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ABSTRACT
The filtering of a laser scanner point-cloud to abstract the bald earth has been an ongoing research topic in laser altimetry. To date a
number of filters have been devised for extracting DEMs from laser point-clouds. The measure of the performance of these filters is
often based on tests against some reference data (rms, ratio of misclassifications vs. correct classifications, etc.,) obtained by
photogrammetric measurement or other means. However, measures based on such tests are only global indicators of how the filters
may perform. Therefore, when applied to real life applications, based on such measures it is not possible to say with certainty how
well a filter has performed. This uncertainty suggests that a method be devised to identify in a point-cloud those regions where a
filter may have difficulty classifying points. This done other sources of information can be gathered to clarify the status of points in
(difficult) regions. This fits in with the thinking that external sources of data, such as imagery, maps have be used in the filtering of
laser scanner point-clouds. However, devising a method as suggested above requires that the reasons for the misclassification of
points be first identified. When filtering a point-cloud based on spatial information alone, misclassification arises from three sources,
(1) the nature and arrangement of objects and the terrain in a landscape (e.g., terrain, buildings, vegetation, etc.,) (2) the
characteristics of the data (resolution, outliers, data gaps, etc.,) and (3) the implementation of filters. In this paper, the first two
reasons for misclassification are outlined because they are common to all filtering problems, and an initial attempt at developing a
method for identifying regions in a point-cloud where a filter may have trouble in classifying points is described. 

1 INTRODUCTION

The filtering of laser scanner point-clouds to abstract the bald
earth has been an ongoing research topic in laser altimetry.
Filtering in the context of this paper is understood to mean the
removal from a laser scanner point-cloud of those points that do
not belong to the terrain. To date various filters have been
developed, e.g., (Kraus & Pfeipfer 1998), (Axelsson 1999),
(Petzold et. al. 1999), (Elmqvist 2001), (Vosselman & Maas
2001), (Haugerud et. al. 2001). Additional to these are
proprietary filters (being used in practice), whose algorithms are
not known. The performance of filters is currently measured by
comparison of filter results with some reference data (rms, ratio
of misclassifications vs. correct classifications, etc.,). However,
there are three problems with performance measures based on
reference data: 

� They are global indicators. The performance of filters is
unified into one single measure. Unfortunately, experience
has shown that this masks localized filtering errors (which
can sometimes be large, although few in number).

� The performance measures are indicative of filter
performance only in areas that have characteristics similar
to those in the reference data (used for deriving
performance measures). For example, if performance
measures are derived from reference data set in a rural
landscape, then in practice those measures cannot be
applied to gauge filter performance in urban areas.

� Reference data is usually only available for areas that can
be measured photogrammetrically or by conventional

survey. For example, in reference data, areas covered by
dense vegetation are usually not sampled.

Nonetheless, filters are developed with the expectation that they
will succeed. This expectation is founded on the knowledge that
in most cases the characteristics of the terrain (e.g., slope,
roughness, form, curvature, etc.,) are bounded and that surfaces
that fall outside these bounds are not terrain. Figure 1 depicts the
current approach to filtering. From a monotonic function (based
on a test point and its neighborhood) a decision measure is
derived. Based on a pre-selected threshold for the decision
measure the test point is classified as either terrain or object. As
already stated this strategy works in most cases. However, it
also leads to some misclassifications. Therefore, improving
filtering strategy requires that the reason for misclassification be
known. Two types of misclassification are possible, Type I
errors and Type II errors. Type I errors being the
misclassification of terrain points as object points and Type II
errors being the misclassification of object points as terrain
points. This is also shown in Figure 1. Within a certain band,
either side of the threshold a point has a likelihood of having
been misclassified (hence, the question marks in Figure 1).
Knowing where and what type of misclassification has occurred
can be determined using reference data. However, in normal
practice this reference data will not exist. Therefore, the
challenge is to detect misclassification (or the likelihood of it)
where no reference data exists, or to be more precise, devise an
alternative means checking the possibility of misclassification.

