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ABSTRACT: 
 
The paper considers the problem of object segmentation and shape recognition in discrete noisy data. Two different algorithms 
combine region growing techniques with principal component analysis. The proposed algorithms are applied to a data set from 
airborne laser scanners. 
 
 

INTRODUCTION 

The problem of extracting object description from data is 
common in many scientific applications and technologies. We 
have begun this research starting from object segmentation and 
shape detection in airborne laser scanner data, and working on 
these data we have implemented my algorithms. However we 
think that some aspects of this work are of general interest, and 
may be applicable to other situations. 
Let’s consider the problem of mapping single points into sets of 
points of similar properties, defining the regions within a points 
set. The algorithm proposed tries to solve the problem using 
region growing and principal component analysis. 
Region growing is probably less common than edge detection 
as a low level process, but it is applicable in multi-dimensional 
cases and in noisy environments. Principal component analysis 
is also robust to noise, and unable us to define the intrinsic 
geometric and physic properties of objects. 

HIERARCHIC REGION GROWING 

This section describes a linking mechanism which is based on 
local comparison of point properties, with reference to its 
neighbours. Points should be merged if they are near, not only 
in sense of euclidean distance, but also in terms of physical  or 
geometrical properties. These properties, or point descriptors, 
are defined in the following (see "Geometrical descriptors" at 
pag. 3). 

Tree structure 

The linking algotithm start the aggregation of objects from a 
randomly extracted point, a seed, that is for example the first 
non aggregated point in the database index. This point p1 is 
placed in the level 0 of a tree stucture, as shown in fig. 1, where 
each point is marked by its database pointer. Then, it is 
necessary to search the neighbourhood. Neighbourhood is 
intended now in an Euclidean sense, and this neighbourhood is 
the same used to calculate the geometric properties of the object 
at point p1. 

The points in the neighbourhood that match the aggregation 
criteria, are now aggregated to the object and placed at level 
1 in tree structure, as a new branch of the tree. Then the 
linking algorithm  continues the aggregation, starting from 
the points in the new level, and so on to the terminal 
branches. 
Terminal branches are determined by two events. The first, 
is when a point is marked as terminal (grey in the figure) if 
in its neighbourhood there aren’t other non aggregated 
points. The second event is when the points in the 
neighbourhood don't match the aggregation criteria. 
The algorithm stops to aggregate the object when all the 
branches reach a terminal point; then it starts to aggregate a 
new object from a new random seed. 
 

 
Figure 1 – Tree structure. Points in the structure are marked 
by a database pointer. Point 1 is the seed; grey points are 
terminal. 
Summarizing: 
• An initial set of points are iteratively merged according 

to aggregation criteria.  
• An arbitrary seed point is choosen and compared with 

neighbouring points.  
• A region is grown from the seed point by adding 

neighbouring points that match aggregation criteria. 



 

• When the growth of one region stops we simply choose 
another seed point which does not yet belong to any region 
and start again.  

• This whole process is continued until all points belong to 
some region.  

Memory usage and time of work 

Programming a tree structure is very simple, if is not necessary 
to keep all levels in the memory. In fact to aggregate the level n 
we need to know level n-1 only. These two levels can be placed 
in a two dimensional array: 
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When the aggregation of the level n stops, row 1 of the array is 
set equal to row 2, and row 2 is set equal to 0. Then, the 
aggregation continues from the points in row 1.  
Note that using this logic the algorithm works using little 
memory, even if the data set is very large. Moreover, each point 
is processed once, except the points near discontinuities. So, 
time of work is ( )nϑ . 

