
A MINIMAL SET OF CONSTRAINTS AND A MINIMAL
PARAMETERIZATION FOR THE TRIFOCAL TENSOR

C. Ressl

Institute of Photogrammetry and Remote Sensing
University of Technology, Vienna, Austria

car@ipf.tuwien.ac.at

KEY WORDS: Mathematics, Algorithms, Modelling, Orientation, Calibration, Theory

ABSTRACT:

The topic of this paper is the so-called trifocal tensor (TFT), which describes the relative orientation of three
uncalibrated images. The TFT is made up of 27 homogenous elements but only has 18 DOF. Therefore, its
elements have to fulfil 8 constraints - a new form for these constraints is presented in this paper. Furthermore, a
new minimal parameterization for the TFT is presented having exactly 18 DOF and which is generally applicable
for any arrangement of the three images - provided not all three projection centers coincide. Constraints and
parameterization are found using the so-called correlation slices.

1 INTRODUCTION

The trifocal tensor (TFT) allows a linear formulation for
the relative orientation of three uncalibrated images. So it
basically plays the same role for three images as the funda-
mental matrix [Loung, Faugeras 1996] plays for two. The
TFT has been subject of much research in the past ten
years. [Spetsakis, Aloimonos 1990] were the first to dis-
cover redundancies within the contents of three calibrated
images. For uncalibrated images [Shashua 1995] showed
that 27 coefficients and one homologous triple of points in
three views form together nine homogenous linear equa-
tions (four of them being independent), which he called
trilinearities, since they consist of products of three image
coordinates and one of the 27 coefficients. Furthermore
[Hartley 1994] showed that Shashua’s 27 coefficients and
a homologous triple of lines create two homogenous linear
equations. Therefore, the TFT can be linearly computed
using at least 7 points or 13 lines or a proper combination.
He also proposed for this set of 3 × 3 × 3 coefficients the
term trifocal tensor.

Although the TFT is made up of 27 elements, it only has
18 degrees of freedom (DOF): 3×11DOF/image - 15 (abso-
lute projective orientation). Therefore the TFT’s elements
must fulfil 9 constraints (one of them is the fixation of the
TFT’s scale due to the scale ambiguity in the homogenous
trilinear relations). If these constraints are neglected, er-
rors in the image data used to compute the TFT might be
absorbed by the redundant parameters, yielding a perhaps
severely disturbed TFT - and thus a wrong image orien-
tation. So, in the past few years attempts were made to
derive algorithms that return a valid trifocal tensor. This
can be done in two ways: a) by introducing the necessary
number of constraints into the computation, or b) by using
a minimal parameterization for the TFT having 18 DOF.
For each of these methods some solutions were presented in
the past: [Torr, Zisserman 1997], [Papadopoulo, Faugeras
1998], [Canterakis 2000].

In this paper a new minimal set of constraints will be pre-
sented. In that course we will also arrive at a new minimal
parameterization for the TFT. The paper is organized in
the following way: In section 2 the basic formulation of
the TFT is presented. The properties of the tensor resp.
of its slices will be summarized in section 3. After a sum-
mary of the existing solutions in section 4, the new set

of constraints is presented in section 5.2, followed by the
minimal parameterization in section 6.

1.1 Notation

Geometric objects:
object points: upper case Roman font, e.g. P
image points: lower case Roman font, e.g. p

special image lines: small Greek font, e.g. λ
general image line: `

Mathematical quantities:
matrices: upper case Typewriter font, e.g. R>

vectors: bold Roman font
- euclidian/affine vectors, e.g. Oψ, e1

- projective vectors, e.g. ṽ31, v̂31, v̆31

- x̃ emphasizes, that x̃ can be replaced
by λ · x̃ anytime (λ 6= 0);

- x̂ emphasizes, that the scale of x̂ is
determined by a specific relation;

- x̆ emphasizes, that the scale of x̆ is

fixed either by setting ‖x̂‖ = 1 or

max(x̂) = 1.
scalars: lower case Roman or Greek font; e.g. u, µ

Special objects:
ṽxy epipole of image ψy in image ψx;

i.e. the mapping of Oy into image ψx
rx1, rx2, rx3 the principal rays of image ψx; c.f. sec 2
πx1, πx2, πx3 the principal planes of image ψx

The symbol ∼ denotes equality up to scale.

