
The Impact of Filtering on Spatial Continuous
Queries

Thomas Brinkhoff

Institute for Applied Photogrammetry and Geoinformatics (IAPG), FH Olden-
burg/Ostfriesland/Wilhelmshaven (University of Applied Sciences), Ofener Str.
16/19, D-26121 Oldenburg, Germany, tbrinkhoff@acm.org

Abstract

Spatiotemporal database systems (STDBS) are primarily oriented to applications
that track and present details about moving objects. Such applications must be
kept informed about new, relocated, or removed objects that fulfil a given query
condition. Consequently, a STDBS must inform its clients about these updates.
Such queries are called continuous queries. The volume and frequency of trans-
missions is influenced by technical restrictions like the computing power of a
client, the spatial distances a client is able to distinguish, and the maximum speed
and throughput of the network connection. In this paper, filtering algorithms are
presented that reduce the number of transmitted update operations. Two contradic-
tory optimisation goals can be observed: First, to reduce the memory requirements
of the STDBS for buffering these operations and, second, to reduce the volume
and frequency of transmissions. Delaying or even not transmitting updates to a
client may, however, decrease the quality of the query result. The impact of these
algorithms is presented through discussion of a series of experiments.
Keywords: spatiotemporal database systems, moving objects, continuous queries

1 Introduction

Spatiotemporal database systems (STDBS) are an enabling technology for applica-
tions such as Geographic Information Systems (GIS), environmental information
systems, and multimedia. In particular, the storage and retrieval of moving objects
are central tasks of a STDBS. The investigation of spatiotemporal database sys-
tems is especially oriented to applications which are required to track and visual-
ise moving objects. Many of these applications originate from the field of traffic
telematics. This is a field in which techniques from the areas of telecommunica-
tion and computer science are combined and used in establishing traffic informa-

�����
����

���
���

���
	���

���������	�
��
��
�����������������

���������
��
�
�������������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

tion and assistance services. Such applications require the management of moving
objects, such as vehicles of a fleet (Wolfson et al., 1999) (Brinkhoff, 1999).

An important issue is the support of mobile and location-based applications.
Mobile applications refer to locations and require the transmission of spatial or
spatiotemporal data. The appearance of mobile applications has also had an impact
on devices used for presenting data: Personal digital assistants (PDAs) or mobile
telephones are used as clients. The computing power of such devices, however, is
restricted compared to traditional computers. In addition, speed and throughput of
wireless networks are subject to large variations.

The work presented in this paper is motivated by the two trends mentioned
above. Applications tracking, and presenting moving objects require current and
appropriate information about any new, relocated, or removed objects. Conse-
quently, a STDBS must inform its clients about such update operations. The query
causing this process is called continuous query (Terry et al., 1992). The ‘result set’
of a spatial continuous query is influenced by the update operations occurring in
the database and by a given query condition. The query condition includes two
aspects and consists of spatial predicates (e.g., a window query) and optionally of
non-spatial predicates defining further selections (e.g., a selection of vehicles that
are cars or motorbikes). For mobile applications, the processing capabilities of the
client must also be taken into account.

Typical technical restrictions concern the computing power of the client, the
spatial distances the client is able to (or wants to) distinguish, and the maximum
speed and throughput of the connection between the STDBS and the client. There-
fore, it is not advisable to transmit the complete result of a continuous query. In-
stead, a reasonable filtering must be performed. Two contradicting optimisation
goals can be observed: First, to reduce the memory requirements of the STDBS
for buffering the operations and, second, to reduce the volume and frequency of
transmissions to the client. \Delaying or even not transmitting update operations to
a client may, however, decrease the quality of the query result. Therefore, algo-
rithms for filtering the result of a spatial continuous query are required to maintain
a sufficient quality of the query result.

This paper starts with a short definition of the model used for describing mov-
ing objects and presents the main properties of spatial continuous queries. The
second section introduces a first algorithm for processing continuous queries.
More sophisticated algorithms are presented and analysed in the third section.
They limit the memory requirements of the STDBS and reduce the volume and
frequency of the transmissions. The quality of the query results and other proper-
ties of these algorithms are then experimentally investigated. Finally, the paper
concludes with a summary and an outlook on future work.

