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ABSTRACT

This paper investigates into the model-based reconstruction of complex polyhedral building roofs. A set of 3D line
segments, obtained from multiview correspondence analysis of high resolution colour imagery, is used as input data.
The 3D line segments are grouped into planes by means of a Bayesian model selection procedure. In the resulting
planes, models for polygonal patches are then instantiated. Driven by the Maximum Expected Utility principle, the
algorithm chooses the optimal patch and plane configuration non-deterministically. Roof reconstruction is completed by
further reasoning steps which are guided by the semantic interpretation of the intermediate patch configuration. Several
successfully reconstructed complex roof structures corroborate the potential of the approach.

1 INTRODUCTION

For the automated reconstruction of building roofs from
high resolution aerial images, a roof model consisting of
planar polygonal patches has to be determined. As input
data for this process, 3D line segments from a previous
matching step are used. Due to the nature of the 3D scene
under consideration, most of the 3D line segments repre-
sent boundaries of planar polygonal roof patches. How-
ever, one can not expect that all important image features
are detected by the preprocessing steps and therefore not
the complete patch outline is available in 3D. An aggravat-
ing fact is that the set of 3D line segments is contaminated
by spurious matches, not corresponding to true image fea-
tures. Consequently, to establish roof hypotheses, inaccu-
rate and imprecise input data has to be handled. Never-
theless, the class of typical roof shapes is sufficiently con-
strained as to apply strong prior knowledge. This knowl-
edge will be exploited implicitly by the proposed roof mo-
del and explicitly by deriving parameter distributions from
a test dataset.

1.1 Previous work

Previous work on grouping straight line segments into pla-
nes in 3D space and on delineating patches lying in these
planes mostly appears in the context of building recon-
struction from aerial images. Some models are already
quite advanced (Henricsson, 1998, Moons et al., 1998, Bail-
lard and Zisserman, 2000), but many of these systems have
no probabilistic underpinning for handling uncertainty.

(Kulschewski, 1997) studies the recognition of buildings
from a single view using a dynamic Bayesian network.
The Bayesian network approach allows the author to han-
dle uncertainties in the input data, regarding accuracy and
completeness. Extracted roof outlines are used to reliably
classify the building type, yet modelling entire building
types imposes a limitation to the system. Another approach
(Heuel et al., 2000, Heuel and Förstner, 2001) is to guide

the process of 3D grouping with topological and geometri-
cal reasoning. Hypotheses for polyhedral surfaces are se-
lected using topological relations and verified using geom-
etry. The uncertainty of geometric relations (e.g. intersec-
tions) is modelled statistically. Since no patch models are
imposed, gaps in the patch delineation have to be filled in
a heuristic manner. (Baillard and Zisserman, 2000) pro-
pose a plane sweep strategy which is able to instantiate
plane hypotheses from only one reconstructed 3D line seg-
ment. Although a probabilistic interpretation is mentioned,
it is not exploited in the presented work. Missing segments
in the outline of the piecewise planar models are mainly
determined by back-projection in the input images and by
heuristic completion rules. A Bayesian approach for gener-
ating plane hypotheses from dense point correspondences
was proposed by (Cord et al., 1999). Since no patch model
is imposed, the delineation of the patch is solved by an hy-
brid method using 3D segmentation results and grey-level
intensity information of the input images.

Most recent developments in the field of automated build-
ing reconstruction are model based. In (Kim et al., 2001)
a feature-based system is presented, which deals with flat,
and to some extent, with complex roof types. Roof hy-
pothesis verification is done in a probabilistic framework.
Another model-based system is proposed in (Fuchs, 2001),
which combines different types of features using graph the-
ory. In this framework, roof reconstruction is formulated
as graph matching problem.

1.2 A generic model in a probabilistic setup

In this paper, a probabilistic formulation for the reconstruc-
tion of building roofs from sparse sets of incomplete and
imprecise 3D line segments is presented. In a first step, all
possible plane hypotheses – instantiated using at least one
line segment – are created, using a Bayesian model selec-
tion procedure. This leads to a hierarchical interpretation
of the scene. For each level in the hierarchy – correspond-
ing to specific plane hypotheses – hypotheses for planar



polygonal faces (patches) are created. This is achieved by
fitting a generic patch model to the data. After comput-
ing the Expected Utility for all patch and plane configu-
rations, the system chooses its interpretation of the scene
non-deterministically following the Maximum Expected
Utility Principle. The semantic interpretation of the line
segments in the resulting roof guides a search for further
patches until a consistent roof model is obtained.

