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ABSTRACT:

A LIDAR filtering technique is used to differentiate on-terrain s and off-terrain points from a cloud of 3-D point data collected

by a LIDAR system. A major issue of concern in this low-level filter is to design a methodology to have a continual adaptation to
terrain surface variations. To this end, several essential observations are discussed in this paper: i) the terrain surface can be
fragmented into a set of piecewise “homogeneous” plane surfaces, in which terrain surface variations are smoothed out, ii) a criterion
for differentiating on- and off-terrain point from plane terrain swwd can be equivalently applied to these terrain segments assumed

as being plane, and iii) an inter- and intra-relationship of on- and off-terrain points can be as verifyingrtbe taken assumption

of the plane terrain surface. The main strategy implemented in@AR filtering technique is to iteratively generate a number of

terrain surface models in order to hypothesize and test a plane terrain surface over a local area. Finally, the most reliable plane terrain
surface model is selected as an optimised solution and thus the terrain surface model is refined. To this end, we devise a two-step
divide-and-conquer triangulation in terms of downward and upward model refinement; in this framework, a tetrahedron is used in
order to hypothesize a plane terrain surface andvh@mum Description Length (MDL) criterion is employed for the selection of

an optimized plane terrain surface model. The useful characteristics of this method are discussed with results derived from real
LIDAR data.

1. INTRODUCTION generates a set of new labelling observati§nahich can be

described as follows:
Recently, LIDAR tebinology has been getting much more

attention from the photogrammetry, remote sensing, surveying

and mapping community as an important new data source for a S={g"
wide range of applications; topographic mapping, bathymetry, B ';‘1. B ] (1)
forest mapping, crop height measurement, flood modelling and f={f}% f =F(s): f Qonoff}

3-D building modelling (Cobby et al., 2001). Among the many

algorithmic methodologies used to generate the above value-

added products, a filtering technique to differentiate on-terrainvherei is the index of discrete poirg; N is the dimension of

points from off-terrain points has been emphasized as athe domainS f; is a label assigned to the poigtfrom a label

efficient focusing strategy to understand complex scenesset {on, off}.

Although various types of filtering techniques have been

introduced (Pfeifer & Kraus, 1998; Axelsson, 2000; Vosselman/|n order to give the labelling function F of Eq. (1) an actual

2000), Flood (2001) reported that 60% - 80% of LIDAR datamethod to populate wanted terrain labels, a criteridrto

processing lines running in private firms is allocated to manuabdifferentiate on- and off-terrain points is needed. A major issue

classification and final quality control, due to the lack of concerned in the selection dfis how to maked robust under

efficient algorithms for extracting the bare earth surface. the circumstances where background knowledge about
underlying terrain slope has changed; when terrain slope
changes gently or abruptly. This scale issue governs the overall

2. PROBLEM DESCRIPTION performance of the filter. Figure 1 illustrates a simple example
) where a criteriordis selected to differentiate on- and off-terrain
2.1 Labelling Problem points from a flat terrain surface; a point with slope angle larger

o . . . . thanois labelled as an off-terrain point; otherwise, it is labelled
A ITIDAR filtering t.echnlque to dlfferentlatg on- and off-terrain FS an on-terrain point (see Figure 1(a)). However, when a point
points from a point cloud can be considered as a low-leve . . S :

Is located in a different background, this criteridiis not valid

vision problem. Such a low-level filtering technique is often ) .
posed as a labelling problem in which predefined semanti@"y, More since the background knowledge that the terrain

labels are assigned to data (Li, 2001). Surface is flat has been altered (see Figure 1(b)).