2 Continuous Queries

2.1 Definitions

The following discussion assumes a STDBS, which stores the positions and other
attributes of moving objects. In a temporal database, valid time and transaction
time is distinguished. The valid time describes the time when a record is valid in
the modelled reality. The transaction time is the time when a record is committed
in the database system.

In the following, it is assumed that a moving object obj has an identifier obj.id.
The object is described by a sequence of records obji (i�N). Each record consists
of a spatial location obji.loc (short: loci), of a time stamp obji.time (short: timei)
giving the beginning of the valid time, of a time stamp obji.trTime (short: trTimei)
giving the transaction time, and of non-spatiotemporal attributes obji.attr (short:
attri). A time stamp t is represented by a natural number (t�N). If the records obji
and obji+1 exist, the valid time of record obji corresponds to the interval [timei ,
timei+1). If no record obji+1 exists for a record obji, the record obji is the current
state of the corresponding moving object from the point of view of the STDBS.
Furthermore, a final record obji may exist with i > j for all records objj of this
moving object. It indicates the end of the lifetime of the object. In order to sim-
plify the discussion, we assume that timei � trTimei holds.

We distinguish three basic types of updates concerning a moving object: 1, the
insertion of a new object, 22, the modification of an existing object, and 33, the
deletion of an existing object. With respect to the query condition of a distinct
client, the type of an (modifying) update operation may change (Brinkhoff and
Weitkämper, 2001). For example, the position of an object representing a vehicle
has been modified in the database. If this vehicle leaves the query window of a
client, this modification must be reclassified to a deletion for this particular client.
Table 1 gives a summary of such reclassifications. The vehicle leaving the win-
dow is represented by the (yes, no) row and the modification column. Updates that
do not need to be reclassified are shown as I1 and D1. While I2 and D2 denote
reclassified updates.

Table 1. Reclassification of update operations

fulfils query condition? original type of operation:
Insertion deletion modification previous record

obji-1
current record

obji reclassified type of operation:
no no - - -
no yes insertion (I1) . / . insertion (I2)
yes no . / . deletion (D1) deletion (D2)
yes yes . / . . / . modification (M)

The reclassified type of an update operation may also determine the interest of

a client in this operation: Deletions are typically of high interest. The same holds
for insertions. For modifications, the situation may be different. In general, the

number of modifications considerably exceeds the number of other operations.
Therefore, it may be acceptable to skip some modifications, especially if the dis-
tance to the last reported position is small or the topology has not changed (e.g.,
the car is still on the motorway or is still in the same county). Then, the result set
received by a client is not identical to the complete result set of a continuous
query. In contrast to the assumptions done in queuing theory, not only a delaying
but also a skipping of operations is acceptable. Another restriction concerns the
database: the STDBS cannot store a reflection of all update operations each client
has received as a result of the query condition – the cost would be prohibitive.

2.2 A First Algorithm

If a moving object is changed in the database, the STDBS will determine the af-
fected clients and will reclassify the update operation type accordingly. If the
update is of interest for a distinct client, the STDBS will call the procedure col-
lectUpdates (see Fig. 1). In general, the new update operation is added to the
set client.ops, which collects the operations intended for the client. newOp consists
of the identifier of the corresponding object (objId), of the current object represen-
tation (curr), and the reclassified type of the operation (opType). If an element
concerning the same object already exists in the set client.ops, this element will be
updated. As a result, and depending on the current type of operation, the ele-
ment will be deleted or modified. collectUpdates guarantees that for each
object at most one operation exists in the set client.ops.

The function computeTransmission determines the set of operations to be
sent to a client. The STDBS calls this function before the updates are transmitted
to a client. As a result, this first solution returns client.ops and then empties the
set..

void collectUpdates (Client client, Operation newOp) {
// Adds an update operation newOp to a collection of a client.

 // case 1: the operation concerns no object referenced in the set
 if (newOp.objId � {op.objId | op � client.ops})
 client.ops = client.ops � {newOp};
 // case 2: the operation concerns an object referenced in the set
 else {
 // determine the stored operation

 Operation oldOp = op�client.ops with op.objId == newOp.objId;
 // if necessary, delete the operation from the set
 if ((oldOp.opType�{I1,I2}) && (newOp.opType�{D1,D2}))
 client.op = client.op \ {oldOp};

 // or update the type of operation and the description
 else if ((oldOp.opType�{D1,D2}) && (newOp.opType�{I1,I2})) {
 oldOp.opType = M; // delete plus insert becomes modification

 oldOp.curr = newOp.curr;
 }

 // or update only the description
 else oldOp.curr = newOp.curr;

}}

Set computeTransmission (Client client) {
// Determines the update operations to be sent to a client.

