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Abstract 

The overlay process is currently one of the main computational solutions used to 
integrate several data layers from different sources. Unfortunately, it is 
problematic when trying to overlay many layers. This leads to several geometric 
problems such as the management of sliver polygons. This paper proposes a new 
merging process to complement the vector overlay for data integration of several 
layers. This process, based on measures derived from the Fréchet distance, 
matches common points (either lines or polygons). It also merges an ordered set of 
pairs of matching points (vertices) into a single  geometry. 
Keywords: data integration, overlay, merging, data matching, Fréchet distance 

1 Introduction 

Overlaying geospatial data is a frequently required and computationally complex 
procedure  in a Geographic Information System (GIS). The overlay process was 
one of the first ways through which users combined map information to produce 
new maps. 

Most GISs use map layers to structure geographical objects and each layer 
describes some particular aspect of the real world. Organisation of data into 
several map layers is a well-known technique, which often strives to achieve 
efficiencies in data storage and manipulation. However, these structures can be 
computationally costly when data from different layers, or when several layers of 
data must be combined in efforts to resolve a spatial query.  Often the data layers 
can be distributed among remote databases and must be identified and accessed 
using solutions such as those proposed by the NSDI (USGS 1998).  

Currently, four kinds of constraints limit a successful application of the overlay 
process: 
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�� Projections and coordinate systems can be different. To combine two data 
layers, the projection and coordinate system of one of these data sets must often 
be converted. This conversion process can be a source of error. 

�� Accuracy and scale are generally difficult aspects with which to deal. 
Although each layer may be reasonably accurate within the scale limitations, 
differences in input errors between the two layers will most likely cause 
mismatches between the two geospatial references. Moreover, the scales and 
levels of generalisation of these data sets can be incongruent. Some other 
conflicts (e.g. semantics, resolution) between the object representations 
complicate the overlay process (Parent et al. 1996) 

�� Limited arithmetic precision of computers. 
�� Homologous objects. Some objects can be represented in both data sets. If the 

two layers are combined, the objects may be redundant in the resulting data set. 
However, integration of these redundant objects is necessary to control the 
resulting layer accuracy (Chrisman 2001) and to integrate complementary a-
spatial descriptions of some phenomena (Devogele et al. 1998). By extension, 
homologous geometries are defined as geometries of homologous objects. In 
the same way, homologous points or vertices are defined as points that 
represent the same part of an object. (e.g. points that represent the same turn of 
a road). 
 
Therefore, to ensure an efficient  overlay of layers, some semantic and 

computational constraints must be defined. First, layers must have the same scale 
and projection. Secondly, the object geometry should not be replicated in two 
different layers. As data can come from different sources, however, these 
conditions cannot always be guaranteed. Therefore, several manual pre-processes 
and post-processes must be implemented to adjust the overlay result. These 
processes are unwieldy, time consuming and error prone.. Therefore, identification 
of a generic and automated overlaying process is, as yet, an unresolved objective 
for future GIS research. 

This paper proposes a new merging operation that can be defined as an 
automatic pre-process that improves  the overlay results of either lines or 
polygons. It is based on a data matching process and measures derived from the 
Fréchet distance. The reminder of this paper is organised as follows. Section 2 
briefly outlines the basics of the overlay process, fuzzy tolerances and merge 
process. Section 3 describes data matching between homologous geometries 
(either lines or polygons) and the discrete Fréchet distance used by the merging 
process. Section 4 introduces the new merging process based on the matching 
process and a weighting function. Finally Section 5 concludes our paper and 
outlines some further work. 



2 Overlay Process 

The overlay process can handle different types of data layers (e.g. tiles, network, 
Digital Terrain Model). So far many overlay processes have been defined (e.g. 
CAD-type overlay, Boolean overlay, rules overlay) (cf. (Chrisman 2001) for a 
survey). Overlay processes depend on the type of geometry (e.g. polygon, line) 
and the type of expected result. Whatever the kind of overlay process, the input is 
made of two or more layers issued from the same or different sources, and the 
output is a new layer in which the new geometries (e.g. points, line) are defined as 
a function of the input geometry. 