Suppose that we have a set of discrete LIDAR poBi@nd a There may be two ways to tackle this problem. One is to make

labelling function F which assigns pre-designed semantic label@daptive to underlying terrain slop&] is trained with the
namely {on, off} to the data domai. The labelling function F analysis of background knowledge about terrain slope collected



within pre-specified areas (Vosselman, 2000); a statistic mediawhere j is the model index of the piecewise planar surface

value of slope angle distribution characterize a terrain slope ofnodel ¢ ; [aj b, CJ is the parameter vector of the planar

an investigated local area (Axelsson, 2000); a “good” mixture o .

of on- and off-terrain points over a local area is assumed so thdPdel ¢ ; s™ is the vector of the LIDAR points located

it facilitates an iterative terrain resampling process as itswithin @ , which is labelled as on-terrain point when the

E’;‘{;;gf;ﬂfaj’; {“96598*)‘_“”9 function are. fmplicity determined . peling function F is givenf (s, |¢;.) = for} - In Eq. (3), the
planar terrain surface modej is made of the on-terrain points

In contrast to this, the other method devised in our current wor

is to fragment the entire terrain surface into a set of piecewis

segments so that they have “homogeneous” backgrounthe dimension of the model spage created when the entire

knowledge of the underlying terrain slope as being “plane”. Indomain s is initialised as the on-terrain poing (S) ={or} .

this context, a criteriodis explicitly selected in such a way as

to differentiate on- and off-terrain point from a “plane” terrain. Now, a terrain surface reconstruction problem can be

This can be universally applied to overall terrain segment§eformulated to determine a global optimised solutigh,
regardless of terrain surface \amces since all terrain segments hich is obtainable from the searching process of a local
are assumed to be plane terrain surfaces. Hence, a LIDAR .~ . L gp

optimised solutiong as follows:

filtering technique could beanverted into a problem to look
for a set of plane terrain surfaces into which terrain surface
variation is regularized, rather than to estimattself.

Emly, which is satisfied with the Conditiosz"” =0 andM is

* * ’k - * l_(i' * é on :0 4
To achieve this goal, it is necessary to use a terrain surfacg/ (¢ ) g ?( ') )
model ¢ to hypothesize a set of plane terrain surfaces, and a

criterion dthat is independent of the model. In this approach,

the labelling problem in Eq. (1) can be rewritten as follows: where g s the locally optimised piecewise planar surface

model; k is the dimension of the model spagé, which is less
than M of Eq. (3); (s)" is the vector of on-terrain points
f:{fi}iNzi fi:F(Sll//,é—); f,  on off} (2) . (J) ) )

located withing . Eq. (4) presents us with several important

points to be noted in reconstructing the terrain surface.
where a labelf, for LIDAR point g is determined when a

terrain surface modep and a criteriond are given.

_o A A 5E

e It considers the dimensiok of an optimal terrain surface
model ¢ as a variable to be determined during a terrain

surface model reconstruction process, rather than being a
pre-fixed constant as in Baillard & Maitre’s work (1999),

in which global labelling observations are optimized
within a pre-specified number of flat terrain models having
almost the same size.
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(a) 0 applied on a flat terrain surface

e Alocally determined planar surface modpj*l is required

to be comprised of on-terrain points. Thus, the
determination ok is directly related to the number of on-

terrain points found, wherkincreases as on-terrain points
are iteratively obtained.

(b) 0 applied on a terrain surface with the mixture of

variousterrain scales + The methodology to achieve an optimal solutigs
shown in Eq. (4) is based upon a local optimisation
approach rather than a global minimisation technique. That
is, a planar surface model is found as a local optimal
solution ¢ and thus the global terrain surface mogel

Figure 1. lllustration of terrain scale dependencydofvhen
given ¢ is explicitly applied on various types of terrain
scales as a slope angle criterion.

2.2 Terrain Surface Reconstruction Problem is determined as a set of local optimal solutidigs .

Suppose then our terrain surface mogein Eq. (2) can be

) ) : It is necessary to discuss an optimality criterionggfused in
described as a set of piecewise planar surface mqgglsas

Eq. (4). In Eq. (2), the labelling observatidrof the LIDAR
pointsSis determined using a criteriodunder the assumption
that underlying terrain surface is “correctly” reconstructed as
flat by a planar surface model. However, if its assumption is not
v={gts g=[a b clie" (3)  valid, the labelling error of becomes large so that real on-
terrain points are misclassified into off-terrain and vice versa.
Thus, the optimality is achieved when labelling observation
generated supports most properly the prescribed assumption of
plane terrain surface.

follows:



To obtain these local optima, we adopt the hypothesis-test

approach. A local terrain is hypothesized as a plane terraing ={f}, Os0S & F (Sl @, @); 1 {on off} (6)
surface by a number of planar surface model candidg#ps : i : :