Comments 

Region growing can have several undesirable effects. Current 
region dominates the growth process, and ambiguities around 
edges of adjacent regions may not be resolved correctly. 
Different choices of seeds may give different segmentation 
results, and problems can occur if the (arbitrarily chosen) seed 
point lies on a discontinuity.  
To counter the above problems, simultaneous region growing 
techniques have been developed, but they don't exist if the 
aggregation criteria are invariant in the direction of growing. A 
simple example of an invariant criterion uses euclidean 
distance: point pm is aggregated to point pn only if the distance 
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 is less than a threshold value rmax. It is clear 

that , and this criterion can be defined as invariant. 
The proposed region growing algorithm performs a region–
based segmentation. May it be interesting to use the same 
aggregation criteria in an edge–based segmentation algorithm 
and compare the results. The difference between the two ways 
is that the region–based segmentation directly constructs the 
regions, and the edge–based segmentation first detects borders 
between regions. Segmentations resulting from edge-based 
methods and region growing methods are not usually exactly 
the same. 

PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) can be used to analyze the 
structure of a data set. PCA finds basis vectors for a (sub)space 
which:  
• maximise the variance retained in the projected data  
• or (equivalently) give uncorrelated projected distributions  
This description will not go into too much detail on PCA, as 
there is a large body of literature on it. More attention will be 
paid to some aspects involved in region growing logic. 
Formulas and examples are often referred to the three 
dimensional case, but it is easy to extend them to n-dimensional 
cases. 

Moments and tensor of inertia 

Properties of objects are described by discrete measures in 
many real cases. Every measure could be seen as a point in a 
n-dimensional space, and the distribution of these points 
(measures) is related to the properties of the real object. We 
can think of the geometrical properties of an object in a 2D 
or 3D space, but this logic can be extended to other 
properties (physical for example) in a nD space. A point 
(measure) in the 3D space can assume one of the three 
following roles:  
• surface patch or volume element 
• discontinuity (surface, curve or point junctions) 
• outlier 
Let’s consider the two extreme cases, a point on a smooth 
surface with a well defined surface (normal) orientation, and 
a point on a (curve or point) junction whose absolute 
orientation is uncertain. This whole continuum can be 
abstracted as a second order symmetric 3D tensor, which 
can be visualized geometrically as an ellipsoid. Such an 
ellipsoid can be fully described by the corresponding 
eigensystem with its three unit eigenvectors, V , V  and 

 and the three corresponding eigenvalues 
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The second order 3D tensor is the symmetric matrix: 
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This tensor is called inertia tensor if a mass is associated to 
each point of the data set. The elements of I are the second 
order moments: 

( ) ( )[ ]∑ −+−⋅= 22
GiGiixx zzyymI  

[ 22( ) ( ) ]∑ −+−⋅= GiGiiyy zzxxmI  

[ 22( ) ( ) ]∑ −+−⋅= GiGiizz yyxxmI  
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where mi is the mass associated to point i, xi , yi and zi are 
the coordinates of point i and xG , yG and zG are the 
coordinates of the centre of mass of the points set. 
The symmetry of the tensor guarantees that all of I’s 
eigenvalues are real and that there is an orthonormal basis of 
eigenvectors (principal system), that is: 
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where 321 ,, vvv  are the eigenvectors of I. V is also the 
transition matrix between the canonic and principal system. 
The coordinates in the principal system are: 
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The principal moments of inertia [ ]ϑηξ III  are the three 
real eigenvalues of I. 



 

Geometrical descriptors 

The geometrical properties of an object in a point pi can be 
described intrinsically defining an inertial system centered in 
this point. We mustn’t forget that we need to know those 
properties or descriptors that simplify object segmentation. In 
order to reach this result, we note that is desirable that these 
descriptors are singular in discontinuities or, in other words, 
that they have a peak value. We can't consider sign change of 
the descriptors, because of the presence of noise in data.  
In the following are described three different descriptors, static 
moment, curvature and junction, but it is possible to define a 
non-limited number of properties, increasing the dimensions of 
the space of descriptors. So, the dimension of the problem is not 
only the dimension of the space of the objects Om, but the 
dimension of the union of this space with the space of 
descriptors Dn: 
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Static moment: the module of the first order moment (or static 
moment) is maximum at the edge and, in a smaller measure, at 
a change of curvature. Static moments are defined as: 
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The three static moments can be combined in a comprensive 
descriptor that is the total static moment: 

zyxt SSSS ⋅⋅=  

 