The organisation of this paper is as follows. Section 2
briefly summarizes the processing steps from the image
data up to the reconstructed 3D line segments. In Section 3,
the application of Bayes model selection to the problem of
determining the number of planes in a scene is discussed.
In Section 4 a parametric patch model is proposed together
with a formalism to describe entire roofs composed out
of patches. The instantiation and evaluation procedure for
patches is presented in Section 5, and finally the complete
roof reconstruction is given in Section 6. Results of the
approach are presented in Section 7.

2 INPUT DATA

In this section we briefly summarize the steps leading to
the 3D line segments which are used for roof reconstruc-
tion. A detailed description of the individual steps can be
found in the references given below.

2.1 3D line segment reconstruction

The raw data consist of colour images of densely built up
urban areas. After edge detection and straight line fitting,
corresponding 2D line segments are sought in the stereo
pairs. Besides the geometric constraints given by epipolar
geometry and the specific image acquisition setup, chro-
matic constraints are also exploited to disambiguate the
matching and thus reduce the number of wrong matches
(Scholze et al., 2000). The chromatic constraints are ob-
tained by comparing the image neighbourhood of the line
segments under consideration in order to reject chromat-
ically incompatible matches. The number of remaining
matches is further reduced by considering the trifocal con-
straint and the chromatic constraints already mentioned.
If a match passes all statistical and geometrical tests, its
3D position is recalculated using bundle adjustment to en-
hance the geometric precision of the reconstructed 3D line
segment.

2.2 Initial semantic interpretation

Given a set of 3D line segments, these segments have to be
grouped into planes before the actual patch outline can be
determined. Only the most reliable line segments, obtained
from three view matching in conjunction with the chro-
matic constraints are used at the moment. In the next sec-
tion a method for plane instantiation with respect to a seed
line segment is introduced. In order to invoke the appro-
priate instantiation procedure, the function of the seed seg-
ment in the roof should be known in advance. Hence, the
segments have to be attributed with semantic labels (e.g.

ridge, gutter, gable). Of course, at this stage it is impossi-
ble to unambiguously assign a label to an arbitrary 3D line
segment. Nevertheless, class membership probabilities can
be derived. The ground-truth of a test dataset (Institute of
Geodesy and Photogrammetry, 2001) was used to learn the
semantic labels. The dataset shows urban and sub-urban
areas with four-fold overlap at an image scale of approxi-
mately 1:5000. Using some measured geometric attributes
(e.g. height, slant), the probability distribution for the re-
spective labels is learnt. For each class the algorithm cre-
ates a list of seed line segments sorted by probability.

3 PLANE HYPOTHESES

A key problem when fitting a model to data consists in the
appropriate choice of the complexity of the model. On one
side, the more complex model (that is, a model with more
parameters) will usually fit the data more closely. On the
other hand, the more complex model is likely to over-fit the
data. In this section we are concerned with the question,
how many planes are present in a subset of a 3D scene.
For the sake of simplicity, the discussion will be tailored
to the special case depicted in Figure 1, where a half-plane
is rotated around a tentative ridge-line. However, it should
be pointed out, that the framework is totally generic and is
applied successfully to arbitrary reference lines.

x′

φ2,max

φ2,min

ridge

y′

Figure 1: Illustration of rotating a half-plane around a ref-
erence line for plane instantiation.φ2 is the slant angle of
the plane, measured relative to a horizontal plane.

3.1 Probabilistic formulation

In the following, the term model refers to one or more
plane hypotheses and will be denoted withm. A plane is
given by a reference line and a slant angle (φ2 in Figure 1).
Models of different complexity correspond to a different
number of planes. For a fixed reference line, the model is
completely defined by the slant angle parameter(s)φ2. In-
dividual 3D line segments are denoted asxi and the entire
set ofN segments withx = (x1, . . . , xN ).

The plane model which best represents the datax is the
one which maximizes the posterior model probability

p(m|x, e) → max (1)

The background evidencee includes all assumptions about
the problem domain which are not explicitly present in the
formulas, e.g. that roofs consist of planar patches. By
means of Bayes’ theorem, this probability can be expressed
by the likelihood and the prior of the model

p(m|x, e) =
p(x|m, e)p(m|e)

p(x|e)
(2)



For the following discussion the prior model probability
p(m|e) can be neglected, hence the probability of a model
is only affected by the likelihood of the datax, given the
plane modelm

p(m|x, e) ∝ p(x|m, e) (3)

A model with more adjustable parameters can usually fol-
low the data more precisely and thus will lead to a higher
likelihood. But in cases where the data is subject to noise,
the most appropriate description of the underlying distri-
bution might not be obtained by modelling each data point
as precisely as possible. This problem is addressed next.

