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ABSTRACT

In this contribution the way algorithms for object detection in urban areas are integrated into the knowledge-based image
interpretation system GeoAIDA is described. Generic scene models are used for object detection in settlement areas,
whereas the implementation of the respective algorithms is a collection of stand-alone-operators.
With GeoAIDA a system is available which uses these operators in the first phase (model-driven,top-down) in order to
generate hypotheses for objects in the scene. In the second phase (data-driven,bottom-up) the hypotheses are further pro-
cessed using structural knowledge about the scene. Here, detected buildings are grouped using the Relative Neighborhood
Graph. An example shows that the combination of low-level image operators and high-level grouping operators leads to
enhanced scene analysis results.

1 INTRODUCTION

Our recent publications presented some approaches on au-
tomatic extraction of buildings and trees from aerial ima-
gery. This work was embedded in the CROSSES project
(CRO, 2002) and led to convincing results in this field of
image interpretation.
In this paper the integration of image analysis algorithms
into the knowledge-based image interpretation system Geo-
AIDA ( Geo AutomaticImageDataAnalyser) is demon-
strated. This software is being developed by the Institute
of Communication Theory and Signal Processing (TNT),
University of Hannover. For a detailed system overview
see (B̈uckner et al., 2002). The system contains a know-
ledge-base, represented by means of a semantic network.
Image operators are attached to the nodes of the network
in order to find evidence of the objects in the scene. The
image processing is done in the model-driven phase (top-
down) by top-downoperators. The objects, resulting from
this process are calledhypotheses. Moreover, the system
allows the incorporation of structural knowledge about the
scene, i.e. knowledge on how a multitude of objects can be
grouped to parent objects. This process is data-driven (bot-
tom-up) and done by so calledbottom-upoperators. Possi-
ble ambiguities, occurring in thetop-downprocess are also
solved in thebottom-upphase. The final objects are called
instances.
The integration of such operators in a system like Geo-
AIDA is of vital importance because of the following rea-
sons; firstly, the use of structural knowledge about the scene,
taking into account several object classes is simplified when
using an integrated system. Secondly, the development
and study of new operators is supported by this system
as low-level image operators can be combined with high-
level operators, making use of structural knowledge. Last
but not least the acceptance of automatic image analysis
approaches increases if potential end users have a user-
friendly interface.

The building detection operator as introduced in (Gerke et
al., 2001) was exemplary integrated in GeoAIDA. Besides
the detection ofBuildings, an operator for the detection of
GroupOfTreeswas implemented, cf. (Straub and Heipke,
2001). Furthermore, abottom-upoperator for the identifi-
cation ofBuilding-Groupswas applied.
Results for a test area show that the integration of image
operators and the use of structural knowledge lead to an
enhanced scene analysis.

2 AN EXEMPLARY GENERIC SCENE MODEL

Below a scene model, represented by a semantic network
is formulated (figure 1). The topmost node of the network
is calledScene. This node initializes thetop-downprocess
and it is the last node processed in thebottom-upstep. The
next level contains the conceptSettlement, whereas this
node contains the conceptsGroupOfTreesand Building-
Group. A top-downoperator is assigned to the first con-
cept. This means, an external program is called by this
node in order to search for evidence of trees in image data.
This operator is described in chapter 3.1. TheBuilding-
Groupnode contains one or moreBuildings. Such group-
ing can be used later on as a preprocessing step for a de-
tailed structural analysis, e.g. finding geometric arrange-
ments of buildings. The grouping is carried out using the
distance aBuildinghas to its neighbor. Thebottom-upope-
rator attached to theBuilding-Groupnode is explained in
chapter 4 as well as thetop-downoperator forBuildingde-
tection in section 3.2.