 Set sendOps = client.ops;
 client.ops = �;
 return sendOps;
}

Fig. 1. First version of the filtering algorithm

An aspect to consider is how best does one determine the point at which a set
of updates should be transmitted to a client. One solution is to send a transmission
as soon as the transaction time has exceeded a given period �t. In this case, the
size of set client.ops is only limited by the number of updates that a STDBS is
able to process in the given period �t. This number can be quite large. Assuming
many clients use a STDBS in parallel, it may result in excessive memory require-
ments and poor scalability. Further, the performance of the client or the network
connection to the client may restrict the number of operations that can be proc-
essed during a given period.

By reducing the period �t, the first disadvantage may be reduced. However, the
sum of transferred operations would increase. The reason for this increase is that
the probability of replacing operations in the set client.ops decreases with shorter
periods �t. Time restrictions, that require a minimum period between two data
transmissions, are another rationale against reducing �t. The same argumentation
will hold if the transmission is triggered by the size of the set client.ops. Only in
the case of �t=1, the algorithm computes the complete result of a continuous
query. Otherwise, the transmission of operations may be delayed. By replacing
outdated entries, the result set may be smaller than the complete result.

We can observe two contradictory optimisation goals: First, to reduce the
memory requirements of the STDBS for buffering update operations and, second,
to reduce the volume and frequency of transmissions to the client. In the follow-

ing, we try to balance between these two objectives by modifying the initial algo-
rithm.

3 Improving the Algorithm

According to (Brinkhoff and Weitkämper, 2001), table 2 summarises the parame-
ters and functions, which can be used for describing the restrictions of a client.
These parameters are used by the algorithms presented below.

Table 2. Parameters and functions used for describing the restrictions of a client

parameter Description
maxOps The maximum number of update operations that can be sent to

a client by one transmission.
minOps The minimum number of operations reasonable to be sent to a

client by one transmission; it holds: minOps � maxOps.
minPeriod The minimum period between two transmissions to a client.
thr A threshold for the measure of interest (see section 3.1).

function Description
intr(obprev,objcurr) The measure of interest for operations that are not of high

interest.
isRelevant(obprev,objcurr) Boolean function determining whether an update operation is

relevant for a client or not.

3.1 Algorithm Observing the Restrictions of a Client

An algorithm, which determines the next update operations to be sent to a client
for performing the continuous query, should observe the restrictions and measures
described above. Like in section 2.2, the algorithm presented in Fig. 2 consists of
the operations collectUpdates and computeTransmission.

The procedure collectUpdates is similar to the first version. A previous ob-
ject description (prev) and an attribute time have been added to the elements of the
set client.ops. The parameter newOp also includes an attribute prev representing
the previous object representation in the database. A STDBS should be able to
determine newOp.prev efficiently. For a new element in the set client.ops, the
attribute time is generally set to the valid time of newOp.prev. An exception from
this rule is the insert operation I1. Then, time is set to the valid time of the new
object. If an element concerning the same object already exists in the set cli-
ent.ops, this element will be updated. Note that the attribute time is not changed in
this case. It still represents the time when the operation was inserted into cli-
ent.ops.

void collectUpdates (Client client, Operation newOp) {
// Adds an update operation newOp to a collection of a client.

