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ABSTRACT: 
 
The need for a fast, efficient and low cost algorithm for extracting 3D features in urban areas is increasing. Consequently, research 
in feature extraction has intensified. In this paper we present a new technique to reconstruct buildings and other 3D features in 
urban areas using LIDAR data only. We have tried to show that dense LIDAR (Light detection and ranging) data is very suitable 
for 3D reconstruction of urban features such as buildings. This concept is based on local statistical interpretations of fitting 
surfaces over small windows of LIDAR derived points. The consistency of the data with surfaces determines how they will be 
modeled. Initially, the data has been filtered to remove extraneous objects such as trees and undesired small features. Then, 
boundaries will be extracted for each facet using statistical information from the surface fitting procedure, and using inferences 
about the dominant direction. Building features extracted from actual dense LIDAR collected over the Purdue campus are 
presented in the paper. 
 
 

1. INTRODUCTION 

With the availability of many sources of data such as 
conventional imagery, SAR imaging, IFSAR DEMs, and 
LIDAR DEMs, there are many avenues open to derive terrain 
and feature data in urban areas. Through much research, it has 
been shown that laser scanning data has the potential to 
support 3D feature extraction, especially if combined with 
other types of data such as 2D GIS ground plans (Maas, 1999; 
Brenner and Haala, 1999; Weidner and Förstner, 1995). 
Despite the fact that LIDAR data is attractive in terms of cost 
per high quality data point, the quantity of the data makes a 
challenge for storage and display (Vosselman, 1999). 
Acquiring 3D object descriptions from such data is a difficult 
problem and many approaches have been tried to solve it. 
Several of them have succeeded with some limitations. The 
principle idea of this research is to detect and reconstruct 
buildings form laser altimetry data exclusively. 
 
The building detection procedure described here includes 
detecting and excluding other natural features such as trees. 
The type and quality of object description depends on the goal 
of the research. Our aim is to detect and reconstruct buildings 
in urban areas. Filtering to identify candidate buildings from 
other urban features was the first step in this work. Many 
segmentation techniques such as thresholding determined by 
histogram analysis, the use 2D GIS data, and multispectral 
inference have been tested together with LIDAR heights 
(Mass, 1999; Brunn and Weidner, 1997). Direct thresholding 
works by extracting the terrain surface using a filtering 
technique such as the morphological filter. Consequently, all 
objects above the terrain including buildings, trees and others 
will be detected. This approach should be followed by a 
refinement step to get the desired results. Using the second 
strategy, 2D GIS ground maps give the building footprints. 
However, the LIDAR data gives heights on the building roofs, 
and roofs can be larger than the ground footprints (in case the 
footprint represents the building structure rather than the 
overhanging eaves). Furthermore, most of the roof details are 

not shown in the ground plans. The classification based on the 
multispectral response is limited since it requires the 
availability of such data, and its accuracy can depend on the 
complexity of the scene. 
 
In this paper, besides the first and last return analysis, we used 
the local statistical variation as a key to discriminate buildings 
from other extraneous objects. Low variation indicates smooth 
surfaces and, on the other hand, high variation is an indication 
of inhomogeneous surfaces or, in other words, extraneous 
objects. Those extraneous objects such as trees have been 
detected and removed through an iterative procedure. The 
result of this filtering process is a modified DSM (digital 
surface model), which represents only terrain and buildings. 
Moreover, the DEM (digital elevation model) was extracted by 
applying a region growing segmentation technique to 
discriminate continuous surfaces from other objects and 
applying a local minimum filter on other regions. Finally, 
buildings were detected using the normalized DSM, and their 
primitive descriptors were extracted. Then, the two dominant 
directions for each building were computed and its polygon 
was constructed. A developed shape generalization procedure 
was applied to the extracted polygons and the 3D model of 
buildings was constructed. We have tested our approach on the 
data set that has been collected over the Purdue university 
campus in spring 2001 with an approximate density of one data 
point per square meter. 
 
 

2. DATA FILTERING 

Laser point clouds should be segmented in order to use them in 
3D building reconstruction in urban areas. The segmentation 
procedure is mandatory to differentiate among diverse objects 
in the scene. Extraneous objects such as trees, and any other 
object above the ground that does not belong to the building 
category should be detected and removed from the scene. The 
filtering process we used in this project to segment buildings 
from other undesired objects consists of two steps. The first 



one is making use of “first minus last” return analysis and the 
second step is utilizing the local statistical interpretation. The 
two techniques are illustrated below in more detail. 
 
