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ABSTRACT

3D object reconstruction that is based on an overdetermined set of control points is considered in this contribution. The
crucial difficulty of quality assessment of 3D reconstruction is nonlinearity of the fundamental equations that describes
relationship between coordinates of corresponding points in image and reality. Solution of this difficulty is the main
objective of this contribution. Probability distribution of measurement errors is not approximated by normal distribution,
but by a special distribution that allows exact and efficient Bayesian solution of the original nonlinear problem. Bayesian
approach to nonlinear estimation results in true probability distribution of estimated parameters that enables rigorous
quality assessment of position of the reconstructed object.

1 INTRODUCTION AND NOTATION

A 3D object has to be reconstructed from several images
captured by a multiple view camera system. Multiple view
reconstruction has been extensively studied by many au-
thors. For example, (Hartley and Zisserman, 2000) ap-
proached this problem from the geometrical point of view.
In the other hand, statistical analysis of the linear least-
squares solution is stressed in (Förstner, 1998).

The presented approach offers direct solution of the recon-
struction problem in its original nonlinear form without
distinguishing relative and absolute orientation.

To state mutual position of all the cameras a set of control
points is utilized. The geometry of such a multiple view
camera system can be described by the following equation:

xi = x0,i + sij Rj x′
ij , i ∈ I , j ∈ J (1)

where

xi . . . vector of coordinates ofi-th control point in
ground coordinate system (world coordinates),
xi = [xi, yi, zi] ∈ R3 , i ∈ I := {1, . . . , n}

x0,j . . . world coordinates of projection center ofj-th
camera,j ∈ J := {1, . . . ,m}

x′
ij . . . vector of coordinates ofi-th control point in the

image coordinate system ofj-th camera,x′
ij =

[x′
ij , y

′
ij ,−z′j ] ∈ R3 , j ∈ Ji ⊆ J

z′j . . . focal length ofj-th camera,j ∈ J
sij . . . scale factor ofi-th control point in the image of

j-th camera,i ∈ I , j ∈ Ji

Rj . . . orthonormal rotation matrix that describes ori-
entation ofj-th camera in the ground coordinate
system,j ∈ J

Note that quantitiesx′
ij , sij need not be necessarily acces-

sible for all pairs[i, j], i ∈ I, j ∈ J since some control
points can be visible from only a subset of all the cameras.

Set of images wherei-th control point is displayed is de-
notedJi , |Ji| ≥ 2.

Parametersx0,j , Rj for all j ∈ J have to be estimated
to state the mutual position of the all cameras. To consider
orthonormality of matricesRj another set of equations has
to be added to (1):

RT
j Rj = I , ∀j ∈ J . (2)

HereI stands for identity matrix of 3-rd order.

Coordinates̃x = [x̃, ỹ, z̃] of a point on the object being
reconstructed can be computed from its image coordinates
x̃′

j = [x̃′
j , ỹ

′
j ,−z′j ] of j-th camera as follows.

x̃ = x0,j + s̃j Rj x̃′
j , j ∈ J̃ ⊆ J , |J̃ | ≥ 2 . (3)

System of equations (3) for unknowns̃x, {s̃j | j ∈ J̃} is
overdetermined even for|J̃ | = 2 (stereo rig). It is pos-
sible to solve it together with system (1) and estimate all
the unknown parameters̃x, {s̃j | j ∈ J̃}, {x0,j | j ∈ J},
{Rj | j ∈ J}, sij | i ∈ I, j ∈ Ji}, {z′j | j ∈ J} simul-
taneously. Note that focal lengthsz′j , j ∈ J need not be
included to the unknown parameters and rather be treated
as constants if they were determined sufficiently precisely
in advance. The case of unknown focal lengths is consid-
ered in this contribution since it is more general and more
suitable for practice.

Reasonable solution of system of equations (1), (2), (3)
offers Bayesian approach. This approach results in prob-
ability density function (pdf) of the estimated parameters
called a posterior pdf. The dispensable parameters{s̃j | j ∈
J̃}, {sij | i ∈ I, j ∈ Ji}, {z′j | j ∈ J}, {x0,j | j ∈ J},
{Rj | j ∈ J} can be easily eliminated from the posterior
pdf by integrating over them. The final result is then given
as a pdf of coordinates of the object pointx̃ that depends
only on the measured coordinatesx′

ij , xi, x̃′
j .



2 PROBLEM FORMULATION

Probability distribution of object point̃x has to be deter-
mined for givenx̃′

j , j ∈ J̃ on the basis of equations (1),
(2), (3). Bayesian solution of equations (1), (2), (3) can
be clearly expressed after modification of them to another
equivalent system of equations.

xi = x0,j + sij xij , i ∈ I, j ∈ Ji,

x′
ij = RT

j xij , i ∈ I, j ∈ Ji,

I = RT
j Rj , j ∈ J,

x̃′
j = 1

s̃j
RT

j (x̃− x0,j) , j ∈ J̃ .

