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Abstract 

Spatiotemporal database systems (STDBS) are primarily oriented to applications 
that track and present details about moving objects. Such applications must be 
kept informed about new, relocated, or removed objects that fulfil a given query 
condition. Consequently, a STDBS must inform its clients about these updates. 
Such queries are called continuous queries. The volume and frequency of trans-
missions is influenced by technical restrictions like the computing power of a 
client, the spatial distances a client is able to distinguish, and the maximum speed 
and throughput of the network connection. In this paper, filtering algorithms are 
presented that reduce the number of transmitted update operations. Two contradic-
tory optimisation goals can be observed: First, to reduce the memory requirements 
of the STDBS for buffering these operations and, second, to reduce the volume 
and frequency of transmissions. Delaying or even not transmitting updates to a 
client may, however, decrease the quality of the query result. The impact of these 
algorithms is presented through discussion of a series of experiments. 
Keywords: spatiotemporal database systems, moving objects, continuous queries 

1 Introduction 

Spatiotemporal database systems (STDBS) are an enabling technology for applica-
tions such as Geographic Information Systems (GIS), environmental information 
systems, and multimedia. In particular, the storage and retrieval of moving objects 
are central tasks of a STDBS. The investigation of spatiotemporal database sys-
tems is especially oriented to applications which are required to track and  visual-
ise moving objects. Many of these applications originate from the field of traffic 
telematics.  This is a field in which techniques from the areas of telecommunica-
tion and computer science are combined and used in establishing traffic informa-
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tion and assistance services. Such applications require the management of moving 
objects, such as vehicles of a fleet (Wolfson et al., 1999) (Brinkhoff, 1999).  

An important issue is the support of mobile and location-based applications. 
Mobile applications refer to locations and require the transmission of spatial or 
spatiotemporal data. The appearance of mobile applications has also had an impact 
on  devices used for presenting data: Personal digital assistants (PDAs) or mobile 
telephones are used as clients. The computing power of such devices, however, is 
restricted compared to traditional computers. In addition, speed and throughput of 
wireless networks are subject to large variations. 

The work presented in this paper is motivated by the two trends mentioned 
above. Applications tracking, and presenting moving objects require current and 
appropriate information about any new, relocated, or removed objects. Conse-
quently, a STDBS must inform its clients about such update operations. The query 
causing this process is called continuous query (Terry et al., 1992). The ‘result set’ 
of a spatial continuous query is influenced by the update operations occurring in 
the database and by a given query condition.  The query condition includes two 
aspects and consists of spatial predicates (e.g., a window query) and optionally of 
non-spatial predicates defining further selections (e.g., a selection of vehicles that 
are cars or motorbikes). For mobile applications, the processing capabilities of the 
client must  also be taken into account.  

Typical technical restrictions concern the computing power of the client, the 
spatial distances the client is able to (or wants to) distinguish, and the maximum 
speed and throughput of the connection between the STDBS and the client. There-
fore, it is not advisable to transmit the complete result of a continuous query. In-
stead, a reasonable filtering must be performed. Two contradicting optimisation 
goals can be observed: First, to reduce the memory requirements of the STDBS 
for buffering the operations and, second, to reduce the volume and frequency of 
transmissions to the client. \Delaying or even not transmitting update operations to 
a client may, however, decrease the quality of the query result. Therefore, algo-
rithms for filtering the result of a spatial continuous query are required to maintain 
a sufficient quality of the query result. 

This paper starts with a short definition of the model used for describing mov-
ing objects and presents the main properties of spatial continuous queries. The 
second section introduces a first algorithm for processing continuous queries. 
More sophisticated algorithms are presented and analysed in the third section. 
They limit the memory requirements of the STDBS and reduce the volume and 
frequency of the transmissions. The quality of the query results and other proper-
ties of these algorithms are then experimentally investigated. Finally, the paper 
concludes with a summary and an outlook on future work. 