2 BASICS

2.1 The central projection using homogenous co-
ordinates

The formulation of the image geometry and the underlying
relations are based on the one used in [Ressl 2000]. The
projective relation between a 3D object point P and its
image point p can be represented in a very compact way
using projective geometry. If the exterior orientation of
an image ψ is given by the image’s projection center Oψ

and the rotation matrix Rψ (from the image system to the
object system), and if the interior orientation of the image
is given by the principal point (x0 y0), the principal dis-



tance f and two parameters (αβ) modelling affine image
deformations, then the central perspective image point p
- as a homogenous vector p̃ - of an object point P can be
computed using the projection matrix Pψ (equation (1)).

p̃ ∼ C−1
ψ · R

>
ψ · [E3×3,−Oψ] · P̃ = Pψ · P̃ (1)

Cψ =

 1 α −x0

0 β −y0
0 0 −f


E3×3 = diag(1, 1, 1)

The three columns of Cψ together with Rψ represent the
affine direction vectors of the so-called principal rays rψ1,
rψ2, rψ3 (lines through the projection center parallel to
the image’s coordinate axes) as Rψ ·Cψ. These three lines
span three planes - the so-called principal planes πψ1, πψ2,
πψ3 [Papadopoulo, Faugeras 1998].

An image line ` can also be represented by a homogenous
vector ˜̀. If the line ` contains the point p it holds: ˜̀> · p̃ =
0. The line ` defined by two points p and q is given by:
˜̀∼ [ p̃ ]×· q̃. With [ p̃ ]× being the so-called axiator:

a× b = [a ]×· b [a ]× =

 0 az −ay
−az 0 ax
ay −ax 0

 (2)

d = A · c → [d ]× = Det(A)·A−> ·[ c ]×· A
−1

(3)

2.2 A few basics on tensor calculus

A tensor is an indexed system of numbers. There are
two kinds of indices: sub-indices are called co-variant and
super-indices contra-variant. A tensor with contra-variant
valence p and co-variant valence q has np+q components
with n being the dimension of the underlying vector-space;
i.e. each index runs from 1 to n. Using these indices and
Einstein’s convention of summation, certain mathematical
relations can be expressed in a very efficient way. This
convention says that a sum is made up of all the same
indices appearing as co- and contra-variant. So, for ex-
ample, the scalar product s(x,y) = x> · y of two vectors
x = (x1 x2 x3)

> and y = (y1 y2 y3)
> can be written in a

shorter way as: s(x,y) = xi y
i. The product A ·B = C of

two matrices A and B can be written as AijB
j
k = Cik. The

contra-variant indices relate to the rows and the co-variant
ones to the columns.

2.3 The trifocal tensor

If the orientation of three images ψ1, ψ2, ψ3 is formulated
according to equation (1) (with O1 = 0 and R1 = E3×3)
then the TFT can be represented in the following way
(equation (4)); c.f. [Ressl 2000].

T j,ki = (v̂21)
j ·Bki − (v̂31)

k ·Aji (4)
using:

A = C−1
2 · R

>
2 · C1 v̂21 = −C−1

2 · R
>
2 · O2 (5)

B = C−1
3 · R

>
3 · C1 v̂31 = −C−1

3 · R
>
3 · O3 (6)

v̂xy is the epipole of image ψy in image ψx, i.e. the image of
Oy in image ψx. With ˆ it is emphasized that this epipole
is represented as a homogenous vector but in a specific
scale (observe the equality-symbol). The other epipoles
are:

v̂12 = C−1
1 · O2 v̂13 = C−1

1 · O3 (7)

v̂23 = C−1
2 · R

>
2 · O3 + v̂21 (8)

v̂32 = C−1
3 · R

>
3 · O2 + v̂31 (9)

3 THE TENSORIAL SLICES

One can imagine the trifocal tensor T jki formed as a 3×3×3
cube of numbers and the cube’s edges related to the indices
i, j, k. If we keep one index fixed, we slice a 3× 3 matrix
out of the tensor. Since we have three indices, we get
three different kinds of matrices - different also in their
geometrical meaning. For didactical reasons we will start
with the j and k index.

