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ABSTRACT: The paper presents a road junction operator, which was developed for medium resolution black-and-white 
orthoimages. The operator uses a feed-forward neural network applied for a running window to decide whether it contains a 3- or 4-
arm road junction or not. The training set was created by a data analysis based feature selection. The best features took part in the 
training of 3-layer neural networks. The features are coming from the central kernel of the window (raster data) and from edge 
detection (vector data). The vectorized edges are only kept for training, if they are going through the central circle, which represents 
the junction central in a rotation invariant way. The edges fulfilling the circle criterion are applied to derive features, like edge length 
and direction measures. A set of identically structured networks with varied parameters was generated and trained by an efficient 
optimization algorithm. The evaluation of the networks was carried out in in-sample tests, where the main traditional methods are 
compared to the neural solution. The out-of-sample test was performed by real image chips with different rotations. The obtained 
results demonstrate the principal feasibility of the developed method. 
 
 
 

1. INTRODUCTION 
 

In the 20th and 21st century roads have more importance than 
ever. The traffic density is increasing, better navigation 
solutions are required. These systems rely on accurate and up-
to-date road information. Because of the large demand there is 
much research concentrating on efficient road mapping. 
In photogrammetry the general research focuses on automatic or 
automated solutions, also in the mapping of roads. Big efforts 
were undertaken on different levels of image processing: from 
the pixel based edge detection to the high level image 
understanding algorithms. Beside the general enhancement and 
edge detection techniques (Sobel, Laplace and similar 
convoluting operators, Canny and Deriche-algorithms) special 
road sensitive theories were developed. Steger worked out a line 
extraction algorithm, which was successfully applied for 
detecting road axes (Steger, 1998). Baumgartner et al. (1999) 
developed a very sophisticated road extraction algorithm for 
large resolutions (approx. 0.2 m per pixel), Mayer (1998) 
studied the suitability of the scale-space theory for extracting 
roads from images. Wiedemann (2002) enhanced the Steger-
method with topological considerations: he studied the roads as 
elements of a network. The developed method works on satellite 
images and other medium resolution aerial imagery. Willrich 
(2002) refined the Wiedemann-strategy for verifying the roads 
of the German Official Topographic-Cartographic Information 
System (ATKIS).  IKONOS imagery is also a suitable source 
for road mapping, as Dial et al. have proved by their texture 
based classification method (Dial et al., 2001). 
Also artificial neural networks (ANN) have been used to extract 
objects from imagery. In the computer vision literature results 
can be found in airplane identification (Abdallah et al., 1995) 
and also for recognizing mechanical tools (Tang et al., 1996). 
Kepuska trained an ANN for detecting signalized points in an 
aerial image (Kepuska et al., 1991), Chiu used such kind of 
networks for single and multiple target processing in industrial 
measurements (Chiu et al. 1990). 

In (Fiset et al., 1998) a neural strategy is implemented for 
matching the road elements of a geographic information system 
(GIS) database with images, the solution has potential for being 
applied in updating. 
The mentioned references study mainly the road itself; crossings 
and junctions are treated mainly as special cases of road 
segments. Although e. g. in building extraction the vertices 
contain valuable information, such techniques were not tested 
for roads. The present paper summarizes the intermediate 
results of ongoing research. The goal of the work is to develop a 
technique based on artificial neural networks to detect road 
junctions in medium resolution aerial images of approximately 
0.5 m per pixel. The network performs a kind of classification, 
which can be refined by further grouping and other high-level 
image understanding techniques. The trained neural network 
can find the objects without any additional data, and the method 
can be a part of a sophisticated updating procedure. 
 
 

2. STRATEGY 
 

The junction detection requires first of all a generic junction 
model. The model is created iteratitively: after setting up a 
coarse model, it is refined in order to obtain better description 
and behavior. 
The model contains parameters, which are derived from the 
images by using image processing algorithms. Furthermore, a 
procedure belongs to the model that takes template window as 
input, performs several tasks (see below for details) and at the 
end it decides whether the window contains a junction or not. 
The result is related to the window center point. The model is 
based on a classifier, which is supported by adequate 
preprocessing steps (Fig. 1). 
The classifier of the developed technology is a feed-forward 
neural network. Artificial neural networks are classifiers, which 
are trained by examples instead of “global” statistical measures, 
like maximum likelihood or minimum distance classifiers. The 
required samples were collected from black-and-white 



orthoimages with a ground resolution of 0.4 m. There were 60 
junction (J) and 120 non-junction (NJ) samples, the windows 
had a size of 51 × 51 pixels (20.4 × 20.4 m). The junctions were 
3- and 4-arm junctions with different road category. 
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Figure 1. Strategy to create the junction detection neural 
network 