3 IMAGE OPERATORS

In this chapter the image operators for the detection of
GroupOfTreesandBuildingsin aerial images are described.
The term “detection” means in this context the assignment
of image parts belonging to an instance of the particular
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Figure 1: Exemplary Semantic Network

object-class, according to the underlying model. This ana-
lysis results in a label image.
For the description of the operators a 3-layer scene model
is used (refer to figures 2 and 3). The topmost layer is
called Real World. This layer contains the objects one
wants to describe. Below theReal WorldtheMaterial and
Geometrylayer is introduced. This one contains the physi-
cal properties of the objects and is data independent. The
bottom-layer is calledImage. The term “image” includes
all possible raster data, e.g. optical images or surface mo-
dels. During itsLife Cyclean object calls algorithms which
extract low-level features from images (Create-Feature) and
it creates instancesof other objects using these features.
In the next two subsections theCreate-FeatureandCreate-
Instanceoperations for the objectsGroupOfTreesandBuil-
dingare explained.

3.1 Detection of GroupOfTrees

The detection ofGroupOfTreesobjects is comparable to
the pixel-based classification as shown in (Haala and Bren-
ner, 1999). For the differentiation between vegetated and
non-vegetated (sealed) regions the radiometric information
from the CIR-Image, namely theNDVI, is used. ThenVe-
getationregions can be found (① in fig. 2). The thresh-
old value for the segmentation into vegetation and non-
vegetation is determined using a histogram analysis. The
discrimination between objects on and above the ground
(3D Region) is done using a threshold in the normalized
surface model (② in fig. 2). The instances ofGroupOf-
Treesare created by means of an intersection betweenVe-
getationand3D Region(③ in figure 2). For more details
and a description for single tree extraction refer to (Straub
and Heipke, 2001).

3.2 Detection of Buildings

In (Gerke et al., 2001) an approach for single building ex-
traction using a surface model and a true CIR-orthoimage
is described. In comparison to previous presentations the
complexity of the problem is reduced as the reconstruction
step is not contained: here image segments, containing sin-
gle buildings, are of interest and not the vectorial descrip-
tion of the buildings.
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Figure 2:GroupOfTree-Detection Operator

The design of the implemented operator is depicted in fi-
gure 3. Similar to the detection ofGroupOfTreesthe ana-
lysis starts with the low-level analysis in theNDVI and
the normalized surface model leading toNon-Vegetation
and 3DRegions. The intersection of these regions leads
to BuildingArea-objects, refer to①, ② and ③ in fig. 3.
A BuildingAreacontains one or moreBuildingsandCast-
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Figure 3:Building-Detection Operator

Shadowareas. This is because the3DRegionsare often
enlarged in the direction of cast shadows, formed by buil-
dings. This can be explained by the generation process
of the surface model: This was derived by matching al-
gorithms, which can lead to poor results in cast shadow
regions, cf. (Haala, 1996). The enlargement of3DRegions
leads to a fusion of buildings in the surface model if they
are connected by shadow. In order to separate the single
Buildingsfrom theCastShadoweachBuildingArea-object
carries out a histogram analysis in its domain of the red-
band and finally creates instances of one or moreBuilding-
objects (④ and⑤ in fig. 3), refer to (Gerke et al., 2001).

4 GROUPING APPROACH

After GeoAIDA called thetop-downoperators the image
analysis is completed and thebottom-upphase, i.e. the
data-driven-phase begins. Here the structural knowledge
about the scene can be used for solving ambiguities, ema-
nating from thetop-downphase, based on an evaluation of



the image analysis results. This evaluation can be used for
the propagation of higher-level object classes. An exam-
ple for the decision whether an accumulation of different
objects belongs to a settlement area or an industrial site is
given in (Bückner et al., 2002).
In this example the focus is on the detection ofBuilding-
Groups. This means, allBuildings, detected by the image
operator introduced above, are further analyzed in the sense
that neighboring buildings are grouped together to an in-
stance of the named concept. This grouping can be used to
support the detection of geometric arrangements of buil-
dings, such as rows.
For this approach the Relative Neighborhood Graph (RNG)
as introduced in (Toussaint, 1980) is applied:

If a set of distinct pointsP = {p1, p2, . . . , pn} in
the plane is considered then two pointspi andpj
are supposed to be “relatively close” ifd(pi, pj) ≤
max[d(pi, pk), d(pj , pk)]∀k = 1, . . . , n, k 6= i, j,
whered denotes the distance.

