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Abstract 

Good quality terrain models are becoming more and more important, as 
applications such as runoff modelling are being developed that demand better 
surface orientation information than is available from traditional interpolation 
techniques. A consequence is that poor-quality elevation grids must be massaged 
before they provide useable runoff models. This paper describes improved 
methods for extracting good quality terrain models from topographic contour 
maps, which despite modern techniques are still the most available form of 
elevation information. Recent work on the automatic reconstruction of curves 
from point samples, and the generation of medial axis transforms (skeletons) has 
greatly helped in the visualisation of the relationships between sets of boundaries, 
and families of curves. The insertion of skeleton points guarantees the elimination 
of all flat triangles. Additional assumptions about the local uniformity of slopes 
give us enough information to assign elevation values to these skeleton points. 
Various interpolation techniques were compared using visualisation of the 
enriched contour data. Examination of the quality and consistency of the resulting 
maps indicates the required properties of the interpolation method in order to 
produce terrain models with valid slopes. The result provides us with a 
surprisingly realistic model of the surface - that is, one that conforms well to our 
subjective interpretation of what a real landscape should look like. 
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1 Introduction 

This paper concerns the generation of interpolated surfaces from contours. While 
this topic has been studied by many people (including the first author) for over 20 
years, this work is interesting for a variety of reasons. Firstly, contour data 
remains the most readily available data source. Secondly, valid theorems for the 
sampling density along the contour lines have only just been discovered (Amenta 
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et al. 1998). Thirdly, the same publications provide simple methods for generating 
the medial axis transform, or skeleton, which definitively solves the “flat triangle” 
problem, which often occurs when triangulating contour data, by inserting 
additional points from this skeleton. Fourthly, the problem of assigning elevation 
values to these additional ridge or valley points can be resolved, using the 
geometric properties of this skeleton, in ways that may be associated with the 
geomorphological form of the landscape. In addition, comparisons of the methods 
used in a variety of weighted-average techniques throw a lot of light on the key 
components of a good interpolation method, using three-dimensional visualisation 
tools to identify what should be “good” results – with particular emphasis being 
placed on reasonable slope values, and slope continuity. This last is often of more 
importance than the elevation itself, as many issues of runoff, slope stability and 
vegetation are dependent on slope and aspect – but unfortunately most 
interpolation methods cannot claim satisfactory results for these parameters.  

2 Geometric Preliminaries 

The methods discussed here depend on a few fundamental geometrical constructs 
that are well known – the Voronoi diagram and its dual, the Delaunay 
triangulation (Fig. 1). The first is often used to partition a map into regions closest 
to each generating point; the second is usually used as the basis for triangulating a 
set of data points, as it is guaranteed to be locally stable. It may easily be 
constructed using its “empty circumcircle” property – this circle is centered at the 
Voronoi node associated with each triangle, and goes through the three vertices.  

 

 
Fig. 1. Delaunay triangulation and Voronoi diagram 

The Voronoi diagram and Delaunay triangulation are associated with other 
geometric structures, shown in Fig 2a, known as the crust and the skeleton (or 
“medial axis transform”), using algorithms introduced by Amenta et al. (1998). 
They examined the case where a set of points sampled from a curve or polygon 
boundary were triangulated, and then attempted to reconstruct the curve. They 
showed that this “crust” was formed from the triangle edges that did not cross the 
skeleton, and that if the sampling of the curve was less than 0.25 of the distance to 
the skeleton formed by the remaining Voronoi edges the crust was guaranteed to 
be correct. Gold (1999) and Gold and Snoeyink (2001) simplified Amenta’s 



algorithm for the extraction of the crust by showing that, in every 
Delaunay/Voronoi edge pair, either the Delaunay edge could be assigned to the 
crust or else the dual Voronoi edge could be assigned to the skeleton. The 
Delaunay edge belongs to the crust when there exists a circle through its two 
vertices that contain neither of its associated Voronoi vertices; otherwise, the 
corresponding Voronoi edge belongs to the skeleton. A simple InCircle test 
applied to each Delaunay/Voronoi edge pair (Fig. 2b) distinguishes these cases. 