 

2 Continuous Queries 

2.1 Definitions 

The following discussion assumes a STDBS, which stores the positions and other 
attributes of moving objects. In a temporal database, valid time and transaction 
time is distinguished. The valid time describes the time when a record is valid in 
the modelled reality. The transaction time is the time when a record is committed 
in the database system. 

In the following, it is assumed that a moving object obj has an identifier obj.id. 
The object is described by a sequence of records obji (i�N). Each record consists 
of a spatial location obji.loc (short: loci), of a time stamp obji.time (short: timei) 
giving the beginning of the valid time, of a time stamp obji.trTime (short: trTimei) 
giving the transaction time, and of non-spatiotemporal attributes obji.attr (short: 
attri). A time stamp t is represented by a natural number (t�N). If the records obji 
and obji+1 exist, the valid time of record obji corresponds to the interval [timei , 
timei+1). If no record obji+1 exists for a record obji, the record obji is the current 
state of the corresponding moving object from the point of view of the STDBS. 
Furthermore, a final record obji may exist with i > j for all records objj of this 
moving object. It indicates the end of the lifetime of the object. In order to sim-
plify the discussion, we assume that timei � trTimei holds. 

We distinguish three basic types of updates concerning a moving object:  1, the 
insertion of a new object, 22, the modification of an existing object, and 33, the 
deletion of an existing object. With respect to the query condition of a distinct 
client, the type of an (modifying) update operation may change (Brinkhoff and 
Weitkämper, 2001). For example, the position of an object representing a vehicle 
has been modified in the database. If this vehicle leaves the query window of a 
client, this modification must be reclassified to a deletion for this particular client. 
Table 1 gives a summary of such reclassifications. The vehicle leaving the win-
dow is represented by the (yes, no) row and the modification column. Updates that 
do not need to be reclassified are shown as I1 and D1.  While I2 and D2 denote 
reclassified updates.  

Table 1. Reclassification of update operations 

fulfils query condition? original type of operation: 
Insertion deletion modification previous record 

obji-1 
current record 

obji reclassified type of operation: 
no no - - - 
no yes insertion (I1) . / . insertion (I2) 
yes no . / . deletion (D1) deletion (D2) 
yes yes . / . . / . modification (M) 

 
The reclassified type of an update operation may also determine the interest of 

a client in this operation: Deletions are typically of high interest. The same holds 
for insertions. For modifications, the situation may be different. In general, the 



number of modifications considerably exceeds the number of other operations. 
Therefore, it may be acceptable to skip some modifications, especially if the dis-
tance to the last reported position is small or the topology has not changed (e.g., 
the car is still on the motorway or is still in the same county). Then, the result set 
received by a client is not identical to the complete result set of a continuous 
query. In contrast to the assumptions done in queuing theory, not only a delaying 
but also a skipping of operations is acceptable. Another restriction concerns the 
database: the STDBS cannot store a reflection of all update operations each client 
has received as a result of the query condition – the cost would be prohibitive. 

2.2 A First Algorithm 

If a moving object is changed in the database, the STDBS will determine the af-
fected clients and will reclassify the update operation type accordingly.  If the 
update is of interest for a distinct client, the STDBS will call the procedure col-
lectUpdates (see Fig. 1). In general, the new update operation is added to the 
set client.ops, which collects the operations intended for the client. newOp consists 
of the identifier of the corresponding object (objId), of the current object represen-
tation (curr), and the reclassified type of the operation (opType). If an element 
concerning the same object already exists in the set client.ops, this element will be 
updated.   As a result, and depending on  the current type of  operation, the ele-
ment will be deleted or modified. collectUpdates guarantees that for each 
object at most one operation exists in the set client.ops. 

The function computeTransmission determines the set of operations to be 
sent to a client. The STDBS calls this function before the updates are transmitted 
to a client. As a result, this first solution returns client.ops and then empties the 
set.. 