When reference data does not exist, an operator has to manually
check the results of the filtering. However, an operator using
just the point-cloud cannot achieve a 100% classification. There
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will be places in the point-cloud where an operator will not be
sure of the classification of points or even worse will not be able
to make a classification. Therefore, three classifications are
possible, "Terrain", "Object" and "Unclassified". The
"Unclassified" points are those that an operator may not be able
to classify with full certainty. This is in contrast with the current
practice of filtering DEMs from laser scanner point-clouds,
where only two classes are allowed for, “Terrain” or “Object”. 

The difficulty in manually classifying a point-cloud lies partly in
the inherent characteristics of a point-cloud. If we can identify
those characteristics of a point-cloud that lead to a difficulty to
classify then we would be able to devise an alternative means of
checking if classification is possible. This paper is a look at
some issues related to this problem with a view to developing
some framework for classification and a means of identifying
regions in a point-cloud that maybe difficult to classify. 

In the first section of the paper, several spatial characteristics
that contribute to a difficulty in classifying a point-cloud are
outlined. In the second section, the implication of the outline for
future filter designs and strategies is discussed. In the final
section, a trial procedure for detecting "unclassifiable" regions is
described. 

2 DIFFICULTY TO CLASSIFY

Considering the characteristics of a point-cloud, the difficulty in
classifying originates from the characteristics of the landscape
and the characteristics of the laser scanner data. 

2.1 Characteristics of Landscape

“Unclassifiable” regions due to landscape characteristics occur
because of the nature and arrangement of objects and the terrain
- e.g., terrain, buildings, vegetation, etc. The difficulty to
classify due to landscape characteristics will be a problem in
every laser scanner point-cloud without exception.

Complexity of the terrain - Here complexity is in reference to
the form of the terrain (not roughness), in particular
discontinuities (e.g., embankments, raised platforms, terraces,
etc.,). This characteristic especially comes into play if an
operator is only able to see a portion of the point-cloud at a time,
or if the terrain in a small neighborhood changes drastically in

relation to the terrain around it (discontinuity, platforms, etc.,)
such that it no longer fits into the general form of the terrain.
Usually an operator is able to see quite a large portion of the
terrain so he/she is able to appreciate the form of the terrain.
This problem is demonstrated in Figure 2 (a) and 2(b). 

Complexity of objects - While most buildings in urban areas
are regular in shape (blocks, prisms, etc.,) there are some that
are more complex (layered roofs, platforms, etc.,) and hence
more difficult to classify. Another way in which objects are
made complex is by the nature of objects and terrain around
them. For example, a depression (e.g., a pool, excavation, etc.,)
near a building makes any land between the depression and the
building uncertain (Figure 2d). 

Proximity of Object and terrain - The closer an object is to the
terrain the more difficult it becomes to distinguish it from the
terrain. This separation can be lateral (in the case of sloped
terrain), vertical or both. Expressed differently the separation of
the surface of an object and the surface of the terrain becomes
more difficult as the surfaces start to approach each other in
whole or part, Figure 2(c). The ability to separate the terrain and
objects is further complicated by the size of objects. The closer
and larger an object is in relation to the terrain, the more
difficult it is to separate it from the terrain. Therefore, the larger
the area of the object surface, in relation to the area of the terrain
surface, the greater the difficulty of separation.

Zero ground returns (lack of terrain information) - In built-
up and densely vegetated areas, the number of returns from the
terrain surface can approach nil. All filtering involves the
comparison of a point with its neighborhood. For filtering, this
comparison is meaningful only if some points in the
neighborhood belong to the terrain. Zero ground returns for a
neighborhood may make the result from a filter meaningless.
The ability to detect this problem depends on the extent of the
area for which there is no ground return. The larger the area the
greater the difficulty of separation.

2.2 Characteristics of data

“Unclassifiable” regions due to data characteristics occur
because of filtering objectives and filtering assumptions. The
difficulty to classify due to data characteristics will be a problem
most of the time. However, unlike those due to landscape
characteristics, the difficulty of classification due to data
characteristics can to a certain extent be controlled. 

