
1.  INTRODUCTION

Existing stereo matching techniques automatically measure
points or line features, but most of them cannot set constraint in
3-D shape of target objects, which includes one of the most sim-
ple 3-D structure, “Plane”. One approach of stereo matching
with planar constraint can be realized by image registration by
homography (Szeliski, 1994). This approach uses the fact that
correspondence between stereo images becomes 2-D projective
transformation (homography) within an area where a common
plane is projected. This approach can impose constraint on the
direction of planes parallel to specified plane (Oda et.al.,1997),
but other type of constraint, such as parallel to line direction, or
going through a specific point, cannot be attained.

In this paper, a new type of stereo matching algorithm called
“Stereo Plane Matching” is presented. Stereo plane matching
optimizes square difference of pixel value between stereo image
pair under constraint that all pixels in specified area should be on
a common plane. The most powerful feature of this technique is
that it can impose geometrical constraint in planar direction or
position. For example, a target plane can be fixed in horizontal
or vertical direction, as well as in other specified direction in 3-
D space. Another eminent feature is that stereo plane matching
can directly measure unrectified stereo pair under the condition
that its orientation parameters are known.

Stereo plane matching utilizes the fact that correspondence
between stereo images becomes 2-D projective transformation
(homography) within a region where a common plane is pro-
jected. Three corresponding point pairs, called “control pairs”,
parameterize the target plane geometry. It is a type of homogra-

phy with epipolar constraint, and computed by use of three con-
trol pairs and epipoles.

This paper first defines the target problem which stereo plane
matching technique handles, and presents the basic strategy of
stereo plane matching where an evaluation function for least
square method is formularized. The following sections show
details of stereo plane matching, including how to parameterize
a plane in stereo plane matching, how to derive homography
between stereo images, how to execute least square method and
how to impose constraint on plane position and direction. Some
experimental results are also presented to show that this method
can measure oblique roof and vertical wall in 3-D city space.

2.  PROBLEM DEFINITION AND BASIC STRATEGY

2.1  Problem Definition

Suppose that object A consisted of planer faces is photographed
in image  and , and polygon A in  is measured as the
contour of face A of object A as show in Figure 1. The target
problem is how to determine three-dimensional coordinates of
polygon A automatically by stereo matching, under the con-
straint that all the points are co-planar, and the assumption that
interior and exterior orientation parameters of the stereo pair are
known. Interior and exterior orientation parameters can give the
following sets of coordinate transformation functions:

1) Transformation functions from 3D coordinates 
to image coordinates  which is projection of :
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(1)

In the case of stereo images  and , we have two functions,
 for , and  for .

2) Transformation functions from Image coordinates  to
3D coordinates , under the condition that one of the
coordinates  is known:

(2)

Similar to function (1), we have two sets of the functions,
 for , and  for .

3) Transformation functions from a stereo pair of image coordi-
nates  and  to 3D coordinates

:

(3)

2.2  Basic Strategy

Assuming that plane A can be described by a set of parameters
. The matching function , which gives match-

ing point  for a given point  within a polygon ,
depends on parameter :

(4)

To determinate  by stereo matching, least square method can
be applied to minimize the following evaluation function :

(5)

(6)

where summation in equation (5) is computed for all pixels in
polygon A.

3.  DEFINITION OF PARAMETER 

Suppose that  are projected onto , ,
in  and , ,  in , respectively. Also suppose
that points  are on the epipolar line of ,
points and are on the epipolar line of , and
points  and  on the epipolar line . With a set
of parameters , , , , ,

 and , ,  and  can be described by
the following equations:

(7)

A set of  determines three corresponding point pairs and three
3-D points on plane  can be computed by equation (3). Since
three non-colinear points determine a unique plane,  deter-
mines geometry of plane .

Here we call pairs of corresponding points “control pairs”.

4.  DERIVATION OF FUNCTION H

It is well known that correspondence between  on
 and  on , where Point  on plane  is

projected, can be described by projective transformation (or 2-D
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Figure 1. The target problem
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homography). Therefore, the function  in equation (4) is pro-
jective transformation. Projective transformation has eight inde-
pendent parameters. Projective transformation between
homogeneous coordinates  and can be
expressed with the following equation:

(8)

where  means equality up to scale factor, that is:

(9)

The matrix on the right side of equation (8) is called homogra-
phy matrix.