3.1 The homographic slices Jx and Kx

If we keep the j-index in equation (4) fixed as j = x ∈
{1, 2, 3}, we get the following matrix Jx (ex being the xth

column of E3×3):

Jx = e>x · v̂21 · B− v̂31 · e>x · A (10)

Jx describes a mapping (a collineation) of points p̃1 in im-
age ψ1 to points p̃3 in image ψ3 via the principal plane π2x.
In [Shashua, Werman 1995] this mapping is termed homog-
raphy. The homography matrices Jx are distinguished by
the properties shown in Table 1.

Analogously, if we keep the k-index fixed, we get a matrix
Kx, which describes a homography from image ψ1 to image
ψ2 via the principal plane π3x.

Kx = v̂21 · e>x · B− e>x · v̂31 · A (11)

3.2 The correlation slices Ix

If we keep the i-index fixed, we get analogously a 3x3 ma-
trix Ix. For the homographic matrices Jx resp. Kx their
form resulted directly from the co-variant (i) and contra-
variant (k resp. j ) indices in equation (4). When the
i-index is fixed, only the contra-variant indices (j, k) re-
main, and therefore one of them has to be chosen for the
columns. We choose the j-index.

Ix = B · ex · v̂>21 − v̂31 · e>x · A
>

(12)

Ix describes a mapping (a dual correlation) of lines `2 in
image ψ2 to points p̃3 in image ψ3 via the principal ray

r1x. I
>
x would map the lines `3 in image ψ3 to points p̃2

in image ψ2 via the principal ray r1x.

Due to [Papadopoulo, Faugeras 1998] the correlation ma-
trices Ix are distinguished by the properties shown in Ta-
ble 2. Since the correlation slices are the basic input for
the constraints and parameterization to be presented, they
are investigated in more detail in section 5.1.

Note: The relations between the homographic and corre-
lation slices are the following: The yth column of Jx resp.

Kx is the xth column of Iy resp. I>y .

4 PREVIOUS CONSTRAINTS AND
MINIMAL PARAMETERIZATIONS

Two sets of constraints and two minimal parameterizations
(i.e. having 18 DOF) were discussed in the literature so far.

[Torr, Zisserman 1997] present a minimal parameteriza-
tion for the TFT. By assigning projective canonical co-
ordinates to the image and the space points, they show,
that it is possible to compute the tensor from six homolo-
gous point triples across three images. Of the 36 observed



Property Remark

(a) v̂31 ∼ Jx · v̂13 provided rank(Jx) = 3

general eigenvalue problem (Jy − µ · Jx) · x̃ = 0, x, y, z ∈ {1, 2, 3}, pairwise diff.

(b) gen. eigenvalue µ1 =
e>y ·ṽ21

e>x ·ṽ21
gen. eigenvector x̃1 ∼ ṽ13

(c) gen. eigenvalue µ2 = µ3 =
e>y ·ṽ23

e>x ·ṽ23
gen. eigenvector x̃2,3 ∼ α · ṽ12 + β · A−1 · ez

Table 1: Properties of the homographic slices Jx

Property Remark

(a) rank(Ix) ≤ 2

(b) rank(
∑3
x=1 ax ·Ix) ≤ 2

(c) R> · ṽ21 = 0 using R = [ρ̃1, ρ̃2, ρ̃3] with Ix · ρ̃x = 0

(d) L> · ṽ31 = 0 using L = [λ̃1, λ̃2, λ̃3] with I>x · λ̃x = 0

Table 2: Properties of the correlation slices Ix; c.f. [Papadopoulo, Faugeras 1998]

image-coordinates in six homologous triples, convenient 18
coordinates are kept fixed. In this way a minimal pa-
rameterization of the tensor is achieved. The unknowns
themselves are obtained as (up to 3) solutions of a cu-
bic equation. Due to this fixing of erroneous observations
in the images one might be suspicious that errors in the
calculated tensor may be induced, furthermore no correct
minimization of the measurement-errors in all observations
is possible. And as it is shown by the results in [Torr, Zis-
serman 1997] the standard deviation depends on the choice
of the 6 points resp. the fixed 18 coordinates, which is not
obvious in the beginning. However, this method of keep-
ing the proper number of image-coordinates fixed, could
be helpful also for other tasks, where a minimal parame-
terization is needed, but cannot be formulated easily.