The edges of the RNG are connecting each pair of points
which are “relatively close”. A graph is weighted if real
numbers are assigned to the edges. In this application a
RNG of Building objects is to be formulated. The point-
wise representation of regions (e.g. their centers of grav-
ity) is not a very good choice in this case as the decision
whether twoBuildingsare “relatively close” or not is better
established in relation to the distances between the regions’
borders. Therefore the distance between two regions is to
be the shortest distance between the contours of these two
regions, which can be calculated e.g. using the Hausdorff
distance, cf. (Soille, 1999, Ch. 3.11.3).
If this distance is assigned to the edges of the graph, the
Building-Groupcan be defined:

Members of aBuilding-Groupbelong to a sub-
graph of the RNG of allBuildings, whereas the
weight, assigned to each edge of this subgraph
does not exceed a given maximum. The mini-
mum number ofBuildingsbelonging to aBuil-
ding-Groupis 1. EachBuilding belongs to ex-
actly oneBuilding-Group.

This definition is implemented in thebottom-upoperator.
It gets the singleBuilding regions from GeoAIDA and af-
ter the analysis it returns the description of theBuilding-
Group instances by means of the assignedBuildingsIDs.

5 RESULTS

The described semantic network with thetop-downand
bottom-upoperators assigned to the respective nodes was
entered in GeoAIDA. For the investigation, image and height
data of a test area in Grangemouth, Scotland are used. The
color infrared aerial images were acquired in summer 2000
for the CROSSES project (CRO, 2002). The image flight
was carried out with 80% overlap along and across the

flight direction. The image scale is 1:5000, which leads to
a GSD of 10 cm at a scanning resolution of 21µm. Based
on these images a DSM and a true orthoimage were auto-
matically derived by the French company ISTAR (Gabet
et al., 1994). The orthoimage and the DSM cover an area
of 4 km2. A large part of the whole test site belongs to
an industrial plant with sparse vegetation. A subset of the
data with typical suburban characteristics was selected, as
depicted in figure 4. The minimum height for aBuilding

Figure 4: CIR True Orthoimage Showing the Test Area

was set to 4 m. The maximum distance twoBuildingsmay
have in order to be members of the sameBuilding-Group
is 10 m. This is a heuristic value, but one can argue that
such groups of buildings in an urban environment are sep-
arated by a street, which normally has a minimum width of
approx. 10 m. The left part of fig. 5 shows a snapshot of
theScene Viewer. In this browser theinstancesare listed.
All attributes of the objects like e.g. class-name, coordi-
nates of the bounding box in object-space or user-defined
attributes (given bytop-downor bottom-upoperators) are
shown in the right column of this viewer. TheScene Viewer
is linked to theResult Mapas shown in the right image. In
this map the label-image of theinstancesis shown,Buil-
dingsassigned to the sameBuilding-Groupare linked. The
result of the object detection is as follows: TheGroupOf-
Tree-instances cover around 96% of the total tree area, but
also approx. 12m2 of the area where no trees are situated,
and 100% of the 58 buildings were detected, but the two
buildings in the northern part belong to the sameBuilding
instance. The result ofBuilding-Group-detection is as ex-
pected as it corresponds to the formulated model.
The result of the analysis, represented in aninstance-netis
stored in a commonXML-file. Therefore these results can
be used by other programs, for example for drawing com-
parisons with reference data.

6 CONCLUSIONS

This paper demonstrates how image analysis operators can
be efficiently integrated in a knowledge-based image in-



Figure 5: GeoAIDA-Scene Viewer and Result Map

terpretation system. It was shown how detectedBuildings
were successfully grouped to instances ofBuilding-Groups.
Our further work will increasingly focus on the structural
analysis. The consideration of geometric conditions can
lead to the detection of geometric arrangements of objects,
such as rows or circles. The advantage of this procedure
is twofold: On the one hand the detection of such arrange-
ments supports the detection of other objects. For exam-
ple one can argue that in urban environments streets are in
general parallel to building-rows. On the other hand buil-
dings, belonging to a building-row often are similar (e.g.
they have the same orientation). This observation can be
used to enhance the building reconstruction. The integra-
tion of operators into a system like GeoAIDA does support
this further work as the solving of ambiguities, caused by
competing hypotheses is done by the system.
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