Resolution of the point cloud - The resolution of a point cloud
has a direct influence on the spatial definition of objects. The
less defined an object the more it starts to blend into the general
character of the terrain. In Figure 2e is shown buildings on a
hillside.  Because of the low resolution, buildings (about 15m in
length) to the bottom and right have started to loose definition
and blend into the terrain. Here the proximity of object points
also has an influence on the ability to discriminate between the
object and the terrain. The higher the object, the easier it is to
discriminate it from the terrain. As the resolution of laser
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scanner point-clouds continue to increase, this problem will
become less relevant in future.   

Data gaps - Objects that lie along or near the edge of a point-
cloud are usually only partially abstracted. For an operator this
lack of completeness makes any object on the edge of a point-
cloud difficult to identify and hence difficult to classify.
Likewise, where there are gaps in the point-cloud a similar
situation to that on the edge of a point-cloud exists (Figure 2f).
The usual sources of data gaps are flight-planning errors, water
bodies and occlusions.

Systematic errors - Because of systematic distortions in a strip,
the surfaces and objects abstracted in adjacent strips may not
match. While an overlap has the benefit of reducing data gaps,
on the other hand if there is a lack of a match between adjacent
strips it creates uncertainty. In Figures 2g and 2h, the strip
overlap can be seen as a band of small contours. The presence of
the small contours indicates that in the overlap region the strips
are offset (at least vertically). Usually this problem is not
serious. It also has to be noted that filtering a strip at a time
would prevent this form of problem.

Ambiguity - There are objects whose classification as terrain or
non-terrain is not clear-cut and it usually depends on the
application that will use the filtered point-cloud. Examples of
such objects are bridges, and overpasses (Figure 2g and 2h).
Even then, there still remains the problem of removing only
those objects that are not required. For example, for whatever
reason project requirements may require overpasses to be
retained and bridges to be removed (both have the same
characteristics!).

3 IMPLICATIONS FOR FILTERING

In the preceding section some factors that may lead to a
difficulty to classify were outlined. Supposing we could identify
in a point-cloud regions were these factors have effect then, we
next have to consider its implications for future filtering
strategies. A general outline of current filtering strategies is
depicted in figure 3 (shaded boxes excluded).  A point is
selected from a point cloud. A decision criterion (function that
yields the decision measure) is chosen, and a decision measure
based on the spatial characteristic of a point in relationship to its
neighbors is computed. 

 
(a) View of the data limited to small window. (b) Drastic change in the form of the terrain.

(c) Buildings on a hillside. (d) Complexity of objects in urban terrain. (e) Effect of low resolution.

(f) Data gap (g) Strip overlap, bridge in a park (h) Strip overlap, overpass (over a road)

Figure 2 Examples of “difficulty to classify”
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The use of alternative sources of data (e.g., aerial imagery,
remote sensing imagery, maps, etc.,) to support the filtering
process has already been proposed Kraus & Pfeifer (1998),
Ackermann (1999), although it is not known if any filters have
been implemented along this line. If alternative sources of data
are available then criteria derived from such data can be used to
support the decision making process. However, one difficulty
with multi-criteria decision-making is that the criteria
considered may conflict and how these conflicts should be
resolved is not always clear. With the current filtering strategy
there is one aspect of conflict resolution that would have an
unsatisfactory result. With the first decision criteria (based on
spatial information) only two decisions are possible, “Terrain”
or “Object”. But as suggested in section 1, there is a third
possible decision – “Unclassifiable” because of insufficient
information. If a point has been deemed unclassifiable then only
external information should be used to classify it or it should be
given a very low weight. But with current filtering strategies this
would not be the case. Figure 3 shows how current filtering
strategy could be modified to include the third possible decision.
A point is first tested to determine if it is classifiable and if it is
the process continues as at present. However, if the first decision
criterion is not considered then, a point is classified based on
criteria derived from external information alone.