[Papadopoulo, Faugeras 1998] introduce a minimal param-
eterization together with a set of 12 sufficient constraints
- not minimal, since any number of constraints greater
than eight must contain dependencies. Their set of con-
straints are entirely based on the correlation slices Ix and
are made of the properties (b), (c), (d) shown in Table 2.
Their minimal parameterization looks like the following:
The left kernels of the correlation slices are parameter-
ized using 2 parameters for their common epipole ṽ31 and
1 parameter (a direction angle) for each kernel - thus 5
parameters in total. With other 5 parameters the right
kernels and epipole ṽ21 are parameterized. With the left
and right kernels the correlation slices Ix can be param-
eterized by 8 coefficients. This way of parameterization
results in a very large number of maps (9·32 ·36) and it is
not clear how this parameterization is applicable in case
of rank(Ix) < 2 - because the kernels need to be lines.

In [Canterakis 2000] the first set of minimal constraints is
presented, which are entirely based on the homographic
slices Jx and are derived from the properties shown in
Table 1, i.e. each general eigenvalue problem set up with
two homographic slices has one general eigenvalue with
multiplicity 2 (µ2 = µ3) (→ 1 constr.), the correspond-
ing general eigenvector is 2-dimensional (→ 2 constr.), the
general eigenvector x̃1 corresponding to the single general
eigenvalue µ1 is the same (up to scale) for all three pairs of
Jx (→ 2 constr.). This general eigenvalue problem can be

independently set up twice yielding the required number of
8 constraints. Open questions with this set of constraints
are, how are they applicable in case of rank(Jx) < 3 and
how to implement them efficiently in a computer program
(e.g. constraint (x̃1(of pair (x,y)) ∼ x̃1(of pair (x,z)) re-
quires this general eigenvector to be expressed in terms of
the 27 tensor elements).

In the following sections a new set of minimal constraints
together with a minimal parameterization will be pre-
sented. Both are derived very easily, having very sim-
ple geometric properties. Their implementation is rather
simple (actually the minimal parameterization is easier to
realize than the constrained version).

5 A NEW MINIMAL SET OF
CONSTRAINTS

The basic input for this set of constraints are the correla-
tion slices Ix, therefore we will take a closer look at these
matrices.

5.1 The correlation slices Ix - Revisited

The correlation slices in equation (12) describe a mapping

of lines ˜̀
2 in image ψ2 to points p̃3 in image ψ3 via the

principal ray r1x, meaning that p̃3 is the projection of the
intersection point of r1x with the projection plane of ˜̀

2.

In general, rank(Ix) = 2, since the columns of Ix are
linear combinations of two vectors (B ·ex and v̂31) - or
the rows are linear combination of two vectors (A·ex and
v̂21). For the same reason, any linear combination of the

correlation slices
∑3
x=1 ax · Ix will also have rank = 2 in

general; c.f. [Papadopoulo, Faugeras 1998].

Using equ. ((5) - (9), (12)), we can find the cases where
rank(Ix) < 2 :
rank(Ix) = 1 will result if B · ex ∼ v̂31 (→ O3 ∈ r1x
and Ix ∼ ṽ31 · ṽ>23) or if (A ·ex ∼ v̂21) (→ O2 ∈ r1x and
Ix ∼ ṽ32 ·ṽ>21).



rank(Ix) = 0 will result if B · ex · v̂>21 = v̂31 · e>x · A
>

(→ O2 ≡ O3 ∈ r1x and Ix = 0).

Since the correlation slices are always singular, there al-
ways exists a nontrivial null space. The right null space
of Ix is a line ρ̃x in image ψ2 in general. It represents
the line for which the correlation matrix Ix yields no valid
point (i.e. 0) in image ψ3. Geometric reason: The projec-
tion plane due to ρ̃x contains the principal ray r1x. Analo-
gously, the left null space is a line λ̃x in image ψ3 in general.
It represents the line on which all mapped points Ix · ˜̀2 lie.
The lines ρ̃x and λ̃x are the epipolar lines of the principal
ray r1x in image ψ2 and ψ3, respectively. Epipolar lines
always pass through the respective epipole (ṽ21 resp. ṽ31).