2.1 Errors and Corrections  

Constraints that limit a successful application of the overlay process create sliver 
polygons when a basic overlay process is applied (see Fig. 1c). These polygons 
are small artefacts created during an overlay and result from slight differences in 
the geometric presentation of boundaries that should have been the same.  

To resolve these errors, a fuzzy tolerance (Fig. 1d) can be associated with the 
overlay process (Dougenik 1980). The fuzzy tolerance is a distance where 
intersections and points are treated as coincident. In other words, it is the smallest 
distance between two geometries. If the distance between two points (vertices or 
segment point) is less than the fuzzy tolerance, these two points are merged. The 
fuzzy tolerance also resolves dangling lines and dangling nodes that should 
logically be connected at two ends. Dangling lines are dead-end lines that are 
connected to other lines at one end only. The other end is a dangling node.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Overlay examples;  (a) and (b) input layers, (c) output without fuzzy tolerance, (d) 
output with fuzzy tolerance 

One challenge is to distinguish between small geometric differences of 
homologous objects from different objects that are close or nearby. Either the 
distance is set too small  and many errors are not removed, or it is set too large  
and some distinct points are merged (for example, a real dead-end close to a road). 
Moreover, the overlay with fuzzy tolerance leads to new inaccuracies. For 
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example, new positional errors can "creep" into a GIS (Pullar 1993). (Harvey and 
Vauglin 1996) improves this process by introducing multiple tolerances. The 
setting of the tolerance is fixed according to the application purpose, scale and on 
statistical analysis of line form and error. 

Fuzzy tolerance is a method used to merge geometry locally. Unfortunately, 
this method does not take into account the ‘global’ geometry. Indeed, different 
objects, which are close, cannot be distinguished from homologous objects, due to 
measures between their geometries. Similarly, the fuzzy tolerance process merges 
closest points (e.g. using Euclidean distance (dE)). However, the two points that 
may be merged are not necessarily  the homologous points (Alt and Godau 1995). 

2.2 Merging Process for Homologous Geometry  

For homologous geometry, the data integration process must use a better merging 
process than the one of fuzzy tolerance. The input of this process is two 
geometries and the output is a single geometry. Few merging processes are 
defined due to the fact that is very difficult to distinguish homologous geometries 
from closed geometries and to match the points of a common geometry. 

Some processes have been proposed like a pre-process of Adjust (TCI 1999). 
Adjust is a rubber sheeting process. Rubber sheeting transformation is non-
linearly distorted to force-fit some geographic elements (e.g. points, lines) to 
specific positions. As implemented in Adjust, a semi-automatic process assembles 
AutoCAD layers. A user selects two sets of points (e.g. crossroads in network 
layers) and then correlates them using From-To relationships. It also takes some 
lines, which should logically coincide. The process automatically interpolates any 
number of matching points (so-called calibration pairs). These matching points are 
intermediate points on these lines. Two modes are available to automate the 
setting of calibration pairs: "vertex to vertex" or "divide distance" (see Fig. 2). 
 
 
 
 
 
 
 

Fig. 2. Two modes of automate matching points of Adjust 

These matching points are merged when the rubber sheeting are used. The 
“From” point and the “To” point are merged into the “To” point. 

We can remark that: 

�� The “From-To” is a one-to-one relationship. A point cannot relate to many 
points. Section 3 will show that these relationships can be one-to-many or 
many-to-one. 

Vertex to vertex Divide Distance



�� The output point is the “To” point. This solution is adequate if the layer of the 
point “To” is much more accurate than the "From" one. If the accuracy 
(relationship between a measurement and the reality represented) of the layers 
are equivalent, a "middle" point should be a better solution. 