 
 
Figure 2 – Total static moments in an airborne laser scanning 
data set by TopoSys. In (A) the most elevated values of static 
moments are in yellow. In (B) the red points represent a profile 
in the data set, the yellow points the static moment (with sign 
changed). Note the peak value in discontinuities. 
Curvature: in discrete geometry it is possible to define 
curvature in many ways. Fortunately we don't need the exact 
value of curvature; a functional one is sufficient, beacuse we 
are looking for the location of peak values, not for their 
magnitude. In the hypothesis that the point set is a surface, the 
ratio 
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is a functional of the ray of curvature. In fact minλ  is null for a 
planar surface and maxλ  is not null; that leads to an infinite 
value for ρ . Increasing curvature, minλ  increases and maxλ  is 

constant, while minλ  is less than maxλ . When minλ  becomes 
equal to maxλ , the two eigenvalues swap, minλ  becomes 
constant and maxλ  increases with curvature. A functional of 
curvature is the ratio 
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Junction: the eigenvalues encode the magnitudes of 
orientation (un)certainties, since they indicate the size of the 
corresponding ellipsoid. At curve or point junctions, where 
intersecting surface are present, there is no preferred 
orientation and the eigenvalue  has peak values. A 
junction map that represents the location of the peak value 
for minλ  is very similar to the static moments map of the 
figure 2. 

Data distribution anisotropy 

Distribution anisotropy is a problem present in point cloud 
data, such as range data, and leads to a classification of the 
scanning shape as a real shape. PCA simplify anisotropic 
data set processing: principal components are referred to a 
spheric neighbourhood, but it is possible to refer 
aggregation criteria to an ellipsoidic neighbourhood, whose 
semiaxes are defined by RMS coordinates: 
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where σ ,  and maxσ  are the RMS in the directions of 

,  and , and r is the radius of the spheric 
neighbourhood. 

minV̂ midV̂

With reference to figure 3, that represents a laser scanner 
anisotropic data set, we note that the sampling density in the 
first principal direction (~7 points/m) is greater than in the 
second principal direction. (~1 points/m). Using the 
ellipsoidic neighborhood in aggregation, we can take 
advantage of the better definition of the measures in the first 
principal direction. 

 
Figure 3 – Normalized ellipsoidic neighborood in 
anisotropic case; the arrows rapresent the direction of the 
principal axis (● data points, ▲ centre of mass). The point 
set is from a TopoSys I airborne laser scanner. 



 

An n-dimensional case 

In laser scanning applications, we find a simple n-dimensional 
example. Some laser scanners measure not only the range, but 
even radiance. This data can be considered in PCA as a 4-th 
dimension, and used by aggregation criteria exactly as the first 
three dimensions. One can find a lot of other examples in image 
processing. 

ALGORITHMS 

In this section, two different algorithms that combine region 
growing techniques and principal component analysis are 
presented. PCA is used to define the aggregation criteria and to 
describe the geometrical properties of the objects.  
The strategy implemented for object detection and 
segmentation is based on range data only, and was tested on an 
airborne laser scanner data set. The result was obtained by 
working on raw data, so we were able to take advantage of the 
full resolution potential of laser scanning. 
The two algorithms differ in PCA and in aggregation criteria, 
but they use the same hierarchic region growing technique. 