 

  
a) b) 

 

Fig. 2. Crust and skeleton, (a) crust (thick black lines) and skeleton (thick gray lines), (b) 
crust/skeleton test 

3 Generation of Ridge and Valley Lines 

In our particular case, the data is in the form of contour lines that we assume are 
sufficiently well sampled – perhaps derived from scanned maps. Despite modern 
satellite imaging, much of the world’s data is still in this form. An additional 
property is not sufficiently appreciated – they are subjective, the result of human 
judgement at the time they were drawn. Thus they are clearly intended to convey 
information about the perceived form of the surface – and it would be desirable to 
preserve this, as derived ridges and valleys.  

Fig. 3a shows our raw data set (which is completely imaginary), and Fig. 3b 
shows the resulting crust, which reconstructs the contour lines and the skeleton. 
Fig. 3c shows the crust and only those skeleton points that provide unique 
information – ridge and valley lines that separate points on the same contour (“flat  

 
a) b) c) 



Fig. 3. Contours, (a) data points, (b) crust and skeleton, (c) crust and skeleton branches 

triangles”), rather than merely those points that separate adjacent contours. 
Aumann et al. (1991) produced somewhat similar results by raster processing. 

Fig. 4 shows a close-up of the test data set with shaded flat triangles having all 
vertices at the same elevation. In a Delaunay triangulation all circumcircles must 
be empty, and the insertion of a Voronoi vertex (circumcentre or skeleton point) 
will force the deletion of its forming triangle. Thus, the insertion of the skeleton 
point of a flat triangle guarantees that it is replaced by new triangles with the 
skeleton point as a vertex. 

 

  
a) b) 

Fig. 4. Skeleton and "flat triangles": a) ridge; b) summit 

Two techniques for estimating heights at skeleton points have been developed, 
each with its own physical interpretation. The first, following Thibault and Gold 
(2000), uses Blum’s (1967) concept of height as a function of distance from the 
curve or polygon boundary, with the highest elevations forming the crest at the 
skeleton line. This is illustrated in Figs. 5a and 5b, where points on a simple 
closed curve are used to generate the crust and skeleton. In Fig. 5a the 
circumcentres of the skeleton points are given an elevation equal to the 
circumradius. The resulting interpolated model is shown in Fig. 5b. This model is 
based on the idea that all slopes are identical, and thus the radius is proportional to 
the height of the skeleton point. Of course, in the case of a real summit as in Fig. 
4b, the slope would initially be unknown, and would be estimated from the 
circumradii of the next contour level down. 

 
 

  



a) b) 

Fig. 5. Triangulation of a summit, (a) skeleton and circumcentres, (b) elevation model after 
adding skeleton vertices with assigned height values 

In the case of a ridge or valley, the circumradius may also be used, as in Fig. 
6a, to estimate skeleton heights based on the hypothesis of equal slopes. The 
larger circle, at the junction of the skeleton branches, has a known elevation – half 
way between the contours – and may be used to generate the local slope. The 
elevation of the center of the smaller circle is thus based on the ratio of the two 
radii; see Thibault and Gold (2000) for details.  

While this method is always available, it is not always the preferred solution 
where constant slope down the drainage valley, rather than constant valley-side 
slope, is more appropriate. In a second approach, illustrated in Fig. 6b, the line of 
the valley is determined by searching along the skeleton, and heights are assigned 
based on their relative distance along this line. This may be complicated where 
there are several valley branches – in which case the longest branch is used as the 
reference line. This involves careful programming of the search routines, although 
the concept is simple. In practice, an automated procedure has been developed, 
which uses the valley length approach where possible, and the side-slope method 
when no valley head can be detected, such as at summits and passes. This refines 
and amplifies the work of Thibault and Gold (2000). In particular, instead of 
enriching the model with all skeleton vertices, only the skeleton vertices of flat 
triangles are used, and new interpolation techniques are introduced to estimate 
skeleton point elevations. 

 

  
a) b) 

Fig. 6. Estimating skeleton heights, (a) from circumradii, (b) from valley length 

4 Components of an Interpolation Model 

On the basis of a sufficient set of data points, we then wanted to generate a terrain 
model with satisfactory elevations and slopes, as the basis of a valid rainfall runoff 
model. Our approach was to interpolate a height grid over the test area, and to 
view this with an appropriate terrain visualisation tool. To obtain perspective 



views we used Genesis II, available from www.geomantics.com. Vertical views 
were generated using version 5 of the Manifold GIS, available from 
www.Manifold.net. We feel that 3D visualisation has been under-utilised as a tool 
for testing terrain modelling algorithms, and the results are often more useful than 
a purely mathematical, or even statistical, approach. 

