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ABSTRACT 
 
Accurate 3D surface models in urban areas are essential for a variety of applications, such as visualization, GIS, and mobile 
communications. Since manual surface reconstruction is very costly and time consuming, the development of automated algorithms 
is of great importance. On the other hand LIDAR data is a relatively new technology for obtaining Digital Surface Models (DSM) of 
the earth’s surface. It is a fast method for sampling the earth’s surface with a high density and high point accuracy. In this paper a 
new approach for building extraction from LIDAR data is presented. The approach utilizes the geometric properties of urban 
buildings for the reconstruction of the building wire-frames from the LIDAR data. We start by finding the candidate building points 
that are used to populate a plane parameter space. After filling the plane parameter space, we find the planes that can represent the 
building roof surfaces. Roof regions are then extracted and the plane parameters are refined using a robust estimation technique and 
the geometric constraint between adjacent roof facets. The region boundaries are extracted and used to form the building wire-
frames. The algorithm is tested on two buildings from a locally acquired LIDAR data sets. The test results show some success in 
extracting urban area buildings. 
 
 

1. INTRODUCTION 
 

LIDAR (Light Detection and Ranging) data is dense, with 
high accuracy, but one still needs to extract higher-level 
features from it. Building representations are needed in 
cartographic analysis, urban planning, and visualization. 
Although one pair of images, using photogrammetry, is 
adequate to find the 3D position of two corresponding and 
visible image features; it is not sufficient to extract the entire 
building due to hidden parts of the building that are not seen 
in the image pair. Building extraction can be done using 
multiple images to avoid this deficiency. On the other hand 
buildings can also be extracted directly from digital surface 
models as those produced by LIDAR. 
The development of airborne laser scanning goes back to the 
1970s (Jennifer and Jeff   1999). By emitting a laser pulse 
and precisely measuring the return time to the source the 
range can be calculated using the value for the speed of light. 
In the late-80s kinematic GPS provided the necessary 
centimeter level positioning accuracy required for high 
performance LIDAR. The systems required ultra-accurate 
clocks for timing the return, and Inertial Measurement Units 
(IMU) for capturing the orientation of the scanner (Wehr and 
Lohr 1999). Figure 1 shows the LIDAR system components. 
The system is an active system, so the data can be gathered 
during the day or night. LIDAR data pre-processing is 
composed of two efforts. First, the data must be filtered for 
noise, differentially corrected, and assembled into flight lines 
by return layer. Second, the LIDAR data may undergo 
further analysis to derive the final grided DEM products 
using interpolation. 
In this paper a fully automated technique to extract urban 
building wire-frames from LIDAR data is presented. A 
minimum filter is used to find the candidate building points 
in the area. Plane regions are then extracted from the 
candidate building points. Planes with simple shapes are 
selected and adjacency conditions are enforced. Points and 
lines that define the resulting wire-frames are designated to 
form an arc-node structure for its representation. Results are 
shown for two buildings. Although the approach shows some 
success, the data density limits the extent of capturing small 
details. 

 
Figure 1. LIDAR System Components  

(Renslow, 2001) 
 
 