3.2 Likelihood, Marginalization and
Ockham’s razor

An estimate of the model likelihood – without taking into
account model complexity – can be obtained by a Maxi-
mum Likelihood calculation. If the model parameters would
be known, the likelihood would be given by

p(x|m) ∝ exp(−1
2
χ2) (4)

thereχ2 is the sum of squared distances between the data
points and the corresponding model predictions. For the
case of the plane rotation algorithm, one has to deal with
a one-dimensional problem. For fixed plane parameterφ2,
the distances between the 3D line segments and the plane
can easily be determined by computing the orthogonal dis-
tance.

Assuming the measurementsxi are sampled from a Nor-
mal distribution with parametersθ = {µ(φ2), σ}

p(xi|θ, m, e) =
1

σ
√

2π
exp

(
−1

2

(
µ(φ2)− xi

σ

)2
)

(5)

and assuming further, that the individual line segments are
independent of each other, thelikelihoodof the entire data-
setx is given by

p(x|θ, m, e) =
N∏

i=1

p(xi|θ, m, e) (6)

=
1

(2πσ2)
N
2

exp

(
−1

2

N∑
i=1

(
µ(φ2)− xi

σ

)2
)

with N being the number of line segments. If needed, the
normalization constantp(x|e) can be computed via the re-
quirement

p(x|e) =
∑
m

p(x,m|e) =
∑
m

p(x|m, e)p(m|e) (7)

since the possible models form a set of mutually exclusive
and exhaustive events. To deal with the unknown model
parametersp(x|m, e) can be expressed as marginal density
computed overθ (which corresponds to an integration over
φ2 in the given case)

p(x|m, e) =
∫

p(x, θ|m, e)dθ

=
∫

p(x|θ, m, e)p(θ|m, e)dθ (8)

To impose no prior knowledge about the probability dis-
tribution of parameterθ, the Maximum Entropy argument
suggests a uniform density forp(θ|m, e)

p(θ|m, e) =
1

µmax − µmin
(9)

As will turn out later, good estimates forµmax andµmin

are available. Collecting the terms, following expression
for the posterior probability for the one plane model is ob-
tained

p(m|x, e) ∝ 1
µmax − µmin

× (10)∫ θmax

θmin

exp

(
−1

2

N∑
i=1

(
µ− xi

σ

)2
)

dθ

Now consider the case of aM plane model. Here one has
θj = {µj(φ2,j), σj}, j = 1, . . . ,M . The probability of
measurementx can be modelled as mixture ofM Gaus-
sians

p(x|m, e) =
M∑

j=1

p(x|mj , e)P (mj |e) (11)

Each component of the mixture corresponds to a plane.
Themixing parametersP (mj |e) denote the probability of
a segment, being generated from componentj. The condi-
tional densitiesp(x|mj , e) are calledcomponent densities
or class–conditional densities. In order to obtain the poste-
rior probability of the mixture modelm = {m1, . . . ,mM}
one follows the steps described above to finally obtain

p(m|x, e) ∝ 1
M(µmax − µmin)M

(12)

∫ θmax

θmin

exp

−1
2

M∑
j=1

N∑
i=1

(
µj − xi

σj

)2

zij

 dθ

with zij being aclass indicator variabledefined as

zij =
{

1 : if xi was generated by componentj
0 : else

(13)
The details of the calculation can be found in (Scholze,
2002). The fraction in front of the integral is commonly
referred to asOckhamfactor. It penalizes more complex
models by decreasing the posterior model probability.

3.3 Hierarchical interpretation

In this section, the probabilistic plane model selection frame-
work is turned into an algorithm. The problem will be for-
mulated as divide-and-conquer algorithm. In a first step,
all 3D segments in the neighbourhood of a seed line seg-
ment are collected. Now the goal is to determine how
many planes are needed to describe these segments. Us-
ing Equation 12, the posterior model probabilities for a
one-plane modelp(m(1)|x, e) and for a two-plane model
p(m(2)|x, e) are determined. If the probability for the one-
plane model is higher than for the two-plane model the al-
gorithm stops. In the opposite case (there more than one



plane is to be expected) the set of line segments is split
into two subsetsx′

1,x
′
2, according to the indicator vari-

ables (Equation 13) of the two-plane model. The above
procedure is repeated recursively for the individual subsets
until the condition

p(m(2)|x′) < p(m(1)|x′) (14)

is reached for all subsets. Formally, the system constructs a
hierarchical scene interpretation which can be represented
as a tree as depicted in Figure 2. Due to a lack of space, the
publication if a significant empirical validation of this find-
ings has to be postponed, however it is currently in prepa-
ration.

m
(1,2)
1

m
(1,2)
3

m
(1,2)
2 m

(1,2)
2

m
(1,2)
3

Figure 2: Illustration of Divide and Conquer algorithm for
plane hypothesis creation. Each node represents a subset
of line segments and the two model hypothesesm(1) and
m(2). (Only the root node corresponds to the entire set
of neighbouring segments.) The lower indices denote the
level of recursion. For a leave node at leveli the relation
p(m(2)

i |x′
i) < p(m(1)

i |x′
i) holds.