 
The strategy uses both raster and vector data. There are two 
main processing lines: the first one is an application of a central 
kernel in the middle of the window. The size of the square 
kernel is a variable of the procedure. A number of parameters 
were derived for the kernel: minimum and maximum pixel 
intensities, average intensity, standard deviation and median 
value. Using these parameters an analysis was performed to 
determine the optimum kernel size. A combination of the 
following statistical methods was executed: discriminant 
analysis, principal component-, factor- and variance analysis. 
The largest differences (best separability) between junctions and 
non-junctions were found with a kernel size of 7 × 7, equivalent 
to about 3 x 3 m2. This size is scale dependent, i.e. it depends on 
the image resolution. The kept features are the average pixel 
intensity value (A) and the standard deviation (SD) of the 
intensities within the kernel. 
The second processing block of the strategy starts with an edge 
detection using the Deriche algorithm, which is a recursive 
approach coupled with smoothing and a hystheresis threshold. 
The edge detection was performed with non-maximum 
suppression. The results were edge amplitude (gradient 
magnitude) and edge direction images. For reasons of efficiency 
the edge detection was performed for the whole input 
orthoimage, not window-by-window. The all-in-one edge 
detection resulted also in a quality increase: the window-by-
window edge detection finds many short “edge fractions”, while 
the image-wise edge detection returns longer edge segments. 
The amplitude image was filtered by an edge preserving 8-
neighborhood method and vector objects were created followed 
by a smoothing with the Ramer algorithm. 
The found edge vectors were evaluated by the central circle 
criterion. The meaning of the central circle for junctions (first 
row) and non-junctions (second row) is shown in Fig. 2. 

 

 
 

Figure 2. Central circle on junction (first row) and non-junction 
(second row) samples 

 
The central circle criterion expresses, that the road side edges 
must run in the junction direction. The circle represents the 
junction in the model in a rotation invariant way. 
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Figure 3. The running window containing the central circle and 
a found edge vector (ES) 

 
The square in Fig. 3 represents the template window; its center 
point is marked (C). The found edge vector is shown as a thick 
line, having S as startpoint and E as endpoints. The intersection 
problem of the ES line and the central circle can be formulated 
as a test of d < R, where d is the calculated distance of the 
circle’s origin (C) and the extension of ES line. The optimal 
value of the radius was found as 11 pixels (4.4 m). 
Depending on the test result, edges were dropped (no junction) 
or they were applied to derive several features: center of gravity 
of the edges in X and Y direction (COGX and COGY), the 
average edge length (AVELEN) and average direction angle 
(AVEDIR), as well as the standard deviation of the edge lengths 
(SDLEN) and of their directions (SDDIR). 
The goal of the analysis carried out so far was to select the right 
features for good separability between junctions and non-
junctions. As an example Fig. 4 shows the relation of the 
average pixel intensity value of the kernel (A) to the average of 
the accepted edge vector directions (AVEDIR). Junction samples 
are marked with circles, while the non-junction cases are the 
crosses. 
The outlier, ambiguous junction samples (e.g. junctions with 
occlusion caused by trees) were removed from the training set 
manually, because they represent mixtures between the two 
groups. After the removal 44 samples remained. 
The data analysis was used for iteratively refining the junction 
model. The best features were used as input for the neural 
network training. The applied artificial neural networks were 3-
layer feed-forward (back-propagation) networks. 
 



 
 

Figure 4. Scatterplot for features A and AVEDIR 
 
The output layer contains only a single neuron, which gives a 
“neural possibility” between 0 (non-junction, NJ) and 255 
(junction, J). The neurons have logistic sigmoid transfer 
function. Because of the known efficiency of this method, the 
networks were trained by the Levenberg-Marquard optimization 
technique. The network structure was varied during the training 
to obtain the highest network recognition accuracy. The number 
of neurons in the first and second layers, and the desired 
network error rate were varied. These variations created several 
hundreds of neural networks for every feature set. The resulting 
networks were finally evaluated by in-sample and out-of-sample 
tests. 
 