Algorithm 1 

This algorithm is based on descriptor mapping; one or more 
properties are calculated and mapped for every point in the data 
set. Then the algorithm perform the region growing with 
reference to the property map, and mark as terminal point those 
points in which is located a peak value. Is also possible to map 
different properties and compare the results. The algorithm 
performs the following steps: 
A. Calculates the descriptor for every point pi in the data set 

(descriptor mapping): 
1. at the point pi searches a neighbourhood for other points; 
2. calculates the second order moments using the 

neighbouring points; 
3. writes the second order symmetric tensor at the point pi ; 
4. calculates the three real eigenvalues and the related 

eigenvectors; 
5. calculates the descriptor value (for example total static 

moment) at the point pi in the reference system defined 
by the three eigenvectors; 

6. writes the descriptor on file. 
B. Starts region growing: 

1. extracts a seed and places it in level 1 of the tree 
structure; 

2. searches a spherical neighbourhood for other points; 
3. sorts neighbouring points in function of their Euclidean 

distance from the seed;  
4. searches the distance from seed of the descriptor peak 

value, and sets dmax equal to this distance; 
5. marks peak value as terminal point of the tree structure; 
6. aggregates the points with distance from the seed less 

than dmax and places them in level 2 of the tree; 
7. grows the region by adding neighbouring points that 

match aggregation criteria until all the branches reach a 
terminal point; 

8. when the growth of the first region stops chooses 
another seed point which does not yet belong to any 
region and starts again. 

Let’s consider the phase A, in wich the algorithm performs the 
descriptor mapping. Note that the tensor is centrated in the 
point pi, not in the centre of mass! This is beacause we need to 
calculate the value of descriptor at the point pi. 

The phases B.3-6 are typical of this algorithm and solve in a 
simple way, using the non-parametric threshold value dmax, 
the problem of stop growing at discontinuities.  
Time of work is ( )n2ϑ , that is ( )nAϑ  for descriptor 
mapping plus ( )nBϑ  for region growing. 
 

 
 
Figure 4 – Segmentation results on a test area of 25·25 m. In 
(A) region growing was performed with a distance criterion 
only. In (B) was used the algorithm 1 and the total static 
moment as descriptor. TopoSys data set. 

Algorithm 2 

This algorithm uses PCA only in region growing 
aggregation criteria and don’t performs descriptor mapping, 
so it is faster than algorithm 1. The tensor is centred in 
centre of mass and in this reference system a nucleus is 
defined. The aggregation criteria are based on this nucleus 
and different definitions of the nucleus are possible. The 
algorithm performs the following steps: 
A. Starts region growing: 

1. extracts a seed pi and places it in level 1 of the tree 
structure; 

2. searches a spherical neighbourhood for other points; 
3. calculates the centre of mass using pi and the 

neighbouring points; 
4. calculates the second order moments with reference to 

the centre of mass, using pi and the neighbouring 
points; 

5. writes the second order symmetric tensor centred in 
the centre of mass; 

6. calculates the three real eigenvalues and the related 
eigenvectors; 

7. transforms the coordinates of pi and of the 
neighbouring points in the principal reference system; 

8. calculates the RMS coordinates in the principal 
reference system;  

9. defines a normalized elliptical nucleus (see at “Data 
distribution anisotropy”); 

10. if pi is internal at nucleus, aggregates pi and the 
neighbouring points in the nucleus; else marks pi as a 
terminal point of the tree structure. 

In the phase A.9 different definitions of the nucleus are 
possible. Time of work of this algorithm is (n)ϑ . 



 

 
 
Figure 5 – Segmentation results obtained by algorithm 2 on a 
test area of 27·27 m. TopoSys data set. 

TESTS 

 A 5-dimensional case 

A series of tests in the n-dimesional case was performed using  
a laser data set provided by FOTONOR AS for the ISPRS test 
on estracting DEMs. The test area was scanned with an Optech 
laser scanner, and both first and last pulse data were recorded. 
The sampling density is of 1.8 points per square meter. The 
scanner recorded the received pulse intensity also, and we have 
used this data with descriptor mapping to improve the 
segmentation results. In this test we have mapped the total static 
moment only. The total dimension of the problem is: 

145 DOS ∪≡  
and the best robustness reached using five dimensions, supplies 
the low sampling density.  
 

Figure 6 – Segmentation results obtained on a test area of 64·52 
m working in three, four and five dimensions. The red line 
marks the junctions and the edges in which the algorithm fails, 
because a tree touch the roof. The entities with less than 50 
points are in white. 