4 ROOF MODEL

A roof is modelled as a collection of planar patches. It
suffices to distinguish between triangular and quadrangu-
lar patches, since more complex patch shapes (e.g. L-
shapes) are obtained by patch composition. A patch can
be accessed through two different types of representations
which are kept in parallel. On the one hand, a paramet-
ric representation is provided, allowing direct inference of
quantities such as angles or lengths. On the other hand,
the coordinates of patch corners in the 3D world coordi-
nate system are made accessible. The importance of this
dual representation transpires when modelling an entire
roof. A roof is defined by its patches and the relations be-
tween them. Possible relations are given by coincidence
or equality constraints and can hold either between coordi-
nates or parameters of different patches. Consequently, the
dual representation allows to integrate diverse constraints
such as geometric symmetry or topological connectivity si-
multaneously and at the same level of complexity. Once a
relation between patches has been established, changes to
one patch are propagated to all other affected patches in
the roof.

4.1 Patch model

In Figure 3 the parametrization for a quadrangular patch
is shown. The advantages of the parametric representation

are that the quantities involved have an obvious meaning,
and that probability distributions for the parameters can be
obtained (e.g. from a test dataset). Additionally, this rep-
resentation allows us to incorporate symmetries into the
resulting roof model.

In parallel to the parametric representation, a representa-
tion based on the 3D world coordinates of the corner points
P0, . . . , P3 of the patch is kept. Although this dual rep-
resentation is somewhat redundant, the coordinate based
representation will be especially useful when introducing
coincidence constraints as discussed in the next section.

α1

α2w

h

φ2

P2

T

P0

P1

P3

Figure 3: Quadrangular patch model.T is the transforma-
tion from world coordinates to the local patch coordinates
system including a translationR and a rotation around the
z-axis byφ1. The slant of the patch plane is given byφ2.
The inclination of the bordering segments is denoted with
α1 andα2 respectively. The parametrization of the patch
is completed by specifying the widthw and the heighth.

4.2 Roof=
∑

patches+ constraints

A roof consists of its constituting patchesplusconstraints
which describe the relations between the patches. As an
illustrative example, consider the L-shaped patch in Fig-
ure 4, constructed out of two quadrangular patches. In or-
der to compose the two patches into one, two constraints
are imposed. By making use of the parametric represen-
tation, a unique slant angle can be achieved by requiring
φ

(1)
2 = φ

(2)
2 . Additionally, the coordinate based repre-

sentation allows to glue corner points together by setting
P

(1)
0 = P

(2)
1 .

φ
(2)

2

P
(2)

3

P
(1)

0

φ
(1)

2

Figure 4: Illustration of the two different types of con-
straints. See description in text.

5 PATCH HYPOTHESES

This section focuses on the instantiation of the roof mod-
els. During the Bayesian model selection procedure (Sec-
tion 3) 3D line segments are associated with different plane
hypotheses. Now, patch hypotheses containing the seg-
ments in the different planes are sought. The outlines of the



patches are determined by computing the extremal points
of the convex hull of the plane segments. Then, the patch
parameters are adjusted to contain the extremal points.

5.1 Utility Theory

In order to decide which of the possible patch and plane
configurations should be chosen for the final model, Util-
ity Theory is used. Consider a non-deterministic actiona
which changes a system from stateS to a set ofn possible
outcome states{S′

1, . . . , S
′
n}. Theexpected utilityEU of

actiona is given by

EU(a) =
∑

i

p(S′
i|a)U(S′

i) (15)

wherep(S′
i|a) is the probability of stateS′

i given actiona
is preformed, andU(S′

i) is the utility of outcome stateS′
i.

If several different actions are possible, theMaximum Ex-
pected Utility(MEU) principle assures a rational behaviour
of the system (Pearl, 1988). It says, that a rational system
should choose the action which maximizes the expected
utility. For roof reconstruction, the state of the system is
described by one or more nodes in the interpretation tree
from Figure 2. Possible actions correspond to choosing a
specific state as final result.