Thus the matrices L = [λ̃1, λ̃2, λ̃3] and R = [ρ̃1, ρ̃2, ρ̃3] are
also of rank = 2 in general; c.f. [Papadopoulo, Faugeras
1998].

If one considers the pencil of lines with a carrier c̃2 ∈ ρ̃x,
then all of its lines (6∼ ρ̃x) map to the same point p̃3 on

λ̃x; i.e. p̃3 = p̃3(c̃2). Thus, Ix represents a 1-dimensional
collineation of the points c̃2 on ρ̃x in image ψ2 to the points
p̃3 on λ̃x in image ψ3.

1 If we consider particularly the
pencil of lines with carrier ṽ21, then we can prove that all
of its lines ˜̀̃

v21 (6∼ ρ̃x) are mapped to ṽ31.

˜̀̃
v21 = [ ṽ21 ]×· p̃2 with p̃2 6∼ ṽ21 and p̃2 6∈ ρ̃x

→ Ix · ˜̀̃v21

equ. (12)
= −v̂31 · e>x · A

> · [ ṽ21 ]×· p̃2︸ ︷︷ ︸
scalar s

(13)

s
equ. (5)

= e>x · A
> · [−C−1

2 · R
>
2 ·O2 ]×· p̃2

s
equ. (3)∼ e>x · C

>
1 · [O︸ ︷︷ ︸

=0>→O2∈r1x

2]× · R2 · C2 · p̃2︸ ︷︷ ︸
6=0←p̃2 6∼ṽ21

6= 0← p̃2 6∈ ρ̃x

So we see, that as long as O2 6∈ r1x(→ rank(Ix) = 2) any

line ˜̀̃
v21 6∼ ρ̃x through the epipole ṽ21 is mapped by any

Ix to ṽ31. Analogously, any line ˜̀̃
v31 6∼ λ̃x through the

epipole ṽ31 is mapped by any I>x to ṽ21 - provided O3 6∈
r1x. Table 3 summarizes these mapping properties (the
others can be derived similarly to (13)) for Ix depending
on its rank.

5.2 The minimal set of constraints

The underlying geometric properties become clearer, when

we consider the columns of these matrices: I1 = [â, b̂, ĉ],

I2 = [d̂, ê, f̂ ], I3 = [ĝ, ĥ, î]. Since Ix describes a mapping

of lines ˜̀
2 in image ψ2 to points p̃3 in image ψ3 these

columns can be interpreted as being points in image ψ3 -
the mappings of the ψ2-lines (1, 0, 0)>, (0, 1, 0)>, (0, 0, 1)>

- (again ˆ emphasizes that these columns are projective
points in a specific scale). It always holds that rank(Ix) ≤
2. Thus we already have 3 constraints:

Det(Ix) = 0 x ∈ {1, 2, 3} (14)

The geometric interpretation of (14) is, that the columns

of Ix interpreted as image points are collinear: {ã, b̃, c̃} ∈
λ̃1, {d̃, ẽ, f̃} ∈ λ̃2 and {g̃, h̃, ĩ} ∈ λ̃3. These three lines

{λ̃1, λ̃2, λ̃3} are the left kernels of the correlation slices.
Following section (5.1) we saw that these left kernels are
epipolar lines, which always pass through the respective
epipole (ṽ31 in this case). This yields the next constraint.

1If the carrier c̃2 6∈ ρ̃x, then Ix describes a regular 1-dimensional
correlation between the lines of this pencil and the points on λ̃x.

The matrix L made of the three left kernels must be singu-
lar; provided all three correlation slices Ix have rank = 2
- otherwise the kernel of Ix will not be a line λ̃x.

Det(L) = 0 (15)

These 4 constraints have already been presented in e.g.
[Papadopoulo, Faugeras 1998].

The 4 remaining constraints are new and will be explained
in the following. In section (5.1) we saw, that any line

`ṽ31 6∼ λx through ṽ31 is mapped by I>x to the epipole
ṽ21 in image ψ2; provided, rank(Ix) = 2. So, we can
formulate the following constraints:

(I>q − µ1 · I>p ) · ˜̀̃v31 = 0

(I>r − µ2 · I>p ) · ˜̀̃v31 = 0

p, q, r ∈ {1, 2, 3},
pairwise different (16)

Obviously, the relations (16) produce 4 independent equa-
tions (6 equations - 2 additional unknown scales (µ1 µ2)).
However, it needs to be proven that theses relations are
also independent of the determinant constraints (14) and
(15).