 
Let's consider three cases. 
Case 1: we have segmented a test area of 64·52 m, working 
at first in the three dimensions X, Y and Z only and using 
the algorithm 2. The algorithm fails in the junctions between 
different entities. 
Case 2: working in the four dimensions of the space of the 
objects (X, Y, Z and radiometry) the algorithm 2 don't fails 
in the junctions. 
Case 3: we have used the algorithm 1 and the total static 
moment as descriptor, working in five dimensions. The 
algorithm don't fails in the junctions and the result is more 
precise on the edges. 
The results are in figure 6. 

Test on a large data set. 

We have performed a test on a large data set (about 500000 
points) of laser measuraments, scanned on urban area. We 
have used algorithm 1 working in five dimensions, as in the 
case 3 of the previous test, and we want to look at the time 
of work of the algorithm. The processor used is an AMD 
Athlon with CPU clock of 900 MHz. The result of the test is 
satisfying, for the segmentation output (figure 7) and for the 
short time of work (only about ten minutes!). 
 

Figure 7 – Segmentation results obtained on a large data set, 
covering an urban area of 422·634 m. Note ground, gruped 
in a unique entity, drawed in gray. The entities with less 
than 50 points are in white. 



 

CONCLUSIONS 

The proposed algorithms combine efficiently the region 
growing techniques with principal component analysis. They 
are fast and also robust in noisy environments, and their 
robustness increase with increasing the number of dimensions. 
Many aspects are not yet explored, such as the applications in 
image processing. The definitions of geometrical properties of 
objects need to be studied better in discrete and noisy case, and 
applied in aggregation criteria. 
The algorithms have given good and useful results on laser 
scanning data, preparing the way to vectorialization, aspect that 
is very important for cartographic production. 
 
 

APPENDIX 

NOTES ON ALGORITHM IMPLEMENTATION 

Eigensystem analysis 

Eigensystem analysis is performed using EVCRG and GVLSP 
routines of IMSL Math Library.  

o Routine EVCRG computes the eigenvalues and 
eigenvectors of a real matrix. The matrix is first balanced. 
Orthogonal similarity transformations are used to reduce 
the balanced matrix to a real upper Hessenberg matrix. 
The implicit double-shifted QR algorithm is used to 
compute the eigenvalues and eigenvectors of this 
Hessenberg matrix. The eigenvectors are normalized such 
that each has Euclidean length of value one. The largest 
component is real and positive. The routines used in 
EVCRG are based on the EISPACK library. 

o Routine GVLSP computes the eigenvalues and 
eigenvectors of Az = lBz, with A symmetric and B 
symmetric positive definite. The Cholesky factorization B 
= RTR, with R a triangular matrix, is used to transform 
the equation Az = lBz, to 

 
(R-T AR-1)(Rz) = l (Rz) 
 
The eigenvalues and eigenvectors of C = R-T AR-1 are 
then computed. The generalized eigenvectors of A are 
given by z = R-1 x, where x is an eigenvector of C.  

Sorting 

Sorting is performed using SVRGP and SVRGN routines of 
IMSL Math Library.  

o Routine SVRGP sorts the elements of an array, A, into 
ascending order by algebraic value, keeping a record in P 
of the permutations to the array A. The routine SVRGP 
uses the algorithm discussed in SVRGN.  

o Routine SVRGN sorts the elements of an array, A, into 
ascending order by algebraic value. The array A is 
divided into two parts by picking a central element T of 
the array. The first and last elements of A are compared 
with T and exchanged until the three values appear in the 
array in ascending order. The elements of the array are 
rearranged until all elements greater than or equal to the 
central element appear in the second part of the array and 
all those less than or equal to the central element appear 
in the first part. The upper and lower subscripts of one of 
the segments are saved, and the process continues 

iteratively on the other segment. When one segment is 
finally sorted, the process begins again by retrieving 
the subscripts of another unsorted portion of the array.  
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