According to Eg. (2), corresponding labelling observations
{f3} can be generated whediis given. We can then try to where f, is a set of labelling observations generated wiggis

measure the closeness between a model candidagad its  given. Once the modajaj reconstructs a local terrain surface, it
]

observationf© to test the hypothesis of a plane terrain surfaceis required to determine whether this terrain reconstruction
J rocess would continue over the underlying area. If a condition

o trigger the process is satisfied, the underlying terrain is
described in Bayes estimate framework as follows: fragmented even further in order to be made more flattened, and
this process continues until its termination condition is satisfied.

reconstructed bygf . Such closeness measurement can b
1

¢ =arg ru?g)xP (g oP ) 5) Thed, selected is used to provide a triggering and terminating
J condition for terrain fragmentation. As seen in Figure 2, assume
that we have a set of LIDAR poinf, and ¢ is used as a local

where ¢f is a planar surface model candidate generated for ®I2ne terrain surface model. According to Eg. (3), on-terrain
! points populated by using, must be satisfied with following

local terrain; f¢ is the observation when givegf and ¢ ; . . . .
I L condition; ¢js°" =0 where s™ is vector of on-terrain points
1 1

P( f WJ'C’J) Is the conditional probability density function of belonging toS. If there exists any on-terrain point with which
the observationf?; P(¢f) is the prior probability of the model this conditioning property is not satisfieys™ # 0, it indicates

¢f . Thus, an optimal solutiogy can be found as maximizing terrain surfaces having different slopes coexist within the
Eq. (5). underlying area ang; is not enough to make it flattened. Thus

a terrain fragmentation process is triggered to seek more planar
surface models to reconstruct underlying terrain surface as
3. OVERALL STRATEGY being plane.

In this section, we discuss several important concepts used faf/e shall define a “buffer space” as one located between the
implementing our terrain surface reconstruction algorithmiterrain surface modep and g, which needs to be empty of

firstly, we define a criterion selected to differentiate the on- and . : . .
off-terrain points and describe its role in the current framework;any LIDAR point to make the terrain fragmentation process

secondly, we explain how to measure the closeness between tﬁeﬁrmlnate_ (Figure 2). The emptlr_less of “buffer space
characterizes a plane terrain surface in a sense that when a local

plane surface model and its labelling observation used in Edq. . . o
(5); finally, we describe overall strategy to reconstruct rea?area is properly flattened bzy)J  there must be a discontinuity

terrain surface as a set of piecewise planar surface models. ~ within the “buffer space”, in which any LIDAR point cannot be
located. Hence, both emptiness of “buffer space” and prior

3.1 PlaneTerrain Prior assumption of plane terrain surface for underlying area control
trigger and terminate overall terrain surface reconstruction

Since it is assumed priori that the underlying local area is process in our research.

flattened by a planar surface model, our criterion to differentiate

on- and off- terrain points can be applied to the entire terrain

surface model with the same meaning in such a way as to

. . . . (2) (2)
classify a LIDAR dataset into on- and off-terrain points when
the underlying area is projected into a horizontal flat terrain. Off-terrain 0
space Oterrain
To this end, we select a constadijt as the criterion, which is _ — — o ey
vertical height measured relative to a local terrain surface modefffer space L S b
i i n-terrain >
@ - Once a local terrain surface is reconstructed by the planalgpace l ) frequency
surface modely , this reconstructed terrain surfaceaspriori ®  on-terrain point O off-terrain point
assumed as being “flat” and relative vertical heights of —— real terrain surface —'=  plane terrain model ¢

underlying LIDAR points are recomputed from. Then, the

constant criteriong, straightforwardly assigns corresponding Figure 2. lllustration of a “buffer space” used to provide a

labels to underlying LIDAR point§j located within(pj; if a triggering and terminating condition for the terrain

relative height of a point measured froeyyjn is less thang, , an fragmentation process.