Two linear equations can be derived by substituting a pair of cor-
responding points between  and  into equation (8). This
means that 8 parameters of the projective transformation can be
determined with four pairs of corresponding points. Three of
those can be given by control pairs that are used in the definition
of the parameter  in equation (7). Next we show that epipolar
geometry provides the fourth pair of corresponding points; epi-
poles.

Epipoles  and  are intersection points between image
planes and the straight line  which goes through two opti-
cal center  and  as shown in Figure 4. Note that epipoles
are the projection of the point , where  intersects with
plane . In other words, these epipoles are also corresponding
points for plane .

Epipoles are known to have the properties below.

1) Epipoles are independent from geometry of plane  and
determined only by epipolar geometry. Epipoles can be com-
puted by substituting optical centers for  in equation (1):

(10)

2) All epipolar lines go through epipoles.

3) When an image plane is parallel to , epipolar lines are
also parallel and epipole is at infinite distance. 

4.1  Determination of  with  and Epipoles 

From three control pairs and a pair of epipoles gives eight linear
equations for eight unknown parameters of homography matrix.
These equations can be written in matrix style as follows:

(11)

where ,  is a  matrix,
and  is 8 dimensional vector. 

Homogeneous expression of projective transformation allows
handling epipoles in infinite distance. For example, when all epi-
polar lines are parallel to x axis both in  and , homogeneous
coordinates of epipoles are . Substitution of this coordi-
nates to both side of equation (8) leads to:

(12)

5.  OPTIMIZATION WITH LEAST SQUARE METHOD

We have adopted Gauss-Newton method for non-linear least
square optimization. This method revises target parameters 
with :

(13)

 can be computed by the following equation:

(14)

H

x1 y1 1, ,( ) x2 y2 1, ,( )

x2

y2

1

a1 a2 a3

a4 a5 a6

a7 a8 1

x1

y1

1

≅

≅

X Y Z, ,[ ] X′ Y ′ Z ′, ,[ ] X⇔≅ : : = : :Y Z X ′ Y ′ Z′

Figure 3. Homography  for Plane AH

I1
I2

Q

p1

p2

Plane A

H

I1 I2

D

Figure 4. Epipoles

E2 E2
O1O2

O1 O2
QE O1O2

A
A

A

P

E2 F2 O1( )=

E1 F1 O2( )=

O1O2

H D

M B⋅ V=

B a1 a2 a3 a4 a5 a6 a7 a8, , , , , , ,[ ]t
= M 8 8×

V

I1 I2
1 0 0, ,[ ]

a4 0=

a7 0=

D
∆D

D ∆D+ D⇒

∆D

∆D J
t

J⋅( )
1–

J
t

e⋅ ⋅–=



 (15)

(16)

where weights of all points are assumed to be equal and  is
number of samples. 

This computation is repeated until the evaluation function 
converges on the minimum value.

Equations (15) and (16) shows that computation of  and its
partial differentiation can realize least square optimization. The
value  can be easily computed by equation (6). The following
discussion gives how partial differentiation can be computed.

Denoting  and , and differentiat-
ing equation (6), we have:

(17)

Partial differentiation of  in x and y direction can be numeri-
cally computed with pixel values of .

From Equation (8),  and  can be described as follow-
ing:

(18)

Differentiation of both side of equation (11) by  gives:

(19)

This leads:

(20)

 and  can be computed with equations (7) and (8). Thus
all items in equation (17) can be calculated.

6.   STEREO PLANE MATCHING UNDER VARIOUS 
CONSTRAINTS

One particular merit of stereo plane matching is that various
constraints can be implemented by fixing control pairs.

6.1  Fixation of One/Two Points on Plane in 3-D Space

Fixation of one or two points on the plane in 3-D space means
fixation of one or two of control pairs. One-point fixation can be
implemented simply by setting projection pair of this point as

 and . Fixation of two points can be also imple-
mented by setting projection pairs of these points as -

 and -

6.2  Constraint in the Direction of Plane

There are two types of constraint in the direction of a plane. One
is the specification of direction parallel to the plane, and the
other is the specification of direction perpendicular to the plane.