If the determinant constraints are satisfied, then
the correlation slices can be parameterized in
the following way (without loss of generality):

I1 = [â, b̂, ĉ] = [ŝ1 , v1 · ŝ1 + j · v̆31 , w1 · ŝ1 + s · v̆31]

I2 = [d̂, ê, f̂ ] = [ŝ2 , v2 · ŝ2 + k · v̆31 , w2 · ŝ2 + t · v̆31]

I3 = [ĝ, ĥ, î] = [ŝ3 , v3 · ŝ3 + l · v̆31 , w3 · ŝ3 + u · v̆31]

(17)

This parameterization just means, that the columns of the
three matrices Ix are represented as linear combinations
of a vector v̆31 common to all three matrices and indi-
vidual vectors ŝx. The vector v̆31 (∼ v̂31) is the common

perpendicular of the three left kernels {λ̃1, λ̃2, λ̃3} - and
its scale is chosen appropriately (hence ˘ instead of )̂. If
we choose any line `v̆31 through v̆31, 6∼ to any left kernel,
we get:

I>1 · ˜̀̆v31 =

 ŝ>1 · ˜̀̆v31

v1 · ŝ>1 · ˜̀̆v31

w1 · ŝ>1 · ˜̀̆v31

 ∼
 1

v1
w1



I>2 · ˜̀̆v31 =

 ŝ>2 · ˜̀̆v31

v2 · ŝ>2 · ˜̀̆v31

w2 · ŝ>2 · ˜̀̆v31

 ∼
 1

v2
w2



I>3 · ˜̀̆v31 =

 ŝ>3 · ˜̀̆v31

v3 · ŝ>3 · ˜̀̆v31

w3 · ŝ>3 · ˜̀̆v31

 ∼
 1

v3
w3


(18)

Since all the right sides in (18) should be similar to the
same vector (i.e. epipole ṽ21), this only can be achieved, if
for the coefficients holds: v1 = v2 = v3 = v and w1 = w2 =
w3 = w - and thus the constraints (16) are independent of
the determinant constraints (14) and (15).

Actually the constraints (16) correspond to the already
known property (b) in Table 2 with a = (1, 0, µ1) resp.

a = (0, 1, µ2). The constraints (16) hold for any line ˜̀̃
v31 6∼

λ̃x through ṽ31, therefore the components parallel to ṽ31

of the column vectors (Iq − µ1 · Ip) resp. (Ir − µ2 · Ip)
are of no concern and only the components orthogonal to
ṽ31 need to be considered. Consequently we get a more
preferable form for the constraints (16) by:

λ̃>1 · [ v̆31 ]×· I1 ∼ λ̃>2 · [ v̆31 ]×· I2 ∼ λ̃>3 · [ v̆31 ]×· I3 (19)



rank(Ix) Properties for Ix Properties for I>x

2 Ix · ˜̀v21 ∼

{
0 ˜̀

v21 ∼ ρ̃x
ṽ31

I>x · ˜̀v31 ∼

{
0 ˜̀

v31 ∼ λ̃x
ṽ21

1 :

O2 ∈ r1x Ix ∼ ṽ32 · ṽ>21
ρ̃x = pencil of lines in ṽ21

Ix · ˜̀2 ∼

{
0 ˜̀

2 3 ṽ21

ṽ32
I>x · ˜̀3 ∼

{
0 ˜̀

3 3 ṽ32

ṽ21

1 :

O3 ∈ r1x Ix ∼ ṽ31 · ṽ>23
λ̃x = pencil of lines in ṽ31

Ix · ˜̀2 ∼

{
0 ˜̀

2 3 ṽ23

ṽ31
I>x · ˜̀3 ∼

{
0 ˜̀

3 3 ṽ31

ṽ23

Table 3: Additional mapping properties of the correlation slices Ix; c.f. Table 2

Summing it up, the presented minimal set of constraints,
ensures, that the three correlation slices of a TFT are sin-
gular mappings of the lines from one image (ψ2) to the
points of another image (ψ3) via three concurrent 3D-lines,
which are made up by the principal lines of image ψ1.

