every point cloud
representing one partial model, the Ai (i = 1 … m) matrix rows
corresponding to missing points are left empty (or padded with
zeros) and a null weight is assigned to them by way of a
Boolean Mi matrix (Figure 2) (Commandeur, 1991).
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Figure 2. Incomplete Ai p×3 tie-points datasets and
resulting Mi p×p Boolean diagonal matrices.

It has already been demonstrated that the global registration of
m point clouds by way of their tie-points requires the
registration, by way of a proper similarity transformation of
every data matrix Ai respect to the remaining ones (Beinat and
Crosilla, 2001).

Said {t, T, c}ij (i = 1…m; i < j), the unknown transformation
parameters i.e. the 3×1 translation vector, the 3×3 rotation
matrix and the global scale factor respectively with j as a p×1
predefined auxiliary unitary vector (j = [11 … 1p]), the solution
of the global registration problem is obtained by solving the
following least squares condition:
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Equation (1) summarises the Generalised Procrustes problem
(GP) that can be numerically solved in iterative way by one of
the methods proposed in the literature  (Ten Berge, 1977)
The problem can be afforded in an alternative and more
efficient way, by estimating an unknown "optimal" matrix Z,
also named "consensus", related to every Ai (i = 1…m) by a
proper unknown similarity transformation {t, T, c}i, unless a
random error matrix Ei:

p Tci i i i i i+ = = +Z E A A T jt (2)

If Ei has the general definition of:

( ) { }2vec 0,i N = σE IΣΣΣΣ (3)

where ΣΣΣΣ is the covariance matrix and I is the identity matrix,
that corresponds to the case in which all the tie-points have the
same precision, the GP problem of Equation (1) can be
equivalently reformulated  (Kristof & Wingersky, 1971) as:
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corresponds to the least squares estimate of the unknown
"consensus" matrix Z.
Ẑ  is the p×3 matrix containing the coordinates of the p tie-
points expressed into the same mean and common reference
frame, and the global registration of every i = 1 … m  point
cloud can be finally obtained applying the similarity
transformation parameters {t, T, c}i linking the original Ai to Ẑ .
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3. ANISOTROPIC ERROR CONDITION

The condition of Equation (3) can be further extended. In a
previous paper Beinat and Crosilla (2001) have already
discussed the following partial anisotropic error condition,
expressed by a factored form of the covariance matrix ΣΣΣΣi:

( ) ( ){ }2vec 0,i i Pi KiN = σ ⊗E Q QΣΣΣΣ (6)

with PiQ  diagonal and Ki =Q I , ⊗ is the Kronecker product.
This represents the case where the generic tie-point of p

iA  has
its own proper dispersion, that could differ among the Ai (i = 1
… m) tie-point coordinate matrices and respect to the rest of the
p tie-points of the same configuration.
Of course this error model is still isotropic at the generic point
level, since it considers the x, y, z coordinate components
having the same error dispersion.
The next step is to consider Ki ≠Q I but diagonal in order to
account for the different accuracy of the tie-point coordinates
components.

Assuming  1
i Pi

−=P Q  (7)

and  1
i Ki

−=K Q (8)

defining the product matrix Di as:

i i i i i= =D M P P M (9)

where Mi is the Boolean matrix previously defined, the GP
problem assumes the following expression:
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In this case, the least squares estimate Z  of the unknown
"consensus" matrix Z under anisotropic error conditions is
given by the following expression:
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which represent a generalisation of the well known model
reported in Equation (5) for the centroid estimation.

Proof
Imposing the minimum to the weighted norm expressed by
Equation (10),  corresponds to the satisfaction of the  following
condition:
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that leads to the expression given in Equation (11).