Lee and Schenk (2001) propose that an intermediate process
should precede all applications on laser scanner point-clouds.
They propose an organization of the point-cloud. This
organization is intended at mimicking the grouping of points in
a point-cloud the same way human perception would. The result
of the organization is the merging of points into surfaces that
share common traits. This framework lends itself to the strategy
envisaged in figure 3. However, the thrust here is somewhat
different in that in the end, the proposed approach searches for
surfaces that because of their arrangement in space have the
potential of leading to a “difficult to classify”.

The strength of such a filtering strategy is that it protects against
over design. With the current approach to filter design there is
the danger that filters could be created to solve problems that

cannot be solved. The next section looks at an attempt to
identify regions in a point-cloud that may be difficult to classify
(because of landscape characteristics).

4 IDENTIFYING “UNCLASSIFIALBLE” REGIONS

4.1 Problem Statement

The problem to be solved can be stated as: Determining regions
in a laser scanner point-cloud where we may not normally be
expected to be able to classify points as “terrain” or “object”
with full certainty. Looked at differently the landscape and data
characteristics noted in Sections 2.1 and 2.2 lead to the
classification “unclassified”, and the aim is to find where such
characteristics exist in a point-cloud. For the sake of simplicity
the characteristics of Sections 2.1 and 2.2 are generalized into
three groups:

� Separation – If a surface is considerably elevated above
every adjacent surface, it is safe to assume that the elevated
surface belongs to an object and not terrain. However, if
the surface is not above every adjacent surface then there is
the likelihood that it may belong to “object”, “terrain”, or
maybe “difficult to classify”. The classification in this case
depends on how close (vertically) the surface is to other
surfaces and its planimetric position in relation to other
adjacent surfaces. Finally, if a surface lies below every
other surface adjacent to it then there is the possibility that
it belongs to “terrain” or “difficult to classify”. In this case
whether a surface belongs to “terrain” depends mainly on
its surface area. By testing surfaces in this manner those
surfaces that obviously belong to “object” or “terrain” are
determined and what remains is treated as “difficult to
classify”.

� Contradiction – This situation refers to objects that are
linked to the terrain but are at the same time also above it.
Objects that lead to this are those described in Section 2
under Ambiguity.

� Data scarcity – Gaps in the data.

Here zero ground return, data resolution, and systematic errors
are not considered. One possible way of identifying uncertain
regions is to apply a filter on a point cloud using different
parameter values. The areas whose classification changes with a
variation of the parameter values are treated as uncertain. Gooch
and Chandler (1999) use such a scheme in the prediction of
failure in automatic DEM generation. However, some features
(such as large buildings) are invariant to changes in filter
parameters. Therefore, another approach is tried here, and this is
explained in the next section.

4.2 Implementation

The implementation discussed in this section is only limited to
the identification of “terrain” “difficult to classify” and “object”
based on separation.
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Figure 3 Revised filtering strategy (shaded figures represent
enhancements).



Points (that share common characteristics) first have to be
grouped into surfaces. Later the surfaces can be compared with
each other to see if their separation leads to a classification of
“object”, “terrain” or “unclassified”. The implementation here is
based on gathering information for surfaces from profiles and
aggregating that information to resolve the relationship of
surfaces to each other. Figure 4 shows the procedure for
detecting regions where surfaces may be visually inseparable.

1. A point-cloud is (Figure 4(a). Here approx. 17000 points
from a City Landscape) is partitioned into rows and
columns along the direction of the x and y, axes. This
partitioning scheme is later used to segment the surfaces
and to compute the surface scores.

2. Profiles are generated for every row (y) and column (x). In
every profile points are sorted and then connected if they
are within a certain height, distance, etc., of each other.
Therefore, every profile will yield strings of points, and
where there are discontinuities the strings will be disjoint.
Figure 4(b). In essence the strings are samples of surfaces.
Later by comparing how the strings of a surface relate to
the strings of adjacent surfaces a general impression will be
formed of how one surface relates to another surface.

3. By aggregating the strings in the x and y directions surfaces
are generated. Figure 4(c). Computation and assignment of
surface scores is done in step 5.