2.1 First minus last return height analysis 

The LIDAR system, an Optech ALTM 1210 operated by 
Woolpert Consultants, has the ability to capture two returns 
(first and last) per each height point. This is due to the fact that 
the laser pulse is not a single ray but an extended solid angle. 
It has an angular beamwidth and its footprint will a take 
circular shape when it reaches the ground. Based on the laser 
characteristics and the scene characteristics, the laser beam 
could penetrate some objects. Therefore some of its energy will 
be reflected back from the object top surface and other portions 
might penetrate to different depths before they are reflected as 
shown in figure 1. Generally, this produces an extended return 
signal. Therefore, the computed height based on the first 
received return will be called first return height. Those heights 
contain more noise since they reflect every object on the 
ground such as trees, cars, and buildings as shown in figure 2. 
On the other hand, the computed height based on the last 
received return will be called last return height. Those heights 
represent only the non-penetrable objects such as the ground, 
and buildings as shown in figure 3.   So each derived height 
point will have two recorded the heights, the first return height 
and last return height. As a result of that, two different heights 
of one point give an indication of the presence of a penetrable 
object such as tree. In contrast, if a data point has the same 
height for first and last returns, then this point belongs to a 
non-penetrable object. This step is just to locate the tree 
regions in the scene by examining the difference between first 
and last return. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. first and last return 

 
 
The level of the discrepancy between first and last return 
heights is shown in figure 4a. The discrepancy was larger than 
zero in the tree regions as expected. However, building 
boundaries also show a large response. After analyzing the raw 
data, we found the following explanations for that. When the 
laser beam hits the exposed surface it will have a footprint 
with a size in the range of 15-30 cm or more. So, if the laser 
beam hits the edge of a building then part of the beam footprint 
will be reflected from the top roof of the building and the other 
part might reach the ground. In another case, the laser beam 
might hit the side of a building which results in multiple 

returns. The high gradient response on building edges was 
utilized to filter out the two returns using equation (1) and the 
procedure is described more in figure 4. 
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Figure 2. color coded map of the last return heights 
 
 

  
 

Figure 3. color coded map of the first return heights 
 
 
After filtering the discrepancy map, we now conclude that the 
remaining responses occur only from objects which are not part 
of a building. So, the first step was to filter the data based on 
filtered discrepancy responses.  The aim here is not to filter the 
first return height data but to use the discrepancy map to locate 
the penetrable objects in the last return height data. 
Consequently, those detected regions will be used to filter the 
last return data using the local minimum filter. The result of 
this step was significant since a considerable amount of the 
noise was removed as shown in figure 5. However, some noise 
was not cleaned since it represents the center of a dense tree 
region or its boundaries have a large gradient response. 
Therefore, a second filtering approach was introduced. 
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Figure 4. (a) first return height minus last return height  (b) 

gradient based on last return heights (c) filtered 
discrepancy map between first and last 

 
2.2 Local statistical analysis and interpretation 

The surface smoothness was tested through local statistical 
interpretation. The height variation over a small region is an 
excellent tool in LIDAR data segmentation (Mass, 1999). Each 
height group that lies within a small square area will be fit to a 
plane. The iteratively reweighed least squares adjustment 
algorithm was used to solve the overdetermined system and 
obtain the surface parameters (Mikhail, 1976).  Weights were 
assigned to each observation based on its residual, except in 
the first iteration all observations were weighted equally. After 
the last iteration in the adjustment procedure, the root mean 
square error (RMSE) was computed for each square window 
and recorded at the center of that window. 
The number of height points that are included in the surface 
fitting procedure depends on the window size. For example, if 
we have a window of 3x3, then the number of observations is 
equal to nine. Moreover, each of the nine observations is 
included in the adjustment nine times in nine different 
windows.  Each one of those windows has a different RMSE 
since it was calculated using different observations. So, the 
height point might belong to any of the windows that contain 
this point. The attribute used to classify the point is the RMSE. 
So, the point will belong to the window that has the minimum 
RMSE, in order to obtain the best fit to maximize the surface 

smoothness. A high RMSE indicates an irregular surface that 
can be interpreted as a characteristic of a tree or a rough 
surface, since most buildings have smooth roof surfaces. With 
a few number of iterations, all high variability surfaces were 
detected and filtered using a minimum filter with a size equal 
to the fitting window or larger. The resulting digital surface 
model (DSM) of the two filtering steps is shown in figure 6. 
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Figure 5.  (a) last return heights before first step filtering, (b) 

result after first step filtering 
 
 

 
 

Figure 6. the filtered last return image heights 
 
 

3. BUILDING FOOTPRINT DETECTION AND 
DELINEATION 

Detecting buildings directly from the raw LIDAR data is not a 
straightforward problem. This is due to the ambiguity of other 
vertically extended features which are not buildings in the raw 
data. Filtering “noise” such as trees and other extraneous 
objects facilitates the detection of building footprints and 
consequently the reconstruction procedure. Using the ground 
plans as in (Brunn and Weidner, 1997) or utilizing a 
multispectral reflectance for the segmentation as in (Haala and 
Brenner, 2000) are alternatives to the filtering step to obtain 



the building primitives.  But since we are trying in this work to 
test the suitability of the LIDAR data as the only source of 
information, we decided to extract the building primitives from 
the LIDAR data after the filtering step. 
 