We have restricted ourselves to an evaluation of several weighted-average 
methods, as there are a variety of techniques in common that can be compared. All 
of the methods were programmed by ourselves – which left out the very popular 
Kriging approach, as too complicated. Nevertheless, many aspects of this study 
apply to Kriging as well, since it is a weighted-average method with the same 
problems of neighbour selection and the inclusion of slope values at data points as 
the methods we attempted.  

In general, we may ask about three components of a weighted-average 
interpolation method. Firstly: what is the weighting process used? Secondly: 
which set of neighbours is used to obtain the average? Thirdly: is it the  data point 
elevation only that is being averaged? (Often it is the data point elevation alone, 
but sometimes it is a plane through the data point incorporating slope 
information.) 

One of the simplest weighted-average models is triangle-based interpolation in 
which a linear interpolation is performed within each triangle. Fig. 7 shows the 
result, including the skeleton draped over the flat triangles. Fig. 8 shows the 
improvement when estimated skeleton points are added, and all flat triangles are 
automatically removed. 

 

  
a) b) 

Fig. 7. Triangle-based interpolation, (a) perspective view, (b) vertical view 



  
a) b) 

Fig. 8. Adding skeleton points to Fig. 7, (a) perspective view, (b) vertical view 

The other weighted average models that were tested were the traditional gravity 
model, and the more recent “area-stealing” or “natural neighbour” or perhaps 
more properly “Sibson” interpolation methods (Sibson, 1980; Watson and Philip, 
1987; Gold, 1989). Here the number of neighbours used may vary. 

In the case of the gravity model, the weighting of each data point used is 
inversely proportional to the square of the distance from the data point to the grid 
node being estimated, although other exponents have been used. There is no 
obvious set of data points to use, so one of a variety of forms of “counting circle” 
is used. Fig. 9 shows the resulting surface for a radius of about a quarter of the 
map. Data points form bumps or hollows.  

  
a) b) 

Fig. 9. Interpolation using the gravity model with medium radius, (a) perspective view, (b) 
vertical view 

If the radius is reduced there may be holes in the surface where no data is found 
within the circle (Fig. 10a). If the radius is increased the surface becomes 
somewhat flattened, but the bumps remain (Fig. 10b). The result depends on the 
radius, and the other selection properties being used. Clearly estimates of slope 
would be very poor, and very variable. 

 



  
a) b) 

Fig. 10. Gravity model interpolation, (a) with small radius, (b) with large radius 

The Sibson method, illustrated in Fig. 11a, is based on the idea of inserting 
each grid point temporarily into the Voronoi diagram of the data points, and 
measuring the area stolen from each of a well-defined set of neighbours. These 
stolen areas are the weights used for the weighted average.  

Figs. 11b and 11c show a sample data set and the neighbour selection for the 
same point in both the gravity and Sibson method. In the Sibson method natural 
neighbour selection results in a reasonable set of neighbours, but the circle used in 
the gravity method may not select a sufficient number of neighbours to produce a 
valid elevation value for the interpolated point. The Sibson method is particularly 
appropriate for poor data distributions as the number of neighbours used is well 
defined. In the gravity model, when the data distribution is highly anisotropic, 
there is considerable difficulty in finding a valid counting circle radius. 

  
a) b) c) 

Fig. 11(a) Sibson interpolation, (b) neighbour selection using a counting circle, (c) 
neighbour selection using Voronoi neighbours 

Fig. 12 shows the results of Sibson interpolation. The surface behaves well, but 
is angular at ridges and valleys. Indeed, slopes are discontinuous at all data points 
(Sibson, 1980). One solution is to re-weight the weights, so that the contribution 
of any one data point not only becomes zero as the grid point approaches it, but 
the slope of the weighting function approaches zero also (Gold, 1989). Fig. 13 
shows the effect of adding this smoothing function. While the surface is smooth, 
the surface contains undesirable “waves” – indeed, applying this function gives a 
surface with zero slope at each data point. 



  
a) b) 

Fig. 12. Sibson interpolation, (a) perspective view, (b) vertical view 

  
a) b) 

Fig. 13. Adding smoothing to Fig. 12, (a) perspective view, (b) vertical view 

5 Slopes – The Ignored Factor 

This brings us to a subject often ignored in selecting a method for terrain 
modelling – the slope of the generated surface. In real applications, however, 
accuracy of slope is often more important than accuracy of elevation – for 
example in runoff modelling, erosion and insolation. Clearly, an assumption of 
zero slope, as above, is inappropriate. However, in our weighted average operation 
we can replace the height of a neighbouring data point by the value of a function 
defined at that data point – probably a planar function involving the data point 
height and local slopes. This function may be estimated by a variety of methods. 
Thus at any grid node location we find the neighbouring points and evaluate their 
planar functions for the (x, y) of the grid node. These z estimates are then 
weighted and averaged as before (Gold, 1989). 

