
OBJECT SEGMENTATION WITH REGION GROWING AND PRINCIPAL
COMPONENT ANALYSIS

Marco Roggero

Dept. of Georesource and Territory, Politecnico di Torino, C.so Duca degli Abruzzi, Torino, IT –

roggero@atlantic.polito.it

KEY WORDS: Principal Component Analysis, Tensorization, Region Growing, Discrete Geometry, Laser Scanning.

ABSTRACT:

The paper considers the problem of object segmentation and shape recognition in discrete noisy data. Two different algorithms
combine region growing techniques with principal component analysis. The proposed algorithms are applied to a data set from
airborne laser scanners.

INTRODUCTION

The problem of extracting object description from data is
common in many scientific applications and technologies. We
have begun this research starting from object segmentation and
shape detection in airborne laser scanner data, and working on
these data we have implemented my algorithms. However we
think that some aspects of this work are of general interest, and
may be applicable to other situations.
Let’s consider the problem of mapping single points into sets of
points of similar properties, defining the regions within a points
set. The algorithm proposed tries to solve the problem using
region growing and principal component analysis.
Region growing is probably less common than edge detection
as a low level process, but it is applicable in multi-dimensional
cases and in noisy environments. Principal component analysis
is also robust to noise, and unable us to define the intrinsic
geometric and physic properties of objects.

HIERARCHIC REGION GROWING

This section describes a linking mechanism which is based on
local comparison of point properties, with reference to its
neighbours. Points should be merged if they are near, not only
in sense of euclidean distance, but also in terms of physical or
geometrical properties. These properties, or point descriptors,
are defined in the following (see "Geometrical descriptors" at
pag. 3).

Tree structure

The linking algotithm start the aggregation of objects from a
randomly extracted point, a seed, that is for example the first
non aggregated point in the database index. This point p1 is
placed in the level 0 of a tree stucture, as shown in fig. 1, where
each point is marked by its database pointer. Then, it is
necessary to search the neighbourhood. Neighbourhood is
intended now in an Euclidean sense, and this neighbourhood is
the same used to calculate the geometric properties of the object
at point p1.

The points in the neighbourhood that match the aggregation
criteria, are now aggregated to the object and placed at level
1 in tree structure, as a new branch of the tree. Then the
linking algorithm continues the aggregation, starting from
the points in the new level, and so on to the terminal
branches.
Terminal branches are determined by two events. The first,
is when a point is marked as terminal (grey in the figure) if
in its neighbourhood there aren’t other non aggregated
points. The second event is when the points in the
neighbourhood don't match the aggregation criteria.
The algorithm stops to aggregate the object when all the
branches reach a terminal point; then it starts to aggregate a
new object from a new random seed.

Figure 1 – Tree structure. Points in the structure are marked
by a database pointer. Point 1 is the seed; grey points are
terminal.
Summarizing:
• An initial set of points are iteratively merged according

to aggregation criteria.
• An arbitrary seed point is choosen and compared with

neighbouring points.
• A region is grown from the seed point by adding

neighbouring points that match aggregation criteria.

• When the growth of one region stops we simply choose
another seed point which does not yet belong to any region
and start again.

• This whole process is continued until all points belong to
some region.

Memory usage and time of work

Programming a tree structure is very simple, if is not necessary
to keep all levels in the memory. In fact to aggregate the level n
we need to know level n-1 only. These two levels can be placed
in a two dimensional array:

()
() 








=







 −

q

p

bbb
aaa

nLevel
nLevel

...
...1

21

21 .

When the aggregation of the level n stops, row 1 of the array is
set equal to row 2, and row 2 is set equal to 0. Then, the
aggregation continues from the points in row 1.
Note that using this logic the algorithm works using little
memory, even if the data set is very large. Moreover, each point
is processed once, except the points near discontinuities. So,
time of work is ()nϑ .