 

 
void collectUpdates (Client client, Operation newOp) { 
// Adds an update operation newOp to a collection of a client. 
 

 // case 1: the operation concerns no object referenced in the set 
 if (newOp.objId � {op.objId | op � client.ops}) 
  client.ops = client.ops � {newOp}; 
 // case 2: the operation concerns an object referenced in the set 
 else { 
  // determine the stored operation 

  Operation oldOp = op�client.ops with op.objId == newOp.objId; 
  // if necessary, delete the operation from the set 
  if ((oldOp.opType�{I1,I2}) && (newOp.opType�{D1,D2})) 
   client.op = client.op \ {oldOp}; 

  // or update the type of operation and the description 
  else if ((oldOp.opType�{D1,D2}) && (newOp.opType�{I1,I2})) { 
   oldOp.opType = M;       // delete plus insert becomes modification 

   oldOp.curr = newOp.curr; 
  } 

  // or update only the description 
  else oldOp.curr = newOp.curr; 

}} 
   
Set computeTransmission (Client client) { 
// Determines the update operations to be sent to a client.  
 

 Set sendOps = client.ops; 
 client.ops = �; 
 return sendOps; 
} 

Fig. 1. First version of the filtering algorithm 

An aspect to consider is how best does one determine the point at which  a set 
of updates should be transmitted to a client. One solution is to send a  transmission 
as soon as the transaction time has exceeded a given period �t. In this case, the 
size of  set client.ops is only limited by the number of updates that a STDBS is 
able to process in the given period �t. This number can be quite large. Assuming 
many clients use a STDBS in parallel, it may result in excessive memory require-
ments and poor scalability. Further, the performance of the client or the network 
connection to the client may restrict the number of operations that can be proc-
essed during a given period.  

By reducing the period �t, the first disadvantage may be reduced. However, the 
sum of transferred operations would increase. The reason for this increase is that 
the probability of replacing operations in the set client.ops decreases with shorter 
periods �t.  Time restrictions, that require a minimum period between two data 
transmissions, are another rationale against reducing �t. The same argumentation 
will hold if the transmission is triggered by the size of the set client.ops. Only in 
the case of �t=1, the algorithm computes the complete result of a continuous 
query. Otherwise, the transmission of operations may be delayed. By replacing 
outdated entries, the result set may be smaller than the complete result. 

We can observe two contradictory optimisation goals: First, to reduce the 
memory requirements of the STDBS for buffering update operations and, second, 
to reduce the volume and frequency of transmissions to the client. In the follow-



ing, we try to balance between these two objectives by modifying the initial  algo-
rithm. 

3 Improving the Algorithm 

According to (Brinkhoff and Weitkämper, 2001), table 2 summarises the parame-
ters and functions, which can be used for describing the restrictions of a client. 
These parameters are used by the algorithms presented below. 

Table 2. Parameters and functions used for describing the restrictions of a client 

parameter Description 
maxOps The maximum number of update operations that can be sent to 

a client by one transmission. 
minOps The minimum number of operations reasonable to be sent to a 

client by one transmission; it holds: minOps � maxOps. 
minPeriod The minimum period between two transmissions to a client. 
thr A threshold for the measure of interest (see section 3.1). 

function Description 
intr(obprev,objcurr) The measure of interest for operations that are not of high 

interest. 
isRelevant(obprev,objcurr) Boolean function determining whether an update operation is 

relevant for a client or not. 

3.1 Algorithm Observing the Restrictions of a Client 

An algorithm, which determines the next update operations to be sent to a client 
for performing the continuous query, should observe the restrictions and measures 
described above. Like in section 2.2, the algorithm presented in Fig. 2 consists of 
the operations collectUpdates and computeTransmission. 