 // case 1: the operation concerns no object referenced in the set
 if (newOp.objId � {op.objId | op � client.ops}) {

 newOp.time = (newOp.opType == I1) ? newOp.curr.time : newOp.prev.time;
 client.ops = client.ops � {newOp};

 }
 // case 2: the operation concerns an object referenced in the set,
 // the attribute oldOp.time remains unchanged!
 else {
 // determine the operation

 Operation oldOp = op�client.ops with op.objId == newOp.objId;
 // if necessary delete the operation from the set
 if ((oldOp.opType�{I1,I2}) && (newOp.opType�{D1,D2}))
 client.op = client.op \ {oldOp};

 // or update the type of operation and the description
 else if ((oldOp.opType�{D1,D2}) && (newOp.opType�{I1,I2})) {
 oldOp.opType = M; // delete plus insert becomes modification

 oldOp.curr = newOp.curr;
 }

 // or update only the description
 else oldOp.curr = newOp.curr;

} }

Set computeTransmission (Client client, Time currTime) {
// Determines the updates to be sent to a client. currTime: the current time

 // initialize the set of operations to be sent
 Set sendOps = �;
 // if the period is too short: return nothing
 if (currTime-client.timePrev) < client.minPeriod)
 return sendOps;
 // determine the operations of high interest
 Set o1 = {op�client.ops | (op.opType)�{I1,I2,D1,D2}) �

 (intr(op.prev,op.curr)�client.thr)) � isRelevant(op.prev,op.curr) };
 if (|o1| > client.maxOps)

 sendOps = {op�o1| client.maxOps elements having the oldest time stamps};
 else
 sendOps = o1;
 // determine further operations of interest
 if (|sendOps| < client.minOps) {
 Set o2 ={op�client.ops�op�sendOps|isRelevant(op.prev,op.curr)};
 sendOps = sendOps � {op�o2| client.minOps-|o1| elements
 having the highest intr(op.prev,op.curr) };
 }
 // final actions
 if (sendOps � �)
 client.prevTime = currTime;
 client.ops = client.ops \ sendOps;
 return sendOps;
}

Fig. 2. Filtering algorithm observing the restrictions of a client

The function computeTransmission has been completely modified: it deter-
mines the set of operations to be sent to the client observing the parameters and
functions shown in table 2. First, the algorithm tests whether the time interval
between the time, when update operations were sent to the client last, and the
current time is sufficient. Then, a set of operations is determined. This set contains
all operations of high interest and the operations whose measure of interest ex-
ceeds a given threshold thr. The elements are ranked according to the attribute

time, which was determined by the operation collectUpdates. If necessary, this
sequence will be cut by maxOps. If reasonable, further operations are added. The
selected elements form the result of the function computeTransmission. These
elements are removed from the set client.ops.

Note that non-relevant update operations are not removed from the set ops.
There are two reasons for this. The first reason is to accumulate the movement.
The STDBS cannot derive the last object representation objlast sent to a client
without explicitly storing previous information; the attribute prev of a new update
operation newOp is often not identical to objlast. Furthermore, keeping these opera-
tions in the set allows the value of the attribute time to be preserved. Otherwise, a
sequence of non-relevant movements would repeatedly change the value of time.
As a result, the ranking of this operation within other operations would stay on a
low level. By keeping the first value of time, the ranking of the operation is im-
proved over the duration of time. Fig. 3 illustrates these effects.

t i

obj 0 at (20,30)

t i+1

obj 1 at (25,15)

t i+2

obj 2 at (30,10)

t i+3

obj 3 at (35,15)

database time:

update not sent:
(obj 0 , t i, I1)
inserted into ops

(obj 1 , t i , I1) sent
and removed from
ops

update not sent:
(obj 2 , t i+1 , U1)
inserted into ops

(obj 3 , t i+1 , U1) sent
and removed
from ops

Fig. 3. Illustration of setting and keeping the attribute time

3.1.1 Discussion of the Time Complexity

The filtering algorithm depicted in Fig. 2 observes the parameters of table 2.
However, its design has not considered any optimisations for reducing the time or
the space complexity of the algorithm. Let us first discuss time complexity.

We can distinguish two different rankings using the attribute op.time
(op�client.ops) and the function intr computing the measure of interest. There-
fore, we consider the two subsets ops1 and ops2 separately. ops1 consists of all
operations of high interest plus the relevant operations of lower interest. ops2 con-
sists of the other operations of lower interest. The assignment of an operation to
one of these two subsets will only change, if the object description op.curr is
changed. This is not problematic because in this case the algorithm collectUp-
dates is called, which can handle this case. The ordering of ops1 is trouble-free
because the attribute op.time will not be changed and the property isRelevant is
static as long as the corresponding object op.curr is not changed. The same holds
for the ordering of ops2 because the function intr result does not change without
changing op.curr.