 (4)

In this form measured quantitiesxi, x′
ij , x̃′

j are separated

from unknown parameters{s̃j | j ∈ J̃}, {sij | i ∈ I, j ∈
Ji}, {xij | i ∈ I, j ∈ Ji}, {x0,j | j ∈ J}, {Rj | j ∈ J}, x̃.
The number of unknown parameters was extended due to
addition of auxiliary parameterxij := [xij , yij ,−z′j ] (co-
ordinates in a fictitious image perpendicular to the (x, y)
plane of the ground coordinate system), but it does not mat-
ter since the all dispensable parameters will be eliminated
by integration as mentioned above.

To make the Bayesian approach clear let us group the mea-
sured quantities together into vector

η :=[
[xi | i ∈ I],

[
[x′

ij , y′ij ] | i ∈ I, j ∈ Ji

]
,
[
[x̃′

j , ỹ′j ] | j ∈ J̃
]]

and, similarly, denote the unknown parameters by vector

θ :=[
x̃ , [Rj | j ∈ J ], [x0,j | j ∈ J ] , [s̃j | j ∈ J̃ ], [z′j | j ∈ J ],

[[xij , yij ] | i ∈ I, j ∈ Ji] , [sij | i ∈ I, j ∈ Ji]
]

Furthermore, let us denote vector of directly measured val-
uesη̂ and measurement errors by vectorε so that

η = η̂ + ε . (5)

As a last step before application of Bayesian approach to
equations (4) a prior information about values of param-
eters being estimated has to be expressed. In our case of
equations (4) conditions of orthonormality of matrixRj ,
namely (2) have to be considered. Furthermore, the fact
that focal lengthz′j of j-th camera is common for all the
points in j-th image has to be expressed as another con-
straints for unknown parameters. These constraints can
be simply obtained from the second and fourth row of (4)
where focal length is included as the third coordinate of
pointsx′

ij , x̃′
j .

−z′j = rT
3j [x′

ij , y′ij , −z′j ]
T , j ∈ J, i ∈ Ij ,

−z′j = 1
s̃j

rT
3j (x̃− x0,j), j ∈ J̃ ,

}
(6)

where

Ij . . . set of indices of such control points that are vis-
ible from j-th camera,

r3j . . . third column of matrixRj .

Actually, system of equations (4) with constraints (6) rep-
resents nonlinear regression equations with constraints for
unknown parameters.

Let us denoteΘ set of values of unknown parameters de-
fined by constraints (2), (6). Then system of equations (4)
can be written in concise form

η = a(θ) , θ ∈ Θ . (7)

A prior information about unknown parameters can be for-
mulated in a more detailed way than pure constraints (2),
(6). A prior probability distribution of random vectorθ can
be introduced. Let us denote its pdf

p : Θ → R : θ 7→ p(θ) .

3 BAYESIAN SOLUTION

The requested pdf of unknown parameters is conditional
pdf

g( . | η̂) : Θ → R : θ 7→ g(θ | η̂) .

It can be easily expressed by direct application of Bayes
theorem (see e.g. (Koch, 1990)).

g(θ | η̂) =
f(η̂ |θ) p(θ)∫

Θ

f(η̂ | t) p(t) dt

. (8)

Probability distribution of observational errors of quanti-
ties{xi | i ∈ I}, {[x′

ij , y′ij ] | i ∈ I, j ∈ Ji} is supposed to

be normal. The remaining observations{[x̃′
j , ỹ′j ] | j ∈ J̃}

are supposed to be independent and identically distributed
with conditional pdfh( . |θ). Then the joint pdff is given
by

f(η̂ |θ) =
l∏

k=1

fk(ak(θ)− η̂k)
∏
j∈J̃

h(x̃′
j |θ) h(ỹ′j |θ) , (9)

where

fk . . . normal pdf

fk(εk) =
1√

2 πσk

exp

(
−1

2

(
εk

σk

)2
)

,

σk . . . standard deviation ofk-th coordinate of control
points,

l . . . number of coordinates of control points,

l := 3 n + 2
n∑

i=1

|Ji|,

ak . . . k-th function of mappinga from (7),

η̂k . . . k-th element of vector̂η.



A prior pdf p will be chosen as noninformative on the set
Θ. A proper set of unknowns has to be designed before to
assign them uniform pdf.