The procedure collectUpdates is similar to the first version. A previous ob-
ject description (prev) and an attribute time have been added to the elements of the 
set client.ops. The parameter newOp also includes an attribute prev representing 
the previous object representation in the database. A STDBS should be able to 
determine newOp.prev efficiently. For a new element in the set client.ops, the 
attribute time is generally set to the valid time of newOp.prev. An exception from 
this rule is the insert operation I1. Then, time is set to the valid time of the new 
object. If an element concerning the same object already exists in the set cli-
ent.ops, this element will be updated. Note that the attribute time is not changed in 
this case. It still represents the time when the operation was inserted into cli-
ent.ops. 



 

void collectUpdates (Client client, Operation newOp) { 
// Adds an update operation newOp to a collection of a client.  
 

 // case 1: the operation concerns no object referenced in the set 
 if (newOp.objId � {op.objId | op � client.ops}) { 

  newOp.time = (newOp.opType == I1) ? newOp.curr.time : newOp.prev.time; 
  client.ops = client.ops � {newOp}; 

 } 
 // case 2: the operation concerns an object referenced in the set, 
 //         the attribute oldOp.time remains unchanged! 
 else { 
  // determine the operation 

  Operation oldOp = op�client.ops with op.objId == newOp.objId; 
  // if necessary delete the operation from the set 
  if ((oldOp.opType�{I1,I2}) && (newOp.opType�{D1,D2})) 
   client.op = client.op \ {oldOp}; 

  // or update the type of operation and the description 
  else if ((oldOp.opType�{D1,D2}) && (newOp.opType�{I1,I2})) { 
   oldOp.opType = M;         // delete plus insert becomes modification 

   oldOp.curr = newOp.curr; 
  } 

  // or update only the description 
  else oldOp.curr = newOp.curr; 

} } 
   
Set computeTransmission (Client client, Time currTime) { 
// Determines the updates to be sent to a client. currTime: the current time 
 

 // initialize the set of operations to be sent 
 Set sendOps = �; 
 // if the period is too short: return nothing 
 if (currTime-client.timePrev) < client.minPeriod) 
  return sendOps; 
 // determine the operations of high interest  
 Set o1 = {op�client.ops | (op.opType)�{I1,I2,D1,D2}) � 

 (intr(op.prev,op.curr)�client.thr)) � isRelevant(op.prev,op.curr) }; 
 if ( |o1| > client.maxOps ) 

  sendOps = {op�o1| client.maxOps elements having the oldest time stamps};  
 else 
  sendOps = o1; 
 // determine further operations of interest 
 if (|sendOps| < client.minOps) { 
  Set o2 ={op�client.ops�op�sendOps|isRelevant(op.prev,op.curr)}; 
  sendOps = sendOps � {op�o2| client.minOps-|o1| elements 
                          having the highest intr(op.prev,op.curr) }; 
 } 
 // final actions 
 if (sendOps � �) 
  client.prevTime = currTime; 
 client.ops = client.ops \ sendOps; 
 return sendOps; 
} 

Fig. 2. Filtering algorithm observing the restrictions of a client 

The function computeTransmission has been completely modified: it deter-
mines the set of operations to be sent to the client observing the parameters and 
functions shown in table 2. First, the algorithm tests whether the time interval 
between the time, when update operations were sent to the client last, and the 
current time is sufficient. Then, a set of operations is determined. This set contains 
all operations of high interest and the operations whose measure of interest ex-
ceeds a given threshold thr. The elements are ranked according to the attribute 



time, which was determined by the operation collectUpdates. If necessary, this 
sequence will be cut by maxOps. If  reasonable, further operations are added. The 
selected elements form the result of the function computeTransmission. These 
elements are removed from the set client.ops. 