�� Calibration pairs take into account the order of the vertices or points of lines. In 
other words, for the vertex to vertex mode, for two oriented line L1 and L2, the 
calibration pair following (L1.i , L2.j) are (L1.i+1, L2.j+1) with L1.i L1.i+1 are two 
consecutive vertices of L1 and L2.j L2.j+1 are two consecutive vertices of L2. 
Similarly for the divide distance mode, the calibration pair following (L1.i', L2.j') 
are (L1.i'+1, L2.j'+1). L1.i' L1.i'+1 are two consecutive points derived from the divide 
distance of L1 and, L2.j' L2.j'+1 are two consecutive points derived from the divide 
distance of L2. 

3 Data Matching Between Points of Homologous 
Geometries  

To obtain a high-quality merging process, several pairs of matching points are 
required using data matching processes. These allow one to identify groups of 
homologous objects that represent the same part of the real world from two sets of 
geographic data. To obtain an accurate data matching between homologous 
objects, three different types of data matching must be combined (Devogele et al. 
1996):  

 

�� Semantic matching puts objects in correspondence according to their semantic 
attributes, which are discriminated (Cohen 2000) (Spéry et al. 2001). For 
example, the values of the attributes “identifier of a road” can be used to match 
roads from two sets of data. 

�� Topologic matching uses composition or topologic relationships between the 
different objects to match a given object. If two relationships correspond, then 
this correspondence can be used to find homologous objects linked by this 
relationship. 

�� Geometric matching employs location of data. Commonly, some measures of 
distance between objects are computed. Other geometric characteristics, such as 
the direction (Gabay and Doytsher 1994) have been proposed to match these 
data. This kind of matching process is the most popular. 
 
In this article, the data matching objective is to identify homologous points 

(vertex or intermediate point) for geometry of homologous objects. These 
homologous objects must be found beforehand. Therefore, we focus only on the 
geometric data matching between points of homologous geometries (points of 
lines or points of borderlines of polygons. 



3.1 Discrete Fréchet Distance 

 The Fréchet distance is the better maximal linear distance to match a set of 
ordered points as linear geometries of homologous objects.. For details see for 
example (Alt and Godau 1995) for a discussion.  

The Fréchet distance is the maximal distance between two oriented lines. Each 
oriented line is equivalent to a continuous function f: [a, a']�V (g: [b, b']�V) 
where a, a', (b, b') � �, a < a' (b<b') and (V, d) is a metric space. Then dF denotes 
their Fréchet distance defined as: 
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An illustration of the Fréchet distance follows: a man is walking with a dog on 
a leash. He is walking on the one curve, the dog on the other one. Both may vary 
their speed, but backtracking is not allowed. Then the Fréchet distance of the 
curves is the minimal length of a leash that is necessary. The Fréchet method has 
the advantage of computing distances only on a limited number of homologous 
points. 

Eiter and Mannila (Eiter and Mannila 1994) give a good approximation: the 
discrete Fréchet distance (ddF) that computes in time O(n m). L1 and L2 are 
interpreted as two oriented sets of vertices: <L1.1…L1.n> and <L2.1...L2.m>. While 
ddF is the minimal length of leash i.e.  away from the pair of beginning vertices 
(L1.1,L2.1) to the pair of ending vertices (L1.n,L2.m).. This  gives an ordered set of 
(L1.i,L2.j) such as the following pair of (L1.i,L2.j) which is one of these three pairs: - 
(L1.i+1,L2.j+1) man and dog are walking, - (L1.i+1,L2.j) only the man is. 

To identify a set of homologous points, we focus on vertices for three reasons. 
The number of homologous point must be limited, the vertices are more accurate 
than intermediate points (Veregin 1999) and semantically more important.  So, we 
can interpret L1 and L2 as two order sets of vertices: <L1.1…L1.n> and <L2.1...L2.m>. 
The discrete Fréchet between L1 and L2 is computed recursively as the followings:  
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<L1.1…L1.n-1> and <L2.1...L2.m-1> represent lines. Hence, it is possible to 
recursively apply this ddF process with parameters: <L1.1…L1.n-1> , <L2.1...L2.m-1>… 
This process is finished when  both lines are reduced to both points (<L1.1>, 
<L2.2>) and ddF (<L1.1>, <L2.2>) = dE(L1.1, L2.2). 