 

3. RESULTS 
 

In this chapter we present results obtained with the method 
described before. The used test data represent black-and-white 
orthoimages of a resolution of 0.4 m from Frankfurt am Main, 
Germany.  
The first complete quality check was the in-sample test. The 
confusion matrix and the main quality measures (total accuracy, 
accuracy of the junctions and non-junctions) were calculated on 
the training samples. For reasons of comparison the in-sample 
test was performed with traditional methods, like linear 
discriminant functions (LF), minimum distance (MD) and 
maximum likelihood (ML) methods, as well as by neural 
networks (NN).  
Table 1 shows the results obtained with the different methods 
with their recognition accuracies. 
 

 method 
name 

total 
accuracy 

% 

Junction 
accuracy 

% 

non-junction 
accuracy 

% 

LF 91.5 86.4 93.3 

MD 79.3 97.7 72.5 
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ML 84.1 100.0 78.3 

NN1 97.6 95.5 98.3 

NN2 97.6 90.9 100.0 
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NN3 97.6 97.7 97.5 

 
Table 1. In-sample recognition accuracy of different methods 

 
 

There were many neural networks created, trained and 
evaluated during the development. We present only a subset of 
interesting versions. NN1 was a neural network with a 3-3-1 
neuron structure, the final (inner) network error was 0.0241. It 
was a rather simple network with few neurons. NN2 was a 3-7-1 
network with a final error of 0.0227. There were more neurons 
in the middle layer to obtain better flexibility, but the difference 
to NN1 was not significant during the tests. The last network 
(NN3) had a structure 9-9-1 and final network error of 0.0232. 
This network was a complex one, with most neurons in the free 
layers. The highest recognition accuracy was expected from the 
last version, but the reached network errors are almost the same, 
independently of the structure. 
As one can notice the traditional methods have less total 
recognition accuracy than the selected neural networks. The LF 
method could detect the non-junction pixels rather well, the 
total accuracy is unexpectedly high. The minimum distance 
method is ranked as the worst traditional solution because of the 
low non-junction recognition. The reason is the high variety of 
the non-junction window content. The best traditional method 
(ML) can detect all junctions, but unfortunately had poor NJ-
recognition accuracy – again because of the mentioned facts. 
The selected neural networks have overall accuracy measures 
above 95 %. The simplest network had average accuracy 
measures in all categories. More neurons in the second layer 
resulted in better NJ-recognition, but was coupled with lower 
junction detection rate. The most complex network is adjusted 
both in junction and non-junction cases. 
Because of the increased number of neurons within the same 
layer structure, there is more flexibility given to the network, so 
even complicated decision functions can be realized. This 
feature is advantageous in many practical applications, but it 
also has a drawback, namely the network may learn the training 
set perfectly and loose the desired generalization ability. This is 
why the out-of-sample tests are of extreme importance. 
After the in-sample tests the junction operator was tested on 
images (out-of-sample test). There were 4 open field images in 
the test series, rotated by 0, 30 and 90 degrees respectively. 
Using these images the rotation invariance can also be proven. 
Fig. 5 shows the result of the smallest network. 
The orthoimage subset is rotated by 30 degree in order to study 
how the network behaves. The road junctions are detected 
perfectly, but there are wrongly classified pixels inside of a 
parcel and on a road segment. This is caused by the regular 
texture combined with detectable edges. Future developments 
will add more stabilizing features, which can be helpful to 
reduce such errors and increases the recognition accuracy. 
Fig. 6 shows another image (with no rotation) studied for the 
out-of-sample test. The test shows again the generalization 
feature of the networks, because the intensity value range is 
differing from the training set. The detection accuracy is quite 
good: all the visible junctions were marked with no 
misclassifications. 
 

 
 

Figure 5. Out-of-sample test with 30 degree rotated image (the 
training was executed with no rotation) 

 



 
 

Figure 6. Test image from an orthoimage, where no samples 
were taken 

 
 

4. CONCLUSION 
 

Our research concentrates on the detection of road junctions 
using medium resolution black-and-white orthoimages. A 
junction model has been created, which was refined using the 
tools of statistical data analysis. The model is built on raster as 
well as vector based information. The applied features were 
derived from a central kernel and from detected edges, which 
intersect the center of the search window. The adequate edges 
were selected by the central circle criterion, then several edge 
parameters were calculated to define the parameters of the 
junction operator. The developed neural technique was 
compared with the main traditional methods. 
Future work will focus on extending the training set by further 
samples, not only from the current training area. Because 
artificial neural networks are trained by samples, a larger 
training set increases the accuracy. The size of the sample 
window can be increased, so the occluded junctions may be also 
taken into consideration and the unwanted effects of disturbing 
texture (e.g. rows in field parcels) can be better eliminated. 
The increase of the recognition accuracy can be achieved by the 
use of existing data, e.g. using vector road data. The up-to-date 
road maps and suitably scaled topographic maps can therefore 
expand the training sets. 
We plan a more comprehensive test for the developed method. 
The number of the applied parameters must be expanded to 
achieve higher recognition stability and accuracy. The junction 
operator is to be checked in other independent test areas. 
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