2. OVERVIEW OF CURRENT BUILDING 
EXTRACTION SYSTEMS  

 
In Morgan and Tempeli (2000) DEM production from laser 
data is presented. The procedure starts by re-sampling the 
irregular elevation points obtained by laser scanning into a 
regular grid. The core part of the building detection is based 
on a morphological filter for distinguishing between terrain 
and non-terrain segments. Aiming at a vector representation 
of buildings, the roof faces are obtained by further 
segmentation of the building segments into sub-segments. 
The 3D geometrical properties of each face are obtained 
based on plane fitting using the least squares technique. The 
reconstruction part of the procedure is based on the 
adjacency among the roof faces. Primitive extraction and 
face intersections are used for roof reconstruction. Prior 
knowledge about the buildings and terrain is needed for both 
the detection and extraction processes.  
In Seresht and Azizi (2000) the authors describe a strategy 
for automatic building extraction from aerial imagery and 
digital elevation models. The first step is a coarse recognition 
of building regions from DEM. Then some filters are applied 
on the selected regions based on their shape, size and content 
to enhance the detectability of the buildings. Further 
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recognition is then achieved based on image features that 
include points, edges, and lines. Selection of type and level 
of feature extraction is related to the desired accuracy and 
method of reconstruction. Also straight lines are usually a 
basic characteristic of conventional buildings with regular 
edges. Buildings are then reconstructed from the listed 
features.  
In Wang (2000) Building Extraction from a high quality 
terrain surface is presented. The approach takes terrain 
surface data as input and goes through edge detection, edge 
classification, building point extraction, TIN model 
generation, and building reconstruction to extract and 
reconstruct buildings and building related information. For 
building detection, the presented algorithm detects edges 
from the surface data and classifies edges to distinguish 
building edges from other edges based on their geometry and 
shapes, including orthogonality, parallelism, circularity and 
symmetry. The classified building edges are then used as 
boundaries to extract building points and TIN models are 
generated with the extracted points. Each building has its 
own TIN model and its surfaces are derived from the TIN 
model.  
In Zhao and Trinder (2000) building extraction from aerial 
images and DEM is presented. In this research, a building is 
modeled as a polyhedron, comprising planes that are 
connected to form a solid volume. The intersections of 
adjacent planes are straight lines. The polyhedron has a set of 
attributes describing its geometry, radiometry, texture, 
topology, and context. From this model in order to address 
the complexity of the problem, the system consists of three 
parts: building detection, building segment extraction, and 
3D segment matching and building modeling. The detection 
process starts with segmentation of the DSM (Digital Surface 
Model) to derive regions of interest (ROI) that have high 
expectation of representing individual buildings. Texture and 
shadow information are extracted and used to refine and 
verify the ROI. Buildings are constructed in a bottom-up 
approach. Primitive linear features are first derived, and 
relevant building polygons are extracted by grouping and 
filtering these primitive features within individual building 
regions. 3D lines are then generated by feature matching of 
these segments. Based on the matched lines, buildings are 
reconstructed by piecewise plane formation and plane 
intersection.  

 
 

3. EXTRACTING ROOF REGIONS  
 
In this section the process of extracting the building roof 
regions is described. The first step is to find the building 
candidate points; this is done by convolving the LIDAR 
DEM with a minimum filter. The second step is to extract the 
roof planes from the LIDAR DEM. This is done by voting in 
a plane parameter space and finding the cells in the 
parameter space with large numbers of points. LIDAR DEM 
points are then classified based on the plane to which they 
contribute. A region-growing algorithm is then used to 
complete the roof region extraction.  
A minimum filter is first used for the process of finding 
building candidate points. First the DEM is convolved with 
the filter. The second step is to calculate the difference in the 
elevations between the original DEM and its filtered version. 
The differences in the elevations are used to select the 
candidate building points. All points with a height of 5.0 
meters or more above the surrounding terrain are classified 
as building points. Figure 2-a,b,c, and d show the LIDAR 
DEMs and the candidate building points for two buildings. 

The next step is to vote in the plane parameter space. The 
plane equation is presented by Equation (1). The two 
parameters a, b, represent two slop es in the X and Y 
directions and the parameter c is an offset parameter. In this 
research, the DEM grid was oriented nearly parallel with the 
building orientation and only one of the slopes, at most, was 
significantly different from zero. This allowed reduction of 
parametric space from 3 to 2. We used a 2D parameter space 
for the plane detection step after defining the main direction 
of the building, i.e. one of the two slope parameters is pre-
selected to be zero.  
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Figure 2-a. The Elevation Shaded LIDAR DEM 

(Building 1) 

  
Figure 2-b. The Candidate Building Points 

 (Building 1) 

 
Figure 2-c. The Elevation Shaded LIDAR DEM 

(Building 2) 
 



 
 

Figure 2-d. The Candidate Building Points 
 (Building 2) 

 
For each building candidate point a window is constructed 
around the point. All candidate points in the window are used 
to fit a plane using Equation (1). For each candidate point 
nine positions were tried and the position with the minimum 
residual was selected. This helps to include corner points and 
edge points, where the candidate point is either in the 
window corner or on its edge. A linear least squares 
estimation approach (Mikhail, et. al. 2001) is used to find the 
plane parameters at each point. If a statistic representing 
misclosure is small, the plane parameters at this point are 
used to vote in the 2D parameter space. Figure 3-a and b 
show the parameter space for the two buildings previously 
illustrated. 
The window size and the parameter space cell size are based 
on the quality of the LIDAR data and the building 
characteristics. Poor quality data forces the cell size to be 
large in order to compensate for variation in the evaluated 
parameters of different points in the same plane. The 
relationship between points and their associated parameter 
cell is preserved for later use. The approach is similar to that 
used in Davies et. al. (1988) to extract straight lines.  