Note that non-relevant update operations are not removed from the set ops. 
There are two reasons for this. The first reason is to accumulate the movement. 
The STDBS cannot derive the last object representation objlast sent to a client 
without explicitly storing previous  information; the attribute prev of a new update 
operation newOp is often not identical to objlast. Furthermore, keeping these opera-
tions in the set allows the value of the attribute time to be preserved. Otherwise, a 
sequence of non-relevant movements would repeatedly change the value of time.  
As a result, the ranking of this operation within other operations would stay on a 
low level. By keeping the first value of time, the ranking of the operation is im-
proved over the duration of  time. Fig. 3 illustrates these effects. 

 
t i

obj 0  at (20,30)

t i+1

obj 1  at (25,15)

t i+2

obj 2  at (30,10)

t i+3

obj 3  at (35,15)

database time:

update not sent:
(obj 0  , t i, I1)
inserted into ops

(obj 1  , t i , I1) sent
and removed from 
ops

update not sent:
(obj 2  , t i+1  , U1)
inserted into ops

(obj 3 , t i+1 , U1) sent 
and removed
from ops  

Fig. 3. Illustration of setting and keeping the attribute time 

3.1.1 Discussion of the Time Complexity 

The filtering algorithm depicted in Fig. 2 observes the parameters of table 2. 
However, its design has not considered any optimisations for reducing the time or 
the space complexity of the algorithm. Let us first discuss time complexity.  

We can distinguish two different rankings using the attribute op.time 
(op�client.ops) and the function intr computing the measure of interest. There-
fore, we consider the two subsets ops1 and ops2 separately. ops1 consists of all 
operations of high interest plus the relevant operations of lower interest. ops2 con-
sists of the other operations of lower interest. The assignment of an operation to 
one of these two subsets will only change, if the object description op.curr is 
changed. This is not problematic because in this case the algorithm collectUp-
dates is called, which can handle this case. The ordering of ops1 is trouble-free 
because the attribute op.time will not be changed and the property isRelevant is 
static as long as the corresponding object op.curr is not changed. The same holds 
for the ordering of ops2 because the function intr result does not change without 
changing op.curr. 

The operations performed on the sets consists (a) of the insertion of elements, 
(b) of the search for an existing element (and its deletion) and (c) of the retrieval 
(and deletion) of the first k elements according to the ordering of the elements of 



 

ops1 and ops2, respectively. To support these operations, the following options 
exist (n denotes the number of elements in client.ops): 

��Operation (b) determines the existence of an operation in the set by using the 
identifier of the corresponding object. For an efficient search, we must know 
the value of the attribute, which defines the ordering: the valid time of the ob-
ject representation originally inserted into client.ops and the object representa-
tion inserted before into client.ops. However, the original valid time is un-
known for the calling STDBS. Therefore, the effort for performing operation 
(a) is O(log(n)) and for operation (c) O(maxOps*log(n)) if a balanced search 
tree according to the orders of ops1 and ops2 is used. However, the worst-case 
search time of (b) will be of O(n) in this case. 

��Organising the sets by two redundant balanced search trees allows performing 
the operations (a) and (b) in O(log(n)) and operation (c) in O(maxOps*log(n)). 
Each update operation, however, must be performed twice and as a result main-
taining  the two search trees increases the space requirements.  

3.1.2 Discussion of the Space Complexity 

The number of all current valid moving objects fulfilling the spatial and other non-
spatial query conditions only limits the number of elements in the set client.ops. 
This number is denoted by N; it holds: n � N. In the worst case for each client 
performing the continuous query, the status of all moving objects fulfilling the 
query condition at the beginning or throughout the duration must be recorded in 
the set client.ops. Then, n will be quite large. Assuming a STDBS used by many 
clients in parallel, that means a huge memory and maintenance overhead. There-
fore (and because of the time complexity), it is necessary to reduce this overhead 
by limiting the size of the set client.ops. This is the topic of the next section. 