6.2.1  Constraint in direction parallel to the target plane: In
this case, vanishing points in the specified direction can be used
as a fixed control pair as show in Figure 5. This type of con-
straint decrease the degree of freedom of  to two. For exam-
ple, vertical walls of buildings in an aerial photo have a common
vanishing point: the vertical point. The Vertical points in both
images can be the control pair that is common in all vertical
planes. 

Vanishing points in direction  can be calculated by the follow-
ing equation:

(21)

6.2.2  Constraint in direction perpendicular to the target 
plane: in this case, two control pairs can be fixed by two pairs of
vanishing points in directions that are perpendicular to the speci-
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fied direction. Thus degree of freedom of parameter  comes
down to one. However, this implementation does not work when
straight line  is parallel to the target plane, since an epi-
pole and all vanishing points align in a common line and  in
the equation (11) becomes a singular matrix.

There is a more robust way to calculate homography between
stereo images by the following theorem:

Theorem 1: Suppose that plane  and  are parallel and
 and  are their homography matrices between stereo

images. Then, homography matrix for any plane parallel to 
and  can be described in following form:

(22)

Appendix A gives the detailed proof of this theorem.

The equation (22) can compute homography matrix for any
planes parallel to  and . The optimum parameter  is the
value that minimizes the evaluation function  and can be
computed simply by 1-D search of .

7.  EXPERIMENTS AND RESULTS

Experiments has been performed with a pair of stereo images
with a scale of 1/4000, which cover the former building of Insti-
tute of Industrial Science (IIS), Tokyo University. Stereo plane
matching has been implemented on softcopy plotter, “Geo-Plot-
ter”, which has been developed by Asia Air Survey Co., Ltd.
(Sakamoto et al. 2000).

7.1  A Test with a Vertical Wall

To demonstrate the effect of constraint in direction of the plane,
a wall of the old IIS building was plotted as polygon, whose
height was initially fixed to a certain height. Figure 6(1) shows
the initial state just after an operator traced the wall in the left
image, where the polygon in right image was not fit on the wall.

After matching operation, all points on polygon in the right
image came to the exact matching position on the wall as shown
in Figure 6 (2). 

7.2  A Test with an Oblique roof

To demonstrate measurement ability for general oblique plane, a
part of roof of the old IIS building was traced as a polygon. Fig-
ure 7 (1) shows the initial state just after tracing the roof in the
left image. After that, stereo matching based on theorem 1
searched the horizontal plane which gave the best match for the
polygon as shown in Figure 7 (2). This gave good initial estima-
tion of parameter . Figure 7 (3) shows that stereo plane match-
ing without constraint polygon computed better result than
simple 1-D search.

8.   CONCLUSION

We have proposed a stereo plane matching technique to impose
constraint on automatic stereo matching process. This technique
is considered as least square matching under the constraint that
all points in a specified area are fit on a common plane. Parame-
terization with control pairs including epipoles enables imple-
mentation of geometrical constraint in planar direction or
position. This technique can measure planar surface of man-
made structure, which includes vertical walls or oblique roofs.
We plan to utilize this technology for developing user interface
for softcopy mapping system, where an operator can measure
planar surface easily without adjusting height.
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APPENDIX A: PROOF OF THEOREM 1

Homography matrix for plane  is determined by geometric
relationship between the stereo cameras (  and ) and the
plane :

(23)

where  and  are matrices of interior orientation parameters
of  and ,  is the rotation matrix between  and ,  is
the translation vector from  to  in ‘s coordinate system,

 is a normal vector to the plane  in ‘s coordinate system,
 is the depth from the camera  to plane  in the direction

of , and  is a scale factor which adjust the lower right ele-
ment of the matrix to 1. The matrix of interior orientation  is a
3 x 3 matrix:

(24)

where  is focal length,  is the size of pixel in x direction, 
is the size of pixel in y direction, and  is coordinates of the
principal point. 

Assume that two homography matrices  and  for two
planes  and  are given:

(25)

If  (i.e., two planes are parallel) and
, we can define another homography matrix  by

a linear combination of  and  with parameter :

 (26)

Now another homography matrix  with parameter :

(27)

Equation (27) can be deformed into:

(28)

Comparison between equation (28) and equation (26) reveals
that  is a homography matrix for a plane parallel to .
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