4. In this operation two adjacent strings in a profile are
compared at a time. As mentioned already where there are
discontinuities the strings will be disjoint. Whether the
discontinuity is large enough to make if difficult to visually
separate the eventual surfaces is determined by a score
function (given in Equation 1, and graphed in Figure 5).

The greater the separation of strings, the greater the score.
The score function works on two adjacent strings, and a
score (0 to 1) is assigned to the end of the higher string,
Figure 5. The end of the lowest string is given a “no score”
indicating that based on the comparison no assessment can
be made about the string end. This is essentially the coding
of separation as described in section 4.1. In this manner a
score is assigned to the end of every string, Figure 4(d).
The parameters ‘a’ and ‘b’, of Equation 1 are selected so
that string ends separated in height by an amount less than
‘a’ receive a zero score and those greater than an amount
‘b’ receive a score of 1. Height differences between ‘a’ and
‘b’ attract a score graded between 0 and 1. Values of 0.5m
and 2m for parameters ‘a’ and ‘b’ respectively proved
workable.
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5. Strings that lie on the same surface should have one or
more points in common. This knowledge is used to
segment the point-cloud into surface segments. Because the
strings on a surface will have different scores, to obtain an
overall score for the surface will require an aggregation of
the scores for all strings. This is done by computing the
weighted mean of the scores for all strings weighted by
their lengths. However, before this can be done an overall
score has to be determined for each string. The overall
score for a string is based on the scores at the string ends. If
a string has numeric (0…1) scores at both ends then the

Figure 4 Coding separation
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mean is taken. If a string has a numeric score at one end
and a “no score” at the other end, the numeric value is
used. If a string has a “no score” at both ends, then zero is
used. In this way an overall score is obtained for each
surface. Reinterpreted the score indicates if a surface is
“terrain/unclassified” (values close to 0) or “object” (values
close to 1). Seen in Figure 4(e), the algorithm has identified
the roofs as  “object” regions (here shown as red) that
should pose no problems for filtering. This leaves the bluer
regions (values close to 0) that represent areas that maybe
terrain or “difficult to classify”. In the first instance
“terrain” and “difficult to classify” regions can be
discriminated by an examination of surface areas. The
larger the surface area the more likely that the surface is
terrain. Once terrain (large areas) areas have been
determined in this way, then, remaining terrain/unclassified
regions can be tested against the already determined terrain
surfaces. If a surface is below already determined terrain
then very likely it too is terrain. Further to this low points
in the point-cloud can be determined. If these points
coincide with surfaces determined as terrain, then this
would serve as confirmation. 

6. Once surfaces have been coded as “terrain”, “object” or
“difficult to classify” then every point in the point-cloud
also has to be coded. This is done by assigning to every
point the score of its corresponding surface.

Once surfaces have been coded the search for ambiguities also
becomes possible by examination of the string scores. For
example a terrain surface should not have strings whose scores
are close to 1. In here lies the strength of the procedure in that
the local context (string scores) are used to obtain a global
context (surface scores) for the landscape. The above procedure
is still very much under development but is shown here to
demonstrate a possible way for identifying regions that might be
difficult to classify. Moreover, the detection of contradictions
and the determination of the influence of gaps on strings should
provide more realistic results. Furthermore, the manner in which
strings were generated is not yet ideal because it is based solely
on height difference. Future, implementations will use the area
of the different segments and second returns to strengthen the
classification process.

5 CONCLUSION

In this paper it has been proposed that in a preprocessing step a
point cloud should be segmented and that the results of this
should drive the filtering. Further still it is argued that this
preprocessing step is essential if external information is to be
used in a filtering procedure, to clarify or validate the
classification of regions that cannot be classified on positional
information alone. Some of the characteristics of the landscape
and data that lead to a difficulty to classify laser point-clouds
have been highlighted. These characteristics are then used to
search for regions in the point cloud that cannot be classified
with certainty. An initial attempt at developing an application to
segment such regions has been demonstrated. However, this
application still requires much improvement and there are also
other aspects such as identifying contradictions, and data gaps,
data resolution, etc., that will have to be treated.
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