Probability distribution of of coordinates of an object point
x̃ can be obtained from (8) by integrating over the dispens-
able variables. Let make a vector from the dispensable
variables and denote itu, so thatθ = [ x̃′T , uT ]. Then
the required pdf is marginal pdfg( x̃ | η̂)

g( x̃ | η̂) =
∫
U

g(x̃, u | η̂) du . (10)

SetU is defined by the constraints for unknowns (2), (6).
It means thatU depends on the all unknown parameters
exceptsij , i.e. {s̃j | j ∈ J̃}, {[xij , yij ] | i ∈ I, j ∈ Ji},
{z′j | j ∈ J}, {x0,j | j ∈ J}, {Rj | j ∈ J}, x̃. To respect
this fact, integration has to be performed in specific order.
Therefore variables{sij | i ∈ I, j ∈ J} will be eliminated
first. Then integration overz′j would follow.

Focal lengthz′j is constrained by (6), so that coordinates
xij , yij have to be incorporated to integration as well. Con-
straints (6) for fixedj ∈ J , {s̃j | j ∈ J̃}, {x0,j | j ∈
J}, {Rj | j ∈ J}, x̃ represent a hyper-planeVj in vec-
tor spaceVj generated by vectors

[
[ [xij , yij ] | i ∈ I], z′j

]
.

This hyper-plane can be parameterized by a number of an-
other unknown variables which is lower than dimension of
of vector spaceVj . Integration over hyper-planeVj has to
be performed with the aid of the new parameters. These
new parameters will be assigned by uniform probability
distribution. This integration procedure has to be recalled
in cycle for allj ∈ J .

Integration overx0,j can be done directly. For elimination
of s̃j another variabletj = 1

s̃j
will be introduced.

For integration over the last set of unknowns - elements of
rotation matrixRj - special transformation is used. It can
be easily showed that an arbitrary orthonormal matrixR
can be expressed by means of a quaternion (see e.g. (Ward,
1997), p. 28).

q = q0 + î q1 + ĵ q2 + k̂ q3 ,

|q|2 :=
3∑

i=0

q2
i = 1 , (11)

R = (12)



∣∣∣∣∣ q2
0 + q2

1 , 1
q2
2 + q2

3 , 1

∣∣∣∣∣ 2
∣∣∣∣ q0, q1

q2, q3

∣∣∣∣ 2
∣∣∣∣ q0, −q1

q3, q2

∣∣∣∣
2
∣∣∣∣ q0, −q1

q2, q3

∣∣∣∣
∣∣∣∣∣ q2

0 + q2
2 , 1

q2
1 + q2

3 , 1

∣∣∣∣∣ 2
∣∣∣∣ q2, q1

q0, q3

∣∣∣∣
2
∣∣∣∣ q1, q2

q0, q3

∣∣∣∣ 2
∣∣∣∣ q0, −q2

q3, q1

∣∣∣∣
∣∣∣∣∣ q2

0 + q2
3 , 1

q2
1 + q2

2 , 1

∣∣∣∣∣


This matrix is named Rodrigues matrix and such a para-
meterization of rotation is called Cayley parameterization.
(see (Gruen and Huang, 2001), p. 37, (Sansò, 1973)).

This parameterization enables to replace constraints (2) by
single constraint (11). Equation (11) describes surface of
four-dimensional sphere. Integration over spherical sur-
face is traditionally performed with the aid of parameteri-
zation

q0 = cos(ϕ1) cos(ϕ2) cos(ϕ3)

q1 = sin(ϕ1) cos(ϕ2) cos(ϕ3)

q2 = sin(ϕ2) cos(ϕ3)

q3 = sin(ϕ3)

 (13)

where each angleϕi, i ∈ {1, 2, 3} revolve in circle, i.e.

[ϕ1, ϕ2, ϕ3 ] ∈ (0, 2π)×
(
−π

2
,

π

2

)
×
(
−π

2
,

π

2

)
.

The two successive transformations (12), (13) cause van-
ishing the constraints for unknowns and the integration can
be finished.

The resulting pdfg(x̃ | η̂) is in form of very complicated
expression. It can be significantly simplified by means of
special pdfh introduced in (9). Functionh is designed
in such a way that integral in the denominator of Bayes
theorem (8) can be evaluated analytically.

A posterior pdfg( x̃ | η̂) is explicitly given in closed form
that is not so simple to write it down here but it is enough
convenient for effective evaluation by computer.

4 CONCLUSION

Probability density functiong(x̃ | η̂) of coordinates of an
object point that is analytically tractable was presented in
this contribution. This convenient feature ofg( x̃ | η̂) pro-
vides a photogrammetrist with an effective possibility to
reliably determine accuracy of position of a point on the
reconstructed object for arbitrary configuration of cameras
and control points.
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