on-terrain label is assigned to this point; otherwise, an off-32 Terrain Polarity M easurement
terrain one (see Figure 2). This labelling process usipgs
universally applied to the entire LIDAR data regardless oflf the terrain fragmentation process is triggered, the remaining

terrain surface variances and thi, is independent ofp . Eq. problem is to seek the “best fit" planar surface model to
! reconstruct underlying real terrain surface as being plane. To

this end, it is necessary to discuss a criterion for this model
selection problem. Let us define an intra-relationship of on-

(2) can be rewritten as follows:



terrain points as seen in Figure 3(a), in which two neighbouringdescription Length (MDL). This will be discussed in a later
on-terrain points are connected with each other, and thesection.
measure an angle differengg,_, between the terrain surface

model g, and “on-on” paired observation. Similar to this, an 3.3 Two-step Divide-and-Conquer Triangulation

inter-relationship of “on-off" paired observation can be also| et us discuss how to determine the dimensiowf the terrain
defined and its angle differend®, , is measured fromp, as g, face model spacg” in Eq. (4). As discussed previously in

seen in Figure 3(b). Eq. (4), the determination df is related the ability to find an

) on-terrain point out of a point cloud increases as on-terrain
In our research, these two different angle measurements agints are iteratively obtained. This recursive process terminates
used to test the hypotheses of planar terrain surface modelghen any on-terrain point cannot be found, and results in a set

generated by assumption of the flat terrain. If a planar terrairbf lanar surface mode K satisfving Eq. (4
surface model hypothesized correctly reconstructs real terrain P m'k}iﬂ fying Eq. (4).

surface as being “flat”, on one hand, the slope angle of the o ) ] ]

model used reflects real terrain slope. On the other hand, tw¥/e adopt thedivide-and-conquer triangulation approach, in

anglesg, . and g, , which are relatively measured from which the original problem domain is recursively decomposed
into sub-problems and represented by means of a Delaunay

the planar Ferrain surfape model, show the charagteristics fiangulation. This divide-and-conquer triangulation is
plane terrain surface; i, ,, gets closer to 0° since the jhiemented as two parts in our framework, namely downward
labelling error that on-terrain points are misclassified as off-and upwardivide-and-conquer triangulation, depending on the
terrain, becomes smaller and thus, intra-relationships of oneriteria of triggering and terminating this process. In the
terrain points follow the tendency of plane terrain slope; ii) downward process, the dimensidn of the terrain surface
Opn-or 9€ts closer to 90° in which off-terrain points show model spacey is initialized as 1, so that an initial terrain

obvious discontinuity from plane terrain slope. Thesesurface model is approximated with only one planar surface

characteristics can be augmented when the underlying feﬁhodel;z//:{w}*_l, wherek =1. Then, on-terrain points are
terrain surface is more flattened by a hypothesized planar e

surface model; otherwise, the labelling error becomes larger an;ﬁcursivgly obtained by the use of pr_e-_s_pgcifie_d propositions of
thus, it degenerates these characteristics of a plane terralf® terrain surface model so that the initializgdis fragmented

surface. into a number of planar surface models represented in a form of
TIN. This terrain segmentation process continues until any
Based upon previous Observations‘ we assume that ﬁegative LIDAR point located underneath the reconstructed
characteristic of plane terrain surface can be given by théerrain surface model cannot be found.
observation of “bi-polarity”, in which the smoothness and - _ o
discontinuity polarity are defined as a distribution @f _ of ~ The upwarddivide-and-conquer triangulation is the core part of
“on-on” paired observations and a distribution&f ., of “on- our terrain su“rface reconstruction te”chnlque,uln which the afore-
mentioned “plane terrain prior” and ‘“terrain polarity
off” ones respectively. Figure 3(c) shows a desirablemeasurement” are used. The process investigates the triggering
distribution of plane terrain surface in terms of the terraincondition for terrain fragmentation over all p|anar surface
polarity measurement, in which two peaks of “bi-polarity” models generated by the downwardivide-and-conquer
distribution appear close to 0° and 90° respectively when givefriangulation. Once the terrain fragmentation process is
?, correctly reconstructs the real terrain surface as being plangiiggered over a planar surface modalj , a number of

otherwise, it shows a Gaussian distribution. tetrahedral models are hypothesized as planar surface models in
a sense that three lateral facets of a tetrahedron are used as
plane terrain surface model candidates. Then, distributions of
terrain polarity are measured over all tetrahedral models. Thus,