The operations performed on the sets consists (a) of the insertion of elements,
(b) of the search for an existing element (and its deletion) and (c) of the retrieval
(and deletion) of the first k elements according to the ordering of the elements of

ops1 and ops2, respectively. To support these operations, the following options
exist (n denotes the number of elements in client.ops):

��Operation (b) determines the existence of an operation in the set by using the
identifier of the corresponding object. For an efficient search, we must know
the value of the attribute, which defines the ordering: the valid time of the ob-
ject representation originally inserted into client.ops and the object representa-
tion inserted before into client.ops. However, the original valid time is un-
known for the calling STDBS. Therefore, the effort for performing operation
(a) is O(log(n)) and for operation (c) O(maxOps*log(n)) if a balanced search
tree according to the orders of ops1 and ops2 is used. However, the worst-case
search time of (b) will be of O(n) in this case.

��Organising the sets by two redundant balanced search trees allows performing
the operations (a) and (b) in O(log(n)) and operation (c) in O(maxOps*log(n)).
Each update operation, however, must be performed twice and as a result main-
taining the two search trees increases the space requirements.

3.1.2 Discussion of the Space Complexity

The number of all current valid moving objects fulfilling the spatial and other non-
spatial query conditions only limits the number of elements in the set client.ops.
This number is denoted by N; it holds: n � N. In the worst case for each client
performing the continuous query, the status of all moving objects fulfilling the
query condition at the beginning or throughout the duration must be recorded in
the set client.ops. Then, n will be quite large. Assuming a STDBS used by many
clients in parallel, that means a huge memory and maintenance overhead. There-
fore (and because of the time complexity), it is necessary to reduce this overhead
by limiting the size of the set client.ops. This is the topic of the next section.

3.2 Restricting the Space Complexity

In an effort to restrict the memory demands the algorithm is modified by using a
parameter, maxSize. The minimum value of maxSize is determined by the parame-
ter maxOps: maxSize � maxOps. However, a higher value of maxSize would im-
prove the results of the continuous query. If we restrict the size of the set, we will
need a replacement strategy, which is required for a new important operation in
the case that the set is full. The obvious replacement strategy is to remove the least
important element from the set client.ops if the set has the size maxSize. One ex-
ception, however, must be observed. If we removed delete operations, this would
have drastic impacts for the client: the client in most cases would never remove
the corresponding object. Therefore, we must not remove such operations from the
set client.ops. Instead, we remove another operation having an older time stamp
op.time from the set. In the case where only delete operations exist, however, this
approach does not work. A solution to neglect the space restrictions or to disregard
the time restriction minPeriod, should be considered. This implies that the data

would be sent earlier and therefore more data would be sent to the client than
originally expected.

Removing elements from the set of operations has a further impact: A client
may receive update or delete operations concerning objects unknown for the client
because it has not received any insert operation for this object before. Conse-
quently, such an update must be executed as an insertion and the client can ignore
such a deletion.

4 Experimental Investigation

The experiments presented in the following investigate the applicability of the
algorithms. Especially, the impact of the technical restrictions and of limiting the
memory on the quality of the query results should be examined.

4.1 Test Data and Queries

For generating suitable test data, the generator for spatiotemporal data presented in
(Brinkhoff, 2000) was used. This generator allows moving objects to be computed
and observes several rules effective in simulating typical traffic situations. In our
case, a street network consisting of 6,065 edges was used, and can be downloaded
from the web site referenced in (Brinkhoff, 2000).Six object classes were defined.
The maximum distance done by an object was between 1/250 and 1/8000 of the
sum of the x-extension and the y-extension of the data space. The probability of a
move per time stamp was 25%. The query condition used for the queries in the
following tests is quite simple: it selects all objects lying in a query window hav-
ing a size of 10% of the data space.

4.2 The Tests and Their Results

The following experiments were performed through an an implementation of the
continuous query programmed in Java using Oracle 8i. The continuous queries
were started at time stamp 640 and stopped at time stamp 1280. At time stamp
640, 281 moving objects were within the query window and at the end 387 ob-
jects. During the query, the complete number of operations to be transmitted to a
client was 56,712. The measure of interest intr was computed as follows:
(1) intr(objprev,objcurr) := (timecurr - timeprev) + wloc * dist (timecurr , timeprev)

The factor wloc scales the Euclidean distance such that the influence of time and
space is equalised. The threshold thr is set on a value that would be exceeded for
dist = 0, if the period between the two operations was larger than 4*minPeriod.