6 The minimal parameterization for the TFT

In the previous section we did not only prove, that (14),
(15) and (19) constitute a minimal set of constraints for the
TFT, but we also found a minimal parameterization for it.
If we adopt the equality of coefficients (v1 = v2 = v3 = v
and w1 = w2 = w3 = w) to the parameterization (17), we
get this minimal parameterization (having 18 DOF):

I1 = [â, b̂, ĉ] = [ŝ1 , v · ŝ1 + j · v̆31 , w · ŝ1 + s · v̆31]

I2 = [d̂, ê, f̂ ] = [ŝ2 , v · ŝ2 + k · v̆31 , w · ŝ2 + t · v̆31]

I3 = [ĝ, ĥ, î] = [ŝ3 , v · ŝ3 + l · v̆31 , w · ŝ3 + u · v̆31]
(20)

A few remarks need to be given:

• Obviously, this parameterization is not linear. Thus
approximations are required, which can be obtained
by an initial solution using the well-known eigen-value
or linear solution for the TFT; e.g. [Hartley 1994].

• The scale of v̆31 needs to be fixed, e.g. by setting its
length to 1.

• Observe, that the vectors {ŝ1 , ŝ2 , ŝ3} in (20) param-
eterize the same column (index cI ) in the matrices
Ix. For numerical reasons, this index should be that
one, for which the respective columns are farthest
away from v̆31. This index cI may be found by∏3
x=1 ‖Ix · ecI

× v̆31‖ →Max.

• The overall scale in this parameterization needs also
to be fixed, e.g. by setting the length of the concate-
nated vectors {ŝ1 , ŝ2 , ŝ3} to 1. This yields in total 3
possible mappings; i.e. the choice of cI .

With this parameterization (20) (i.e. cI = 1) we get the
homographic slices Jx as follows:

J1 = [â, d̂, ĝ] = [ŝ1 , ŝ2 , ŝ3]

J2 = [b̂, ê, ĥ] = [v ·ŝ1 + j ·v̆31 , v ·ŝ2 + k ·v̆31 , v ·ŝ3 + l·v̆31]

J3 = [ĉ, f̂ , î] = [w·ŝ1 + s·v̆31 , w·ŝ2 + t·v̆31 , w·ŝ3 + u·v̆31]
(21)

And so we can look at the general eigen-value problem
J2 − µ · J1. It is easy to see, that µ = v yields a 2-
dimensional general eigen-space, the line (j k l)>. Thus v

is an eigen-value with multiplicity 2. This is in accordance
with [Canterakis 2000]. And so we can summarize the ge-
ometrical interpretation of this minimal parameterization
in the following way:

• v̆31 is the epipole of base O1O3 in image ψ3.

• [ŝ1, ŝ2, ŝ3] is a homography from image ψ1 to image
ψ3; i.e. the homographic slice J1.

• (1 v w)> is the epipole ṽ21 (of base O1O2 in image
ψ2) - its component at position cI is set to 1.

• (j k l)> is the 2-dimensional general eigenspace of
(J2 − µ ·J1). Since J1 resp. J2 is a homography due
to π21 resp. π22, the general eigenvector of (J2−µ·J1)
must be the projection of the intersection of these two
principal planes of image ψ2; i.e. the projection of the
principal ray r23 of image ψ2 into image ψ1.

• (s t u)> is the 2-dimensional general eigenspace of
(J3 − ν · J1), i.e. the projection of the principal ray
r22 of image ψ2 into image ψ1.

Of interest are the critical configurations for this minimal
parameterization. Since it is part of the parameterization,
that the length of v̆31 and one component in v̆21 are set
to 1, problems surely arise if either of these epipoles is the
zero-vector → O1 = O3 resp. O1 = O2. This problem
can be solved - as long as not all three projection centers
coincide - by changing the role of the images in the way
that the image with the unique projection center plays
the role of image ψ1. Note: The identity of two or all
three projection centers might be of practical relevance
during the work with a moving camera acquiring images
in a constant frequency and which stops at a particular
position for a moment. In case of O1 = O2 = O3 the
respective TFT becomes the zero-tensor.