3.1 Building footprint determination     

After removing the extraneous objects from the raw data as 
described above, the digital elevation model (DEM), which 
represents the bare ground, was extracted. So, the above 
ground objects can be obtained by subtracting the DEM from 
the filtered DSM. However, these non-terrain objects need to 
be thresholded based on a minimum height and size to remove 
remaining non-penetrable objects such as cars.  The threshold 
values are chosen based on prior knowledge of building heights 
and sizes. As shown in figure 7, the resulting building 
delineations are satisfactory but they need to be converted to 
regular building polygons. The primitive raster objects can be 
used to derive vector footprint delineation and connecting those 
sides under some geometric constraints can create the building 
polygons. 
 
 

 
 

Figure 7. extracted raster building footprints 
 

 
3.2 Building polygons 

Obtaining reliable and detailed descriptions of urban features 
remains as the goal of many research efforts. However, the 
demand for fast and low cost methods for 3D urban feature 
extraction has limited the level of specific details of those 
features. Nevertheless, the level of detail is limited also due to 
some other factors such as the availability of other data 
sources, the density of the LIDAR data and the complexity of 
the scene. Therefore, the level of the urban feature detail must 
be aligned to the purpose of the extraction procedure and the 
scale of the production. 
 
In this work, we tried not to limit the algorithm by restricting it 
to a simple building model. However, one constraint was 
applied to minimize the time duration of this procedure as 
shown below. We constrained the buildings to have two 
dominant directions, which are perpendicular to each other. So, 

the task now is to convert a building footprint to regular vector 
building shapes as connected, rectilinear line segments. The 
steps that were followed in this procedure are shown below: 
 

1. Dominant directions were estimated using image 
cross-correlation matching. The extracted building 
footprints images were convolved with a template 
rotated every two degrees starting from zero to 360. 
Then the angle attributed to the maximum cross-
correlation is recorded as one reading in the angle 
domain. Therefore, the two peaks in the histogram of 
angles are estimated as the two dominant directions 
satisfying the condition that the difference between 
the two angles is equal to 90 degrees. This step is 
shown in figure 8. 

2. For computational convenience the building footprint 
was rotated to have horizontal-vertical bearing based 
on the estimated dominant directions as shown in 
figure 9b. 

3. Then the line segment extraction procedure takes 
place. The slope of those extracted line segments will 
be constrained to one of the two estimated dominant 
directions as shown in figure 9c. 

4. Connecting the extracted line segments in order to 
configure the building polygon as shown in figure 9d. 

5. A histogram of the boundary points will be obtained 
in the two dominant directions in order to generalize 
the line direction and positions. Boundary points 
within a limited spacing will be clustered at the 
maximum as shown in figure 10. 

6. The last step is to relocate the building polygon and 
reregister it again to the data set. 
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Figure 8. (a) building footprint, (b) angle histogram and the 

estimated dominant directions 
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Figure 9. (a) building footprint, (b) rotated footprint (c) 

extracted line segments, (d) extracted polygon 
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Figure 10. (a) Horizontal coordinates histogram  (b) Vertical 

coordinates histogram 
 

 
4. DISCUSSION 

Our aim in this work is to design a simple and fast method to 
reconstruct buildings in urban areas using LIDAR data only, 
which can be useful in many applications. We restricted the 
procedure to not require any other source of data other than the 
LIDAR heights. This was done intentionally to avoid the 
limitation of availability of other sources of information in 
some areas. Sources such as ground plans, imagery and 
multispectral data are not available for every desired site. This 
method consists of some steps starting with filtering the raw 
LIDAR data to remove “noise” unrelated to buildings. The 
performance of this step was excellent, however, it is the most 
time consuming step during the whole procedure. In the 
building polygon determination we assumed that buildings 
have only two main directions to facilitate the line segment 
connection and consequently accelerate the polygon 
configuration. This method is very useful and effective in 
reconstructing large areas where buildings have the same 
dominant directions and it shows satisfactory results when the 
data was not so dense (one spot height per square meter only). 
More dense data might improve the extraction procedure, 
especially the roof details. Figure 11 shows the resulting, 
generalized, 3D building view as described in the paper. 
 
Rigorous evaluation of these results from phototgrammetric 
building extraction is currently being carried out to assess the 
quality of the results. 
 
 

 
 

Figure 11. generalized 3D view of the extracted building 
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