Comments

Region growing can have several undesirable effects. Current
region dominates the growth process, and ambiguities around
edges of adjacent regions may not be resolved correctly.
Different choices of seeds may give different segmentation
results, and problems can occur if the (arbitrarily chosen) seed
point lies on a discontinuity.
To counter the above problems, simultaneous region growing
techniques have been developed, but they don't exist if the
aggregation criteria are invariant in the direction of growing. A
simple example of an invariant criterion uses euclidean
distance: point pm is aggregated to point pn only if the distance

nmmn ppd −=

nmmn dd =

 is less than a threshold value rmax. It is clear

that , and this criterion can be defined as invariant.
The proposed region growing algorithm performs a region–
based segmentation. May it be interesting to use the same
aggregation criteria in an edge–based segmentation algorithm
and compare the results. The difference between the two ways
is that the region–based segmentation directly constructs the
regions, and the edge–based segmentation first detects borders
between regions. Segmentations resulting from edge-based
methods and region growing methods are not usually exactly
the same.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) can be used to analyze the
structure of a data set. PCA finds basis vectors for a (sub)space
which:
• maximise the variance retained in the projected data
• or (equivalently) give uncorrelated projected distributions
This description will not go into too much detail on PCA, as
there is a large body of literature on it. More attention will be
paid to some aspects involved in region growing logic.
Formulas and examples are often referred to the three
dimensional case, but it is easy to extend them to n-dimensional
cases.

Moments and tensor of inertia

Properties of objects are described by discrete measures in
many real cases. Every measure could be seen as a point in a
n-dimensional space, and the distribution of these points
(measures) is related to the properties of the real object. We
can think of the geometrical properties of an object in a 2D
or 3D space, but this logic can be extended to other
properties (physical for example) in a nD space. A point
(measure) in the 3D space can assume one of the three
following roles:
• surface patch or volume element
• discontinuity (surface, curve or point junctions)
• outlier
Let’s consider the two extreme cases, a point on a smooth
surface with a well defined surface (normal) orientation, and
a point on a (curve or point) junction whose absolute
orientation is uncertain. This whole continuum can be
abstracted as a second order symmetric 3D tensor, which
can be visualized geometrically as an ellipsoid. Such an
ellipsoid can be fully described by the corresponding
eigensystem with its three unit eigenvectors, V , V and

 and the three corresponding eigenvalues
max

ˆˆ
mid

minV̂

max minλλλ ≥≥ mid .
The second order 3D tensor is the symmetric matrix:

[]















=

ZZYZXZ

ZYYYXY

ZXYXXX

III
III
III

I

This tensor is called inertia tensor if a mass is associated to
each point of the data set. The elements of I are the second
order moments:

() ()[]∑ −+−⋅= 22
GiGiixx zzyymI

[22() ()]∑ −+−⋅= GiGiiyy zzxxmI

[22() ()]∑ −+−⋅= GiGiizz yyxxmI

() ()[]∑ −⋅−⋅= GiGiixy yyxxmI

() ()[]∑ −⋅−⋅= GiGiixz zzxxmI

() ()[]∑ −⋅−⋅= GiGiiyz zzyymI

where mi is the mass associated to point i, xi , yi and zi are
the coordinates of point i and xG , yG and zG are the
coordinates of the centre of mass of the points set.
The symmetry of the tensor guarantees that all of I’s
eigenvalues are real and that there is an orthonormal basis of
eigenvectors (principal system), that is:

[]















=

ZZZ

YYY

XXX

vvv
vvv
vvv

V

321

321

321

where 321 ,, vvv are the eigenvectors of I. V is also the
transition matrix between the canonic and principal system.
The coordinates in the principal system are:
















⋅=
















−

Z
Y
X

V 1

ϑ
η
ξ

The principal moments of inertia []ϑηξ III are the three
real eigenvalues of I.

Geometrical descriptors

The geometrical properties of an object in a point pi can be
described intrinsically defining an inertial system centered in
this point. We mustn’t forget that we need to know those
properties or descriptors that simplify object segmentation. In
order to reach this result, we note that is desirable that these
descriptors are singular in discontinuities or, in other words,
that they have a peak value. We can't consider sign change of
the descriptors, because of the presence of noise in data.
In the following are described three different descriptors, static
moment, curvature and junction, but it is possible to define a
non-limited number of properties, increasing the dimensions of
the space of descriptors. So, the dimension of the problem is not
only the dimension of the space of the objects Om, but the
dimension of the union of this space with the space of
descriptors Dn:

 nmnm DOS ∪≡+

Static moment: the module of the first order moment (or static
moment) is maximum at the edge and, in a smaller measure, at
a change of curvature. Static moments are defined as:

()∑ += iiix zymS

()∑ += iiiy zxmS

()∑ += iiiz yxmS

The three static moments can be combined in a comprensive
descriptor that is the total static moment:

zyxt SSSS ⋅⋅=

Figure 2 – Total static moments in an airborne laser scanning
data set by TopoSys. In (A) the most elevated values of static
moments are in yellow. In (B) the red points represent a profile
in the data set, the yellow points the static moment (with sign
changed). Note the peak value in discontinuities.
Curvature: in discrete geometry it is possible to define
curvature in many ways. Fortunately we don't need the exact
value of curvature; a functional one is sufficient, beacuse we
are looking for the location of peak values, not for their
magnitude. In the hypothesis that the point set is a surface, the
ratio

min

max~
λ
λ

ρ =

is a functional of the ray of curvature. In fact minλ is null for a
planar surface and maxλ is not null; that leads to an infinite
value for ρ . Increasing curvature, minλ increases and maxλ is

constant, while minλ is less than maxλ . When minλ becomes
equal to maxλ , the two eigenvalues swap, minλ becomes
constant and maxλ increases with curvature. A functional of
curvature is the ratio

minλ

max

max
mide =

σ
σr=

min midσ

maxV̂

max

min~
λ
λκ =

Junction: the eigenvalues encode the magnitudes of
orientation (un)certainties, since they indicate the size of the
corresponding ellipsoid. At curve or point junctions, where
intersecting surface are present, there is no preferred
orientation and the eigenvalue has peak values. A
junction map that represents the location of the peak value
for minλ is very similar to the static moments map of the
figure 2.

Data distribution anisotropy

Distribution anisotropy is a problem present in point cloud
data, such as range data, and leads to a classification of the
scanning shape as a real shape. PCA simplify anisotropic
data set processing: principal components are referred to a
spheric neighbourhood, but it is possible to refer
aggregation criteria to an ellipsoidic neighbourhood, whose
semiaxes are defined by RMS coordinates:

max σ
σre = ;

maxσ
σ midr ;

max

min
mine

where σ , and maxσ are the RMS in the directions of

, and , and r is the radius of the spheric
neighbourhood.

minV̂ midV̂

With reference to figure 3, that represents a laser scanner
anisotropic data set, we note that the sampling density in the
first principal direction (~7 points/m) is greater than in the
second principal direction. (~1 points/m). Using the
ellipsoidic neighborhood in aggregation, we can take
advantage of the better definition of the measures in the first
principal direction.

Figure 3 – Normalized ellipsoidic neighborood in
anisotropic case; the arrows rapresent the direction of the
principal axis (● data points, ▲ centre of mass). The point
set is from a TopoSys I airborne laser scanner.

An n-dimensional case

In laser scanning applications, we find a simple n-dimensional
example. Some laser scanners measure not only the range, but
even radiance. This data can be considered in PCA as a 4-th
dimension, and used by aggregation criteria exactly as the first
three dimensions. One can find a lot of other examples in image
processing.

ALGORITHMS

In this section, two different algorithms that combine region
growing techniques and principal component analysis are
presented. PCA is used to define the aggregation criteria and to
describe the geometrical properties of the objects.
The strategy implemented for object detection and
segmentation is based on range data only, and was tested on an
airborne laser scanner data set. The result was obtained by
working on raw data, so we were able to take advantage of the
full resolution potential of laser scanning.
The two algorithms differ in PCA and in aggregation criteria,
but they use the same hierarchic region growing technique.

Algorithm 1

This algorithm is based on descriptor mapping; one or more
properties are calculated and mapped for every point in the data
set. Then the algorithm perform the region growing with
reference to the property map, and mark as terminal point those
points in which is located a peak value. Is also possible to map
different properties and compare the results. The algorithm
performs the following steps:
A. Calculates the descriptor for every point pi in the data set

(descriptor mapping):
1. at the point pi searches a neighbourhood for other points;
2. calculates the second order moments using the

neighbouring points;
3. writes the second order symmetric tensor at the point pi ;
4. calculates the three real eigenvalues and the related

eigenvectors;
5. calculates the descriptor value (for example total static

moment) at the point pi in the reference system defined
by the three eigenvectors;

6. writes the descriptor on file.
B. Starts region growing:

1. extracts a seed and places it in level 1 of the tree
structure;

2. searches a spherical neighbourhood for other points;
3. sorts neighbouring points in function of their Euclidean

distance from the seed;
4. searches the distance from seed of the descriptor peak

value, and sets dmax equal to this distance;
5. marks peak value as terminal point of the tree structure;
6. aggregates the points with distance from the seed less

than dmax and places them in level 2 of the tree;
7. grows the region by adding neighbouring points that

match aggregation criteria until all the branches reach a
terminal point;

8. when the growth of the first region stops chooses
another seed point which does not yet belong to any
region and starts again.