3.2 Restricting the Space Complexity 

In an effort to restrict the memory demands the algorithm is modified by using a 
parameter, maxSize. The minimum value of maxSize is determined by the parame-
ter maxOps: maxSize � maxOps. However, a higher value of maxSize would im-
prove the results of the continuous query. If we restrict the size of the set, we will 
need a replacement strategy, which is required for a new important operation in 
the case that the set is full. The obvious replacement strategy is to remove the least 
important element from the set client.ops if the set has the size maxSize. One ex-
ception, however, must be observed. If we removed delete operations, this would 
have  drastic impacts for the client: the client in most cases would never remove 
the corresponding object. Therefore, we must not remove such operations from the 
set client.ops. Instead, we remove another operation having an older time stamp 
op.time from the set. In the case where only delete operations exist, however, this 
approach does not work. A solution to neglect the space restrictions or to disregard 
the time restriction minPeriod, should be considered.  This implies that the data 



would be sent earlier and therefore more data would be sent to the client than 
originally expected. 

Removing elements from the set of operations has a further impact: A client 
may receive update or delete operations concerning objects unknown for the client 
because it has not received any insert operation for this object before. Conse-
quently, such an update must be executed as an insertion and the client can ignore 
such a deletion.  

4 Experimental Investigation 

The experiments presented in the following investigate the applicability of the 
algorithms. Especially, the impact of the technical restrictions and of limiting the 
memory on the quality of the query results should be examined. 

4.1 Test Data and Queries 

For generating suitable test data, the generator for spatiotemporal data presented in 
(Brinkhoff, 2000) was used. This generator allows moving objects to be computed 
and observes several rules effective in simulating typical traffic situations. In our 
case, a street network consisting of 6,065 edges was used, and can be downloaded 
from the web site referenced in (Brinkhoff, 2000).Six object classes were defined. 
The maximum distance done by an object was between 1/250 and 1/8000 of the 
sum of the x-extension and the y-extension of the data space. The probability of a 
move per time stamp was 25%. The query condition used for the queries in the 
following tests is quite simple: it selects all objects lying in a query window hav-
ing a size of 10% of the data space. 

4.2 The Tests and Their Results 

The following experiments were performed through an an implementation of the 
continuous query programmed in Java using Oracle 8i. The continuous queries 
were started at time stamp 640 and stopped at time stamp 1280. At time stamp 
640, 281 moving objects were within the query window and at the end 387 ob-
jects. During the query, the complete number of operations to be transmitted to a 
client was 56,712. The measure of interest intr was computed as follows: 
(1) intr(objprev,objcurr)  :=  (timecurr - timeprev) + wloc * dist (timecurr , timeprev) 

The factor wloc scales the Euclidean distance such that the influence of time and 
space is equalised. The threshold thr is set on a value that would be exceeded for 
dist = 0, if the period between the two operations was larger than 4*minPeriod. 

The first test series investigate the results of the continuous query for different 
minimum periods minPeriod. Fig. 4 gives an overview of the results. The results 
of a minPeriod of 1 correspond to the results computed by the algorithm presented 



 

in section 2.2; the other results are computed using the algorithm of section 3.1. 
The omitting degree describes the quality of the query result according to defini-
tion of (Brinkhoff and Weitkämper, 2001). The smaller the omitting degree, the 
better the quality of the query results. The omitting degree consists of two compo-
nents: timeOD describes the temporal quality and distOD the spatial quality. For 
the sake of brevity,  the definition of the omitting degree has not been presented 
here. 
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Fig. 4. Results depending on the minimum period minPeriod 

The number of transmitted operations declines from 56,712 for a minPeriod of 
1 to 7,769 for a minPeriod of 32, i.e. by a factor of 7.3. The number of operations 
per transmission increases by a factor of about 4.2. With increasing values of 
minPeriod the probability increases that an operation is updated by a new opera-
tion before it is transmitted to the client. As a result, the quality of the response 
decreases considerably; for a minPeriod of 32, we observe an omitting degree of 
about 0.61. The average delay is barely affected because it is only measured for 
transmitted operations and not for operations being replaced before sending them 
to the client. 