O e ' ey e .
&0 P polarity - the_ most o_ptlmlzed tetrahedr_al model satisfying with tr_\e
@ J optimality criterion of Eq. (5) is selected and the on-terrain
/ point newly found by this model contributes to refining.

o}
/ . - - . . s
149 This process continues until the terminating condition for the
LSEEAN @ 9!)0 ) terrain fragmentation process is found over the entire terrain
o f’) S t(h°> ity surface model. The process of downward and upward divide-
on-terrain poini —_— smoothness polarr . - . . - g e
O oftteranpont discontinuity polarity %r;g@?nngqg:;tiglnangulatlon will be discussed in detail in the

Figure 3. lllustration of terrain polarity measurement.

. . o 4. TERRAIN SURFACE MODEL RECONSTRUCTION
Hence, the terrain polarity measurement serves as a criterion for
the selection of “best fitt” planar surface model out of the modelrjg 4 shows an overall process used for reconstructing the
candidates hypothesized; a surface model to show the strongggfrain surface model. In this section, we discuss the fore-

polarity, where two peaks get much closer to the polaritymentioned overall strategy in more detail according to the
boundaries 0° and 90° is selected as an optimized modgjocks depicted in Fig 4.

solution. In our framework, this terrain polarity measurement is
converted into the conditional probability density function used
in Eq. (5) and finally described in the form of Minimum



not valid within a local terrain surface modg , a point with
Lidar Data

the maximum negative distance measured figris selected as

the most reliable terrain point.

Initial Terrain Surface Model Generation

v

Downward An initial terrain surface model is given as a rectangle
Divide-and- Conquer Triangulation {g} ., wherek=1. The first proposition is investigated over the

> Current
Model Stack

individual ¢ . If any negative point located underneath a model
Model Upgraded Is current

model stack

@ is found, its distance is measured frggnand stored in a

sequential data list. When this process is completed gvea

point with the maximal negative distance is selected from the
sequential list and assigned as an on-terrain point according to
the second proposition. This investigation process to look for
the negative points is made over the entire model spage

Plane Terfain Prior

ide-and-Conger Triangulatit
, .
Tetrahedral Terrain Surface Model /
Hypothesizing %

Triangulation

[

Then, a TIN is constructed by these newly found on-terrain
points and the ones used for a previous terrain model. Hence,

e

////////////////’///////////////% the dimensiork of the reconstructed terrain model increases.

gf This downward divide-and-conquer triangulation process

é//////////////jy///////////////j ol con(;inlues lzntil r';o negj\ivg) point is found within the entire
b V) | Terrain Prior mo e{wl} see Figure .

MDL Computation

NN
\\\\\\\\

N\

Optimal Planar Surface Model Selection

2|

NN
MANN

Is on-terrain
stack empty?2

Termination

Figure 4. Overall strategy implemented in our terrain surface
reconstruction algorithm.

On-Terrain
Point Stack

Figure 5. lllustration of the downwardiivide-and-conquer

4.1 Initial Terrain Surface M odel Preparation triangulation process.

A terrain surface modey is initialized with a rectangle, which 43 Upward Divide-and-Conquer

has four corner points assigned as on-terrain points. These

corner points can be easily computed by the use of the domaia set of the planar terrain surface modég} reconstructed by

Itﬂ?rg]r?ttilr%n Efgg‘;u%’?‘nF:S%athEténg‘att'e% rzciltgn?r:i tgitdcoversthe downwarddivide-and-conquer triangulation is stored in the
P 9 y form of TIN in the “current model stack”, from which a model

coordinates of its four vertices are computed from the given . . o .
domain information ofS. A TIN is constructed using the entire @ Is selected. A set of member poirfislocated withing s

Sand the four vertices of the rectangle generated. Thealues ~ obtained and its relative vertical heights measured fignare

of neighbouring points connected tach corner point are computed. Then, a condition for terrain fragmentation

averaged, and this value is assigned tozhvalues for the four - mentioned in the previous section is investigated ayewhen
vertices of the rectangle generated. These corner points ar

labelled as on-terrain points; hence the initial terrain surface® 1S 9iven; if the buf'fe.r '.[erraln space gengrated @"S nqt
model is prepared (see the top of Figure 5). empty, the upward divide-and-conquer triangulation is
triggered; otherwise, this process does not continuegfoand