Let’s consider the phase A, in wich the algorithm performs the
descriptor mapping. Note that the tensor is centrated in the
point pi, not in the centre of mass! This is beacause we need to
calculate the value of descriptor at the point pi.

The phases B.3-6 are typical of this algorithm and solve in a
simple way, using the non-parametric threshold value dmax,
the problem of stop growing at discontinuities.
Time of work is ()n2ϑ , that is ()nAϑ for descriptor
mapping plus ()nBϑ for region growing.

Figure 4 – Segmentation results on a test area of 25·25 m. In
(A) region growing was performed with a distance criterion
only. In (B) was used the algorithm 1 and the total static
moment as descriptor. TopoSys data set.

Algorithm 2

This algorithm uses PCA only in region growing
aggregation criteria and don’t performs descriptor mapping,
so it is faster than algorithm 1. The tensor is centred in
centre of mass and in this reference system a nucleus is
defined. The aggregation criteria are based on this nucleus
and different definitions of the nucleus are possible. The
algorithm performs the following steps:
A. Starts region growing:

1. extracts a seed pi and places it in level 1 of the tree
structure;

2. searches a spherical neighbourhood for other points;
3. calculates the centre of mass using pi and the

neighbouring points;
4. calculates the second order moments with reference to

the centre of mass, using pi and the neighbouring
points;

5. writes the second order symmetric tensor centred in
the centre of mass;

6. calculates the three real eigenvalues and the related
eigenvectors;

7. transforms the coordinates of pi and of the
neighbouring points in the principal reference system;

8. calculates the RMS coordinates in the principal
reference system;

9. defines a normalized elliptical nucleus (see at “Data
distribution anisotropy”);

10. if pi is internal at nucleus, aggregates pi and the
neighbouring points in the nucleus; else marks pi as a
terminal point of the tree structure.

In the phase A.9 different definitions of the nucleus are
possible. Time of work of this algorithm is (n)ϑ .

Figure 5 – Segmentation results obtained by algorithm 2 on a
test area of 27·27 m. TopoSys data set.

TESTS

 A 5-dimensional case

A series of tests in the n-dimesional case was performed using
a laser data set provided by FOTONOR AS for the ISPRS test
on estracting DEMs. The test area was scanned with an Optech
laser scanner, and both first and last pulse data were recorded.
The sampling density is of 1.8 points per square meter. The
scanner recorded the received pulse intensity also, and we have
used this data with descriptor mapping to improve the
segmentation results. In this test we have mapped the total static
moment only. The total dimension of the problem is:

145 DOS ∪≡
and the best robustness reached using five dimensions, supplies
the low sampling density.

Figure 6 – Segmentation results obtained on a test area of 64·52
m working in three, four and five dimensions. The red line
marks the junctions and the edges in which the algorithm fails,
because a tree touch the roof. The entities with less than 50
points are in white.

Let's consider three cases.
Case 1: we have segmented a test area of 64·52 m, working
at first in the three dimensions X, Y and Z only and using
the algorithm 2. The algorithm fails in the junctions between
different entities.
Case 2: working in the four dimensions of the space of the
objects (X, Y, Z and radiometry) the algorithm 2 don't fails
in the junctions.
Case 3: we have used the algorithm 1 and the total static
moment as descriptor, working in five dimensions. The
algorithm don't fails in the junctions and the result is more
precise on the edges.
The results are in figure 6.

Test on a large data set.

We have performed a test on a large data set (about 500000
points) of laser measuraments, scanned on urban area. We
have used algorithm 1 working in five dimensions, as in the
case 3 of the previous test, and we want to look at the time
of work of the algorithm. The processor used is an AMD
Athlon with CPU clock of 900 MHz. The result of the test is
satisfying, for the segmentation output (figure 7) and for the
short time of work (only about ten minutes!).