In the next test series, the number of operations transmitted to the client 
(maxOps) was limited. The value of minOps was always set to maxOps/2. Fig. 5 
shows the main results for a minPeriod of 4 and 8. In the unlimited case (unl), up 
to 292 and 362 operations per transmission occur.  
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Fig. 5. Results depending on the number of operations per transmission 

By limiting the number of operations, the total number of transmission opera-
tions also decreases: we observe factors of 3.8 and 4.9 between the unlimited case 
and a maximum number of 64 operations for a minPeriod of 4 and 8, respectively. 
Consequently, the measure omitDeg increases. However, the increase is relatively 
moderate, especially for the distance measure distOD. This observation demon-
strates that the heuristics used by the algorithm for selecting the transmitted opera-
tions have success and compensate some of the loss of quality. The graphs depict-
ing the average delay are quite interesting. They show that up to a certain point, 
the effect of limiting maxOps is that older operations in the set client.ops are re-
placed by newer operations. In this case, no impact on avDelay can be observed. 
Beyond this point, the transmission of operations is really delayed and avDelay 
increases. Another observation concerns the size of client.ops: the smaller 
maxOps, the larger the maximum size of this set. Therefore, the maximum size of 
client.ops (maxSize) is limited in the test series of Fig. 6. That means we investi-
gate a version of the algorithm of section 3.1, which observes the space restric-
tions presented in section 3.2. 
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Fig. 6. Results depending on maxOps and maxSize (unl = unlimited) 



 

Limiting maxSize leads to a further decline of the number of transmitted opera-
tions. Again, the impact on the quality of the query result is rather moderate. Es-
pecially, the distance portion of the omitting degree is almost unaffected.  

We can summarise that the experiments have shown that the proposed algo-
rithm allows limiting the number of transmitted operations as well as  the number 
of operations buffered by the STDBS without a huge loss of quality.  

5 Conclusions 

In this paper, filtering algorithms for processing spatial continuous queries in a 
spatiotemporal database system (STDBS) have been presented. After presenting a 
first algorithm, we have observed two contradicting optimisation goals: First, to 
reduce the memory requirements of the STDBS and second, to reduce the volume 
and frequency of transmissions to the clients. To balance between these two objec-
tives, an algorithm has been presented that observes different parameters model-
ling technical restrictions as well as the interest of a client in a distinct update 
operation. A restriction of the memory requirements of the algorithm has been 
achieved by using an adapted replacement strategy.  

Delaying and not transmitting update operations to a client, however, decreases 
the quality of the query result. In an experimental investigation, the proposed 
algorithms have been examined measuring the quality of the query results. These 
tests have shown that the algorithm, which was finally proposed, allows limiting 
the number of transmitted operations as well as of the number of the operations 
buffered by the STDBS without a huge loss of quality. In particular, the impact on 
the distance between the locations of the transmitted object descriptions is rather 
moderate. 

The definition of continuous queries in this paper was based on a simple model 
of moving objects. Therefore, future work should cover a definition using a more 
expressive data model. The same holds for the application. More complex is, for 
example, the detection of collisions for 3D moving objects (Mirtich, 2000). The 
experimental investigations presented in this paper have been based on a standard 
database system. A major drawback of using such a database system is the consid-
erable effort necessary for determining the previous object description of an up-
dated object. This disadvantage must be eliminated by extending the database 
system by a suitable buffering technique or by using (prototypes of) spatiotempo-
ral database systems. More detailed performance investigations could then include 
the measurement of the processing time for performing continuous queries.. An-
other aspect to consider is the behaviour of the restricting parameters. In this pa-
per, it is assumed that they do not change over time with respect to a client. How-
ever, the resolution of a client may be changed by performing a zoom operation. 
The parameters minOps, maxOps and minPeriod may be affected by the traffic of 
other  network users or by a changed capacity of the connection (e.g., using the 
new mobile telephone standard UMTS, the maximum speed of a connection will 



depend on the distance of the mobile telephone to the next base station.) There-
fore, efficient filter algorithms are required, which observe varying restrictions. 
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