Since neighbouring points connected to the corner points arghe next model is selected from the “current model stack”, over
explicitly considered as on-terrain points for the computation ofwhich the triggering condition for terrain fragmentation is

z values of the corner points, these may include errors. Howeveginvestigated (see Figure 4).

the size of a local terrain surface model reconstructed by the usg/hen the upwardiivide-and-conquer triangulation is triggered,

of these corners gets smaller through our recurdivile-and- 3 new on-terrain point is found through a series of processes,
conquer triangulation process, hence its modelling error can beyhich will be discussed in the following sections and then this

minimized. newly found on-terrain point is stored in the “on-terrain point
o stack” (see Figure 4). This process continues until all models
4.2 Downward Divide-and-Conquer stored in the “current model stack” are investigated. Then, if

o L any new on-terrain point is found from the “on-terrain point
We use two propositions for the downwatitkide-and-conquer tack”, this is added up to the on-terrain points stored in the

triangulation process; 1) any point cannot be located underneall  rent model stack”. Using this new set of on-terrain points,
a reconstructed terrain surface model, and 2) if proposition 1 ig, o current terrain surface model is upgraded by the Delaunay



Triangulation. However, if no new on-terrain point can be plane. Then, a set of labelling observatidrfer Sis generated
found from the “on-terrain point stack” after the upwatidide- by Eq. (6) wheng, is given (see Figure 7(b)).

and-conquer triangulation is completed over the entire current
model space, our terrain reconstruction process is terminated
(see Figure 4).

431 Observation Model

Once the upwardlivide-and-conquer triangulation process is
triggered for certain areas reconstructed by a planar terrain
surface modelp , the remaining problem is to look for “the

(b) XY,

most reliable” on-terrain point from LIDAR datasg located @
over ¢ so that this local area is fragmented into more planar P 4

terrain surface models. To this end, a tetrahedron motés _-g__ﬁ___\i;g_-(ﬂ

adopted for terrain fragmentation Qfl , in which the base

. i .. © (d)
triangle ofTJ. corresponds tay and the remaining three lateral B oox B s O ofs @ onemsipont o omseranpon
facets oij‘ are hypothesized as planar surface models whisre  Figure. 7 lllustration of observation model used for the

the index of the tetrahedron model candidates generated over Polarity measurement.

) and k is the index of facets which comprise a tetrahedron
4 P In order to make inter- and intra-relationships for on- and off-

model T; (see Figure 6(a)). terrain points, a TIN is constructed ovieas seen in Figure 6(c).
Now, let us introduce a new observation varialpjefor the

terrain polarity measurement using this TIN. Suppose that we
have a labelling function R which assigns a new labelling
observationy; to each trianglep, of TIN from a semantic label

set {ons, bufs, offs} (see Figure 7(d)); a “ons” is assignedfo
when all the three vertices of, are labelled as on-terrain
points by Eq. (6); similarly to this, “bufs” is assigned whan
is comprised of the mixture of on- and off-terrain points;

®  on-terrain point ——  realterain surface otherwise, “offs” when all the vertices & are labelled as off-
O LIDAR point _— current model . . . . . : .
W on-terrain candidate —-—-  model candidate terrain points. This labelling function R can be described as

follows:
Figure. 6 lllustration of the generation of tetrahedron model
candidates. (a) Tetrahedron mod‘?l, where H is the height

. ={yy . OsO S RA . ons bufs off 7
T (b) The generation of two different tetrahedron model y=nis 50 4 ') ¥ { ons bufs offp Q)
candidates.
Since three vertices oy are labelled as on-terrain points at the R(A) = Snfs I: Fis. s, 8t @ g) (o . ®
previous iteration step of our terrain reconstruction process, the (8,) = bufs ' F{s.s; sl @ g) ={on off}
remaining vertex of the tetrahedrafj is used to hypothesize offs if F({s,s,s} @ d) ={off

an on-terrain point out o§. Thus, a set of tetrahedron model

candidategT} is generated, sharing its base triangle wgh Where in Eq. (8)(s,s,.5,} are three vertices af, and F is the

and using each point o as the remaining vertex qfi (see labelling function for a single LIDAR point. Now, we can