5.2 Definition of the utility function

The outline of a patch consists of reconstructed 3D line
segments and line segments stemming from the convex-
hull completion of the outline. The most reliable descrip-
tion of a patch is certainly given, when all of its borders are
reconstructed 3D line segments. Gaps between the recon-
structed 3D line segments are closed using a convex-hull
calculation, hence these border segments are more doubt-
ful. This line of thought leads to the definition of the utility
function for the task at hand. The utility function is defined
as the ratio between the length of the border given by the
reconstructed 3D line segments and the total length of the
outline

U =
∑
||lreconstructed||∑

||lreconstructed||+
∑
||lcomputed||

(16)

Besides the completeness of the boundary description of
the individual patches, the compatibility within patches is
taken into account. Themutual overlapturned out to be an
appropriate measure

U = 1− normalized mutual overlap (17)

there the area of overlap is normalized to lie within the
interval[0 . . . 1].

Since the entities for both Utility Functions are indepen-
dent, a combined Utility Function is found by multipli-
cation. The patch (and consequently plane) configuration
with Maximum Expected Utility is entered into the final
roof model.

6 ROOF RECONSTRUCTION

The patch hypothesis generation procedure described in
Section 5 is sufficient to reconstruct roofs whose patches
lie on planes which contain the seed line. To complete the
reconstruction of more complicated roofs, a semantic in-
terpretation of already reconstructed patches is performed.
The key idea is to identify patch segments which might
correspond to an internal boundary of the roof – that is a
concave or convex joint of roof patches. Given such seg-
ments could be identified (if present at all), these in turn
form a set of seed segments which are fed into the recon-
struction algorithm again.

6.1 Semantic labels

We distinguish five different semantic labels for patch seg-
ments. The names of the labels are chosen to be coherent,
although they should not be taken literally. Hence, agut-
ter segment just corresponds to the lower boundary of a
patch, no matter if there is a gutter in the scene or not. Fig-
ure 5 gives an overview. The labels for the reconstructed
patch borders are obtained using a probabilistic relaxation
labelling algorithm (Christmas et al., 1995), which will be
described in more detail elsewhere. Basically, geometric
features of the individual line segment (unary relations)
and geometric relations between pairs of line segments (bi-
nary relations) are used to obtain a semantic classification.

Gable

Ridge

Gable

Gutter

convex
connection

concave
connection

Figure 5: Functional parts of a roof and their semantic la-
bels. The labelridge is generally used for the upper bound-
ary of a patch,gutter for the lower one. The boundaries of
a patch are either labelledgable, convex connectionor con-
cave connectiondepending on the neighbourhood.

6.2 Final reconstruction

It is desirable to have a topologically correct, that is, a
point-wise connected reconstruction of the roof. There-
fore, corner points of patches with compatible semantic la-
bels are forced to coincide in a finalgluing step. Thus, in
this step, topological correctness is preferred over geomet-
ric precision.

7 RESULTS AND CONCLUSION

The presented results are obtained using a state-of-the-art
dataset, produced by Eurosense Belfotop n.v. The image
characteristics are: 1:4000 image scale and geometrically
accurate film scanning with20 × 20 microns2 pixel size
corresponding to8×8 cm2 on the ground. The 3D line seg-
ments are obtained using three overlapping views. The pre-
cise sensor orientation is known. To emphasise the quality



of the reconstructed roof geometry no texture mapping is
applied.

Figure 6 shows a reconstruction result for a building roof,
which was completely reconstructed from its seed (here:
ridge) line by one pass of the reconstruction algorithm.
The reconstruction results are detailed and topologically
correct. For instance the small difference in the slope of
the two patches on the right side of the roof has been cor-
rectly detected. Figure 7 shows the reconstruction of an-
other building roof. The triangular patches on the front
side do not lie in a plane given by the seed line. However,
driven by the semantic labels attributed to the partially re-
constructed roof, the missing patches could be successfully
found.

Figure 6: Three-dimensional view of a reconstructed build-
ing roof. The structure is modelled correctly, especially the
two different slopes on the right hand side of the roof.

Figure 7: Three-dimensional view of a reconstructed build-
ing roof. The non trivial roof structure is captured to its full
extent.

Concluding, in this paper we have presented a novel ap-
proach for the probabilistic modelling of building roofs.
The proposed theoretical foundation leads to stable and
reliable results. Future work will focus on exploiting the
knowledge available in form of test datasets to a broader
extent, with the goal to initialize roof models with even less
evidence in 3D space. Another research direction which
is pursued at the moment is oriented toward the optimiza-
tion of the geometric accuracy of the models using back-
projection into the input images.
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of Zürich Hoengg. Swiss Federal Institute of Technology
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