Figure 7 – Segmentation results obtained on a large data set,
covering an urban area of 422·634 m. Note ground, gruped
in a unique entity, drawed in gray. The entities with less
than 50 points are in white.

CONCLUSIONS

The proposed algorithms combine efficiently the region
growing techniques with principal component analysis. They
are fast and also robust in noisy environments, and their
robustness increase with increasing the number of dimensions.
Many aspects are not yet explored, such as the applications in
image processing. The definitions of geometrical properties of
objects need to be studied better in discrete and noisy case, and
applied in aggregation criteria.
The algorithms have given good and useful results on laser
scanning data, preparing the way to vectorialization, aspect that
is very important for cartographic production.

APPENDIX

NOTES ON ALGORITHM IMPLEMENTATION

Eigensystem analysis

Eigensystem analysis is performed using EVCRG and GVLSP
routines of IMSL Math Library.

o Routine EVCRG computes the eigenvalues and
eigenvectors of a real matrix. The matrix is first balanced.
Orthogonal similarity transformations are used to reduce
the balanced matrix to a real upper Hessenberg matrix.
The implicit double-shifted QR algorithm is used to
compute the eigenvalues and eigenvectors of this
Hessenberg matrix. The eigenvectors are normalized such
that each has Euclidean length of value one. The largest
component is real and positive. The routines used in
EVCRG are based on the EISPACK library.

o Routine GVLSP computes the eigenvalues and
eigenvectors of Az = lBz, with A symmetric and B
symmetric positive definite. The Cholesky factorization B
= RTR, with R a triangular matrix, is used to transform
the equation Az = lBz, to

(R-T AR-1)(Rz) = l (Rz)

The eigenvalues and eigenvectors of C = R-T AR-1 are
then computed. The generalized eigenvectors of A are
given by z = R-1 x, where x is an eigenvector of C.

Sorting

Sorting is performed using SVRGP and SVRGN routines of
IMSL Math Library.

o Routine SVRGP sorts the elements of an array, A, into
ascending order by algebraic value, keeping a record in P
of the permutations to the array A. The routine SVRGP
uses the algorithm discussed in SVRGN.

o Routine SVRGN sorts the elements of an array, A, into
ascending order by algebraic value. The array A is
divided into two parts by picking a central element T of
the array. The first and last elements of A are compared
with T and exchanged until the three values appear in the
array in ascending order. The elements of the array are
rearranged until all elements greater than or equal to the
central element appear in the second part of the array and
all those less than or equal to the central element appear
in the first part. The upper and lower subscripts of one of
the segments are saved, and the process continues

iteratively on the other segment. When one segment is
finally sorted, the process begins again by retrieving
the subscripts of another unsorted portion of the array.

REFERENCES

Curvature estimation

S. Pulla, A. Razdan and G. Farin (2001), Improved
curvature estimation for watershed segmentation of 3-
dimensional meshes.

P. Kresek, G. Lukács and R. R. Martin, Algorithms for
computing curvatures from range data.

C. K. Tang and G. Medioni, Robust estimation of curvature
information from noisy 3D data for shape description.

Eigensystem analysis

G. H. Golub and C. F. Van Loan (1996), Matrix
computations, The John Hopkins University Press,
Baltimore and London.

Hanson, Richard J., R. Lehoucq, J. Stolle, and A. Belmonte
(1990), Improved performance of certain matrix eigenvalue
computations for the IMSL/MATH Library, IMSL
Technical Report 9007, IMSL, Houston.

Martin, R.S., and J.W. Wilkinson (1968), Reduction of the
symmetric eigenproblem Ax = lBx and related problems to
standard form, Numerische Mathematik, 11, 99-119.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y.
Ikebe, V.C. Klema, and C.B. Moler (1976), Matrix
Eigensystem Routines - EISPACK Guide, Springer-Verlag,
New York.

Sorting

Griffin, R., and K.A. Redish (1970), Remark on Algorithm
347: An efficient algorithm for sorting with minimal
storage, Communications of the ACM, 13, 54.

Petro, R. (1970), Remark on Algorithm 347: An efficient
algorithm for sorting with minimal storage,
Communications of the ACM, 13, 624.

Singleton, R.C. (1969), Algorithm 347: An efficient
algorithm for sorting with minimal storage,
Communications of the ACM, 12, 185-187.