Figure 6(b)) However, during the generation ¢} , T; measure the closeness betwegrand y in terms of terrain
satisfying  the  following  condition is  rejected; polarity measurement, in whiché serves as a parameter to
0K {1,2,3} gdjks"}: 0, whereqdr is one of three lateral facets determine a degree of the smoothness and discontinuity polarity

) o . depending on a label assigned A0. This A8 is defined as
of T and §jk is vector of LIDAR dataset belonging to the fO||F())WS' g g ©
model candidatau;dj’k . .

For simplifying mathematical notations, let us consider one of AH:‘HA‘ —6;‘ 9)

three lateral facetsdjﬁk as @. Suppose then LIDAR datas8tis

located overg as seen in Figure 7(a). Since the underlying area . '

is hypothesized as a plane terrain surfacegnythe vertical vvhere AG is the angle difference between the slope of a
. . . . triangle A, and the one of a planar surface mogel namely

height of each point of S is recomputed relativego that z '

. . . . 6, andg, respectively.
values of LIDAR pointsS, are projected into a flat horizontal o 5P y



4.3.2  Minimum Description Length Criterion T)= - prs [T _ ufs T

The minimum description length (MDL) criterion by Rissanen T EW;}/][ 09 PO IT; . 4)=log, P (4 I . 4)
(1984) provides a generic method for comparing the optimality A T) (T ")

of different models fitted to particular observations (Cham, ! !

1999). In our terrain surface reconstruction process, this MDL (12)
criterion is employed in order to determine an optimised model _ _

T’ out of the tetrahedron model candida{@§ generated for Wherey; is an observation generated by Eq. (7) and (8) when

given T, ; y™ and y* are labelling observations generated
depending on which label is assigned oy Eq. (8), that is
“ons” or “bufs”.

@ - In Eq. (5), let us substitute the model candidgteand its
labelling observationsf© for a tetrahedron modeTJ.i and its

new observations of the terrain polari;,y&f respectively. For

simplifying the notation, let us describe a tetrahedron model

candidate asT, and its set a§T} . Then, Eq. (5) can be InEaq. (12), the first term and second terms indicate lengths of a
: : degree of the smoothness and discontinuity of the terrain

polarity respectively, which are differently measured depending

on the label of)y, . Thus, whenAg is measured fory,

T =argma® ¢, T, SP T, ) (10) according to Eg. (9), theoc)ditional probapility for the model
T T, and an observatioly, is given as follows:

reformulated as follows:

where y; is a set of labelling observations measured for all the

1 . _
three lateral facets cifj given, which is generated by Eq. (7) by 1T _|1+e@a-h) it R(4)=ons (13)
and (8). W17 %)= 1 B
T @7 if R(A )=bufs

According to the MDL framework, when we take the minus
logarithm based 2 on both sides of Eq. (10), maximizingahe

posteriori probability density function of Eq. (10) in order t0 \yhere o and 4 are the parameters for the sigmoidal function
select the optimized modelT" can be converted into which generates a normalized probability density function; its
minimizing the total coding length of describing observationsminimum and maximum probability is restricted up to 0 and 1
y; using modelT; as follows: respectively. In Eq (13), the probability is maximized when

Ag of “ons” observation describing an intra-relationship of on-

terrain points is measured close to 0°. Similarly, when “bufs”
L. T) :TmiTn [—Iogz P IT,.q)+LT, )] (11)  one of inter-relationsbip between on- and off-terrain points is
i measured close to 90°, the probability is also maximized. In this

case, their description lengths in Eq. (12) get shortened.

where the first term of Eq. (11) is the description length toThe last two terms in Eq. (12) are the description lengths for
encode the closeness between the mayeind its observations ot gpg in respectively.L(T*) is the description length of
J J J

y; that is a degree of the terrain polarity and the last termype numper of outliers, that iL(T*) = ~log, N . Which