 

 
Figure 3-a. The Parameter Space (Building 1) 

 

 
Figure 3-b. The Parameter Space (Building 2) 

 
The parameter space is then searched to find peak cells. Cells 
with a high number of contributing points are identified and 
used as the building planes. The minimum number of points 
in the cell to be used as the threshold varies depending on the 
data quality, building size, and DEM resolution. Each cell is 
then given an identification number to identify this plane. 
Points that contribute to a certain plane are then categorized 
using their plane identification number. Plane regions are 
then extracted using the identification number. Each point in 
the DEM has its plane identification number. We used a 
region-growing algorithm (Jain, 1989) to connect points with 
the same identification number. Regions with small areas are 
then eliminated, while other regions are kept as the building 
roof regions. Holes in the roof regions are then filled. Figure 
4-a and b show the extracted roof regions. The roof regions 
are used to extract the roof boundaries in the next section.  

 
 

 
 

Figure 4-a. Extracted Roof Regions (Building 1) 
 
 



  
 

Figure 4-b. Extracted Roof Regions (Building 2) 
 
 

4. LIDAR DEM REFINEMENT 
 

For each plane, the contributing points are used to adjust the 
plane parameters. The L1 norm (Marshall, 1998) is used in 
this step to update the plane parameters. L1 norm 
minimization is a robust estimation technique that has the 
ability to perform well in the presence of outliers. The 
updated parameters serve as the plane parameters at this 
stage. The elevations of all points that contribute to a certain 
plane are taken as observations, while the unknowns are the 
plane parameters.  
The next step is to apply the geometric constraints of the 
building roofs. The first constraint is the horizontal plane 
constraint. The plane parameters are checked to find if any 
plane has small slope values, i.e. the values of the parameters 
a and b are negligibly different from zero. In this case the 
plane is assumed horizontal. The second constraint is the 
symmetric constraint. Each two adjacent planes are checked 
to find if they satisfy a slope symmetry condition, as one 
would expect in a conventional gabled roof. The previous 
constraints are used to update the plane parameters. The 
mathematical description for horizontal planes is shown in 
Equation (2). The complete mathematical description that is 
used to find the parameters of two symmetric planes is 
shown in Equation (3).  
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Where n is the number of points in the region.  
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Where n is the number of points in region (i), m is the 
number of points in region (j). The overdetermined system is 
solved by least squares. The adjusted plane parameters are 
then used to refine the LIDAR DEM points. Each point 
elevation is refined based on the new plane parameters. 
Figure 5 and Figure 6 show the LIDAR DEM before and 
after the refinement. 

 

 

 
Figure 5. The Original and Refined DEM (Building 1) 

 

 
 

 
 

Figure 6. The Original and Refined DEM for Building 2 
 
 

5. ROOF BORDERS EXTRACTION 
 

The roof region borders are extracted after finding the roof 
regions. Roof border points are points that have at least one 
point of its 8-connected neighbors not from the same region 
(Rosenfeld and Kak, 1982). Figure 7-a and b show the 
extracted roof region borders.  
 



 
                
 Figure 7-a. Border Points (Building 1) 
 

      
 

Figure 7-b. Border Points (Building 2) 
 

In order to convert the extracted roof border points 
into polygons we used the algorithm presented in Bimal and 
Kumar 1991 and Bimal and Kumar (1992). The basic idea is 
to go through all the border points and only retain those that 
that are significant, i.e. those that represent vertices. The 
elevations of the corner points are then computed from the 
refined DEM.  Adjacent corner points are grouped to form 
the building wire-frames. Figure 8 shows the two resulting 
building wire-frames. 

  
 

 
 

Figure 8. Building Wire-Frames 
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