The first test series investigate the results of the continuous query for different
minimum periods minPeriod. Fig. 4 gives an overview of the results. The results
of a minPeriod of 1 correspond to the results computed by the algorithm presented

in section 2.2; the other results are computed using the algorithm of section 3.1.
The omitting degree describes the quality of the query result according to defini-
tion of (Brinkhoff and Weitkämper, 2001). The smaller the omitting degree, the
better the quality of the query results. The omitting degree consists of two compo-
nents: timeOD describes the temporal quality and distOD the spatial quality. For
the sake of brevity, the definition of the omitting degree has not been presented
here.

0

10000

20000

30000

40000

50000

60000

1 2 4 8 16 32
minPeriod

#t
ra

ns
m

itt
ed

 o
pe

ra
tio

ns

0
50
100
150
200
250
300
350
400

#o
pe

ra
tio

ns
/tr

an
m

is
si

on
#transmitted ops.
#ops/transmission

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 2 4 8 16 32
minPeriod

om
itt

in
g

de
gr

ee

timeOD
distOD

0
0,5

1
1,5

2
2,5

3
3,5

4

1 2 4 8 16 32
minPeriod

av
De

la
y

Fig. 4. Results depending on the minimum period minPeriod

The number of transmitted operations declines from 56,712 for a minPeriod of
1 to 7,769 for a minPeriod of 32, i.e. by a factor of 7.3. The number of operations
per transmission increases by a factor of about 4.2. With increasing values of
minPeriod the probability increases that an operation is updated by a new opera-
tion before it is transmitted to the client. As a result, the quality of the response
decreases considerably; for a minPeriod of 32, we observe an omitting degree of
about 0.61. The average delay is barely affected because it is only measured for
transmitted operations and not for operations being replaced before sending them
to the client.

In the next test series, the number of operations transmitted to the client
(maxOps) was limited. The value of minOps was always set to maxOps/2. Fig. 5
shows the main results for a minPeriod of 4 and 8. In the unlimited case (unl), up
to 292 and 362 operations per transmission occur.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

unl 256 128 64
maxOps (minPeriod=4)

om
itt

in
g

de
gr

ee timeOD
distOD

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

unl 256 128 64
maxOps (minPeriod=8)

om
itt

in
g

de
gr

ee timeOD
distOD

0

1

2

3

4

5

6

unl 256 128 64
maxOps

av
De

la
y

minPeriod=4
minPeriod=8

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

unl 256 128 64
maxOps

#t
ra

ns
m

itt
ed

 o
pe

ra
tio

ns minPeriod=4
minPeriod=8

200

250

300

350

400

450

unl 256 128 64
maxOps

m
ax

im
um

 s
iz

e
of

 o
ps

minPeriod=4
minPeriod=8

Fig. 5. Results depending on the number of operations per transmission

By limiting the number of operations, the total number of transmission opera-
tions also decreases: we observe factors of 3.8 and 4.9 between the unlimited case
and a maximum number of 64 operations for a minPeriod of 4 and 8, respectively.
Consequently, the measure omitDeg increases. However, the increase is relatively
moderate, especially for the distance measure distOD. This observation demon-
strates that the heuristics used by the algorithm for selecting the transmitted opera-
tions have success and compensate some of the loss of quality. The graphs depict-
ing the average delay are quite interesting. They show that up to a certain point,
the effect of limiting maxOps is that older operations in the set client.ops are re-
placed by newer operations. In this case, no impact on avDelay can be observed.
Beyond this point, the transmission of operations is really delayed and avDelay
increases. Another observation concerns the size of client.ops: the smaller
maxOps, the larger the maximum size of this set. Therefore, the maximum size of
client.ops (maxSize) is limited in the test series of Fig. 6. That means we investi-
gate a version of the algorithm of section 3.1, which observes the space restric-
tions presented in section 3.2.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

128/unl 128/128 64/unl 64/64
maxOps / maxSize (minPeriod=4)

om
itt

in
g

de
gr

ee

timeOD
distOD

0
2000
4000
6000
8000

10000
12000
14000
16000

128/unl 128/128 64/unl 64/64
maxOps / maxSize (minPeriod=4)

#t
ra

ns
m

itt
ed

 o
pe

ra
tio

ns

Fig. 6. Results depending on maxOps and maxSize (unl = unlimited)

Limiting maxSize leads to a further decline of the number of transmitted opera-
tions. Again, the impact on the quality of the query result is rather moderate. Es-
pecially, the distance portion of the omitting degree is almost unaffected.