Another problem with this parameterization could come
from the fact, that the vectors {ŝ1, ŝ2, ŝ3} parameterize
the same column (with index cI ) in all three correlation
slices. Still keep in mind that we choose the best column
for this parameterization - the one that is farthest away
from v̆31. If we take the minimal parameterization exactly
as it is given in equation (20), we see, that the columns of
I1 are parameterized by v̆31 and the vector ŝ1. Thus it
must be assured, that ŝ1 is different from v̆31 and different
from the zero-vector, because otherwise the column vectors

b̂ and/or ĉ (being different from v̆31 and 0) can not be

parameterized by ŝ1 and v̆31. Of course, if b̂ and ĉ are
similar to v̆31 or 0, than we would have no problem. So,



we will prove, that the first case can not occur. This prove
is outlined in the following.

First we arrange the three matrices Ix as the rows of a
large matrix Z, which then has 9 rows and 3 columns.
We, however, consider the elements of Z being the column
vectors of the Ix matrices. So, Z has 3 × 3 elements and
the element at row ξ and col η is the ηth column vector in
matrix Iξ, which is the image of the intersection point of
principal plane π2η with the principal ray r1ξ.

Now, we consider that one element (row ξ, col η) of Z shall
be ∼ v̆31. This may happen due to two situations: A1)
O3 ∈ r1ξ or A2) O1 ∈ π2η. Then, we consider that one
element (row ξ, col η) of Z shall be = 0. This may happen
also due to two situations: B1) O3 = {π2η ∩ r1ξ} or B2)
r1ξ ∈ π2η. However, B1) implies O3 ∈ r1ξ (→ A1)) and
B2) implies O1 ∈ π2η (→ A2)). Thus, the only possible
situations, that may return one element in Z being ∼ v̆31

or = 0 are the ones of A1) and A2).

These situations, however, not only return the element at
row ξ and col η of matrix Z to be∼ v̆31 or = 0, they further
imply: A1) returns that all elements in row ξ of Z are
∼ v̆31; i.e. the entire matrix Iξ. And so all columns Iξ can
be parameterized by ŝξ (being ∼ v̆31 or = 0) and v̆31. A2)
returns that all elements in column η of Z are ∼ v̆31; i.e.
the ηth column in all three correlation matrices Ix. Again,
the parameterization of these columns is not difficult, but
what’s more important: When situation A2) occurs, the
ηth column in the three correlation matrices Ix will never
be used as the vectors {ŝ1, ŝ2, ŝ3} in the parameterization,
since they are not far away from v̆31.

This completes the prove, that it is impossible, that one
of the three vectors {ŝx} is ∼ v̆31 or = 0, but one of the
other columns in Ix is different from v̆31 and 0. Thus, the
minimal parameterization (20) holds for any image config-
uration - provided not all three projection centers coincide.

7 SUMMARY AND FUTURE WORK

In this paper a new minimal set of constraints as well
as a new minimal parameterization for the trifocal ten-
sor (TFT) were presented. They were found using the
so-called correlation slices Ix together with a new discov-
ered property of them (equ. (19)). Especially the minimal
parameterization, which is applicable for any image con-
figuration (provided not all three projection centers coin-
cide), will help to get new insights into the geometric re-
lations and properties of the TFT. With these constraints
resp. minimal parameterization it is possible to compute
the TFT with minimal (i.e. 18) DOF. Since both rely on
non-linear relations an initial solution for the TFT is re-
quired; e.g. using the well-known linear solution.

So far, the presented constraints and the minimal parame-
terization have been implemented and it will be among the
future work to investigate the advantages of each method.
The experiments so far show a benefit for the minimal
parameterized solution (equ. (20)), which can be imple-
mented rather simple and works for all practical image
configurations - as opposed to the constrained solution,
which relies on correlation slices having rank = 2 for the
constraints (15) and (19).

Also of interest are the additional constraints resp. the
minimal parameterization that arise when the interior ori-
entation of the images is known, or if it is unknown but

common to all three images. The latter is of special in-
terest for camera calibration, which needs at least three
images taken by the same camera; e.g. [Hartley 1997].

During the future work we will also investigate, what
amount of error is induced in the resulting TFT (and
thus in the image orientation), when the constraints are
neglected and/or algebraic error is minimized instead of
measurement error. This is especially of interest when the
TFT-solution serves only as an initial start for a subse-
quent bundle-adjustment, since there already the linear
solution might be sufficient.
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