Fig. 14 shows the result of using Sibson interpolation with data point slopes. 
The form is good, but slight breaks in slope can be seen at contour lines. When 
using smoothing and slope information together, the surface is smooth, but has 



unwanted oscillations (Fig. 15). Clearly an improved smoothing function is 
desirable to eliminate these side effects. 

  
a) b) 

Fig. 14. Sibson interpolation using slopes at data points, (a) perspective view, (b) vertical 
view 

  
a) b) 

Fig. 15. Sibson interpolation using slopes and smoothing function at data points, (a) 
perspective view, (b) vertical view 

While it is impossible to show the results of all our experiments in this paper, 
we also used the method of Burrough and Mcdonnell, (1998) to calculate slopes 
and profile curvature of grids created from various combinations of our available 
weighted-average methods. Sibson interpolation with slopes and without 
smoothing gives more consistent regions of coherent slopes. Adding slopes to the 
simple TIN model (i.e. using the position in the triangle to provide the weights, as 
in Fig.16a) produced results that were almost as good as the Sibson method when 
the sample points were closely spaced along the contours. However, the Sibson 
method is much superior for sparser data, or where the points do not form contour 
lines. The gravity model does not provide particularly good slope estimates, but 
even here, including the data point slope function produces a significant 
improvement, as in Fig. 16b. 



  
a) b) 

Fig. 16. Adding slopes at data points, (a) triangle-based interpolation, (b) gravity 
interpolation 

6 Summary and Conclusions 

For the common problem of deriving surfaces from contours, we propose a 
general approach: 

1. Generate skeleton points by the method of Aumann et al. (1991) or of Thibault 
and Gold (2000). Ignore skeletons between contours. 

2. Assign elevations to these skeleton points by the methods described here based 
on either longitudinal or lateral slope consistency, or other suitable techniques. 

3. Eliminate flat triangles by the insertion of these skeleton points into the original 
TIN. 

4. Estimate slope information at each data point by any appropriate technique. 
5. Perform weighted-average interpolation using the previously estimated slope 

information. Avoid methods such as the gravity model, which require user 
specified parameters. Sibson interpolation appears to be the best choice. 

 
From our work, several broad generalisations may be made. To produce good 

surface models with reasonable slopes from contour maps, the single most 
valuable contribution is the addition of skeleton points with estimated elevations, 
in order to eliminate flat triangles. The second most important contribution is the 
addition of slope information at the data points, and its use in the weighted 
average interpolation process - even poor interpolation methods are significantly 
improved. Also important is the selection of a meaningful set of neighbours 
around the estimated point. Of lesser importance is the particular interpolation 
method used, although this statement is highly dependent on the data distribution 
and density. Gravity models in general should be avoided if possible. Surprisingly, 
mathematically guaranteed slope continuity is not usually critical, although we are 
continuing to work on an improved smoothing function that guarantees both slope 
continuity and minimum curvature – probably based on the work of Anton et al. 
(1998). Nevertheless, the moral is clear: both for finding adjacent points and for 



skeleton extraction, a consistent definition of neighbourhood is essential for 
effective algorithm development. 

We conclude with another imaginary example. Fig. 17a shows four small hills 
defined by their contours, modelled by a simple triangulation. Fig. 17b shows the 
result using Sibson interpolation, slopes and skeletons. Skeleton heights were 
obtained using circumcircle ratios, as no valley-heads were detected. While our 
evaluation was deliberately subjective, we consider that our results in this case, as 
with the previous imaginary valley, closely follow the perceptual model of the 
original interpretation. Thus, for the reconstruction of surfaces from contours, or 
generation of DEMs, we believe that our methods are a significant improvement 
on previous work. 

  
a) b) 

Fig. 17. Triangulation of several small hills, (a) triangle-based interpolation, (b) Sibson 
interpolation with slopes 
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