L(T;) specifies the description length of the parameters of thgneans that our objective function of Eq. (12) prefers a model

tetrahedron modefT, as its length increases, when the modelwhich populates more off-terrain points when the strengths of

complexity gets larger. Thus, the MDL optimality in Eq. (11) the terrain polarity are comparable between model candidates.

can be achieved when the terrain polarity of plane terrain . o o
surface is augmented most strongly and the mateised is Likewise, L(T,") is the description length of a tetrahedron

the simplest one of the candidatgg} . model used. Since the entire model candidg®s share the
same base triangle, the only difference that can be characterized

Li (1993) suggested that the description length of the entirdO" @n individual model is the size of volume af, which is
observationsy; can be efficiently encoded in the MDL proportional to its heighH, . Thus, the description length to

framework, when given mod; is divided into two parts, the  encodeT" is generated as followsL(T,") =log, H, , which

inlier model part and the outlier part, i.ef, =[T[" +T™], here  means that when the optimized mod@l is selected, we expect

T is the inlier model fitted to the observations of “ons” and that the terrain surface is reconstructed smoothly, rather than
! ] ) ) abruptly. Thus, the model having a smaller volume is preferred

“bufs” generated by Eq. (8) antlfj"“‘ is outlier part fitted to Eq. (12).

“offs” ones. Thus, givel , the total description length of, is

When the upwardlivide-and-conquer triangulation is triggered

over alocal area, a set of the tetrahedron model candi¢@ges

is generated and the description length of Eq. (12) is measured
for all the three lateral facets of eadh when g, is given.

described as follows:

Finally, the model to have the minimum length of Eq. (12) is



selected as the optimized one, and its on-terrain points arelDAR point cannot be located over plane terrain, and ii) a
stored in the “on-terrain point stack”. This process continuesterrain polarity” made of a contextual information of on- and
until the upwarddivide-and-conquer triangulation is performed off-terrain points is augmented when it is measured from plane
over all models stored in the “current model stack” (see Figureerrain. These characteristics are estimated over local areas
4). reconstructed by a hypothesized planar surface model. By this
means, our terrain reconstruction process is recursively
5. TEST DATA & RESULTS triggered and an optimised planar model is selected. Since only
one criterion for this method is explicitly required, our method
We tested our suggested filtering technique with severatan easily reflect the user requirement for the generic purpose of
different LIDAR dataset. Figure 8 (a) shows a test area located |DAR filtering.
in east London with an lkonos panchromatic imagery and the
off-terrain points are extracted by our filtering algorithm from a Although our algorithm is not optimized yet in terms of the
LIDAR data, which was collected over the same area by thezomputational speed, it demonstrated promising results of the
Optech 1020 sensor with 3 metre planimetric resolution (Figur@errain surface reconstructed using real LIDAR data. Based
8 (b)). This area was selected since it contains a “good” mixtureipon this result, our future work will seek to classify building
of different features and slopes, i.e., residential area, flat grasgind tree objects from the off-terrain points. This will enable an
knolls, forest and hills; it is suitable to validate how this object to be classified as a building and it will serve as an
filtering technique is continuously adaptive to terrain surfaceefficient tool for building detection and model generation.
variations, especially for gently sloped terrain. Although overall
the terrain is not flat and there are several gentle hills, our

technique clearly extracted off-terrain points, while any points 7. REFERECES
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Figure. 8 Experimental results derived from real LIDAR dataset collected over a test area of east.London
Lidar data supplied by and (C) Infoterra. Includes material which is (C) Space ImagingKONOS
andLIDAR data for East London courtesy Prof. -P Muller and the BNS-LINK RISKMAP project

(a) |nterpo|ated or|g|na| LIDAR data - —— (b) Result of the terraln surface reconstructed by our method

Figure. 9 Experimental results derived from real LIDAR dataset collected over a test area of Shrewsbury in UK
LIDAR data courtesy of the Environment Agency of U.K.
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(a) Intepolated orlglnal LIDAR data N (b) Result of the terrain surface reconstructed by our method

Figure. 10 Experimental results derived from real LIDAR dataset collected over Vaihingen area. LIDAR
data courtesy of the OEEPE working groups on LIDAR and IfSAR.