4. CASE STUDY

The mathematical model and the algorithm described in this
paper can be suitably applied e.g. for the optimal registration of
range images produced by aerial laser scanners at low-
resolution (let's say less than 1 point per squared metre) or in
general when the average laser footprint density is lower than
the nominal RMSE of the measurements.
In these situations, the edges of the real objects commonly
assumed as tie points, like roofs, walls and building corners, are
not accurately defined. When one collimates one point on a
range image, he is obliged to consider the coordinates of the
measured point closest to the selected position because no three-
dimensional local interpolations are always possible. The two
point positions, the real and the measured ones, rarely coincide
and consequently an unknown systematic error is frequently
introduced.
With respect to the whole set of the tie-points selection, this
error can be considered not isotropic in the 3-D components. In
fact, for the geometrical reasons explained above (Figure 1), the
position error does not affect the three tie-point coordinates in
the same way. The component parallel to the laser beam, that in
aerial laser scanning approximately corresponds to the z axis, is
in fact less sensitive to the resulting laser footprint position than
the other ones. In most applications, particularly when aiming to
flat targets, the z coordinate component does not significantly
change its value also for planar misplacements of a certain
amount.
For this reason, performing a model block adjustment could be
convenient to assign different weights to the tie-point
coordinates, depending on the laser footprint density.



To test this hypothesis a numerical simulation has been set up in
laboratory.
A virtual scenery with four distinct buildings has been created
using Matlab (Fig. 3) and some synthetic laser range images
have been produced by randomly sampling the surface points of
the model at an average resolution of 0.5 points/m2.
Contemporary, to better represent the real conditions, a random
error of ±10 cm has been introduced in the (laser scan)
measurements.
In this way a set of four range images of a perfectly known -
geometrically speaking - object was obtained, in order to
compare the effects of the different weighting models.

Figure 3: The virtual scenery created for the simulations and the
tie-points (A, B, C, D, E) used for the global registration

     

      

Figure 4. Particular of the distribution of the laser footprints
around the corner of one building (tie-point B) in four

different scans.

Figure 4 shows the distribution of the laser footprints all around
one specific tie-feature outlined by the circle, resulted in four
distinct range images. It represents a real situation: when
collimating one specific tie-point, the operator has to select the
laser footprint closest to this one and laying on the same plane.
The four 3-D range images of the virtual scenery have been
simultaneously registered one to each other in two ways,
assuming an isotropic and an anisotropic error condition of the
tie-point coordinates respectively.
Comparing the results of the two adjustments with respect to the
real geometry, the anisotropic error model effectively shows a
reduction of the RMSE of the tie-point coordinate components
(true vs. adjusted) evident along the z vertical axis (Table 1).

Isotropic model Anisotropic model
Point ∆x ∆y ∆z ∆x ∆y ∆z

A +0.117 +0.010 +0.071 +0.119 +0.011 +0.052
B +0.355 +0.169 -0.278 +0.347 +0.170 -0.251
C -0.301 +0.284 -0.291 -0.304 +0.287 -0.261
D -0.078 -0.167 -0.098 -0.080 -0.170 -0.088
E -0.041 +0.156 +0.076 -0.041 +0.159 +0.048

RMSE 0.218 0.180 0.191 0.217 0.182 0.170

Table 1. Adjusted solutions residuals (real minus adjusted
coordinate components) [metres]

5. CONCLUSIONS

We propose in this paper a generalisation of the analytical
model already implemented for the simultaneous global
registration of 3-D range images (Beinat and Crosilla, 2001).
The method seems promising on suitable applications,
consisting in the global registration of low-resolution aerial
laser scan images.
The first synthetic experiments indicate, as expected, that the
anisotropic model slight better approaches the optimal solution
(the real Digital Surface Model) than the isotropic one. This
result is mainly consequence of the increased vertical positional
accuracy of the DSM, and it is obtained by properly weighting
the more precise z coordinates of the tie-points during the range
images global registration.
Further investigations are certainly needed to test the effective
capabilities and the limits of the method proposed, particularly
on the rigorous weights definition and around the factors
influencing it.
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