We can summarise that the experiments have shown that the proposed algo-
rithm allows limiting the number of transmitted operations as well as the number
of operations buffered by the STDBS without a huge loss of quality.

5 Conclusions

In this paper, filtering algorithms for processing spatial continuous queries in a
spatiotemporal database system (STDBS) have been presented. After presenting a
first algorithm, we have observed two contradicting optimisation goals: First, to
reduce the memory requirements of the STDBS and second, to reduce the volume
and frequency of transmissions to the clients. To balance between these two objec-
tives, an algorithm has been presented that observes different parameters model-
ling technical restrictions as well as the interest of a client in a distinct update
operation. A restriction of the memory requirements of the algorithm has been
achieved by using an adapted replacement strategy.

Delaying and not transmitting update operations to a client, however, decreases
the quality of the query result. In an experimental investigation, the proposed
algorithms have been examined measuring the quality of the query results. These
tests have shown that the algorithm, which was finally proposed, allows limiting
the number of transmitted operations as well as of the number of the operations
buffered by the STDBS without a huge loss of quality. In particular, the impact on
the distance between the locations of the transmitted object descriptions is rather
moderate.

The definition of continuous queries in this paper was based on a simple model
of moving objects. Therefore, future work should cover a definition using a more
expressive data model. The same holds for the application. More complex is, for
example, the detection of collisions for 3D moving objects (Mirtich, 2000). The
experimental investigations presented in this paper have been based on a standard
database system. A major drawback of using such a database system is the consid-
erable effort necessary for determining the previous object description of an up-
dated object. This disadvantage must be eliminated by extending the database
system by a suitable buffering technique or by using (prototypes of) spatiotempo-
ral database systems. More detailed performance investigations could then include
the measurement of the processing time for performing continuous queries.. An-
other aspect to consider is the behaviour of the restricting parameters. In this pa-
per, it is assumed that they do not change over time with respect to a client. How-
ever, the resolution of a client may be changed by performing a zoom operation.
The parameters minOps, maxOps and minPeriod may be affected by the traffic of
other network users or by a changed capacity of the connection (e.g., using the
new mobile telephone standard UMTS, the maximum speed of a connection will

depend on the distance of the mobile telephone to the next base station.) There-
fore, efficient filter algorithms are required, which observe varying restrictions.

References

Brinkhoff T (1999) Requirements of Traffic Telematics to Spatial Databases. In: Proceed-
ings 6th International Symposium on Large Spatial Databases. Hong Kong, China.
Lecture Notes in Computer Science, Vol.1651, Springer, pp 365-369

Brinkhoff T (2000) Generating Network-Based Moving Objects. In: Proceedings 12th
International Conference on Scientific and Statistical Database Management, Berlin,
Germany, pp 253-255 (extended version accepted for GeoInformatica, Kluver)

Brinkhoff T, Weitkämper J (2001) Continuous Queries within an Architecture for Querying
XML-Represented Moving Objects. In: Proceedings 7th International Symposium on
Spatial and Temporal Databases, Redondo Beach, CA. Lecture Notes in Computer
Science, Vol.2121, Springer, pp 136-154

Mirtich B (2000) Timewarp Rigid Body Simulation. In: Proceedings ACM SIGGRAPH
27th International Conference on Computer Graphics and Interactive Techniques, New
Orleans, LA, pp 193-200

Terry D, Goldberg D, Nichols D, Oki B (1992) Continuous Queries over Append-Only
Databases. In: Proceedings ACM SIGMOD International Conference on Management
of Data. San Diego, CA, pp 321-330

Wolfson O, Sistla AP, Chamberlain S, Yesha Y (1999) Updating and Querying Databases
that Track Mobile Units. Distributed and Parallel Databases 7(3):257-287