For the example in  Fig. 3, the matrix of dE between points L1.i and L2.j is given 
in table 1 to compute and visualise ddF(L1, L2). Note that ddF is equal to  1.90. 



 
 
 
 
 
 
 
 
 
 

Fig. 3. Example of homologous lines 

Table 1. Matrix of dE between (L1.i, L2.j) distance and ways 

 L2  L2.j.x 0.5 1.7 4.9 9.6 10.4 10.5 9.5 6 
L1   L2.j.y 0 2.3 3.3 3.4 3.1 2.4 1.3 1.1 

L1.i.x L1.i.y  i. j 1 2 3 4 5 6 7 8 
0 0.7  1 0.86 2.33 5.55 9.97 10.67 10.64 9.52 6.01 

0.8 2.5  2 2.52 0.92 4.18 8.85 9.62 9.70 8.78 5.39 
1.8 3.2  3 3.45 0.91 3.10 7.80 8.60 8.74 7.93 4.70 
5.9 4.4  4 6.97 4.70 1.49 3.83 4.68 5.02 4.75 3.30 
11.5 3.5  5 11.54 9.87 6.60 1.90 1.17 1.49 2.97 6.00 
10 0.8  6 9.53 8.43 5.68 2.63 2.33 1.68 0.71 4.01 
6.2 0.5  7 5.72 4.85 3.09 4.47 4.94 4.70 3.40 0.63 

 

ddF can be used because the length of the longer segment (LengthMaxSeg) 
(Eiter and Mannila 1994) limits the generated approximation:  

dF(L1, L2) � ddF (L1, L2) � dF(L1, L2) + LengthMaxSeg 
A sampling can be applied to both lines to limit this approximation to �,. New 

intermediary vertices can be added such as the length of each segment is inferior 
to � (cf. Fig. 5 for an example of sampling). In our case, samplings are needed 
when the length of segments is important and when the resolutions of the data sets 
are different. 

3.2 Data Matching of Line's Points 

ddF are computed to measure the maximal distance between two lines. Hence, ddF 
can be combined with other processes to match homologous lines. We propose to 
re-use ddF to define a data matching process between vertices from homologous 
lines. Indeed, One of ddF ways can be chosen to match the vertices. After using a 
maximal criteria (ddF), an average criteria is employed. The chosen way, so-called 
the minimal way (Wm), is defined by the case in which the average distances 
between its pair (L1.i, L2.j) is minimal. In other words, between all ways, the one, 
which has the less taut leash, is chosen. 

For the homologous lines of Fig. 3, three ways (the grey cells of table 1 give 
the pairs of these ways) are possible: 

L2.8 

L1.7
L2.1 

L1 

L2 
L1.1 



�� W1: (L1.1,L2.1) (L1.2,L2.2) (L1.3,L2.2) (L1.4,L2.3) (L1.5,L2.4) (L1.5,L2.5) (L1.5,L2.6) 
(L1.6,L2.7) (L1.7,L2.8) average of dE between (L1.i,L2.j) = 1.12 

�� W2: (L1.1,L2.1) (L1.2,L2.2) (L1.3,L2.2) (L1.4,L2.3) (L1.5,L2.4) (L1.5,L2.5) (L1.6,L2.6) 
(L1.6,L2.7) (L1.7,L2.8) average of dE between (L1.i,L2.j) = 1.14 

�� W3: (L1.1,L2.1) (L1.2,L2.2) (L1.3,L2.2) (L1.4,L2.3) (L1.5,L2.4) (L1.5,L2.5) (L1.5,L2.6) 
(L1.6,L2.6) (L1.6,L2.7) (L1.7,L2.8) average of dE between (L1.i,L2.j) = 1.18 
 
Intuitively, the man and the dog can walk only on this grey cell. For example, if 

the man is on L1.5 and the dog is on L2.5, two displacements are possible: - the dog 
is walking to L2.6 and the man is standing in L1.5 - the man is walking to L1.6 and at 
the same time the dog is walking to L2.6. Moreover, the average distances between 
pairs of Wm can be computed, 1.12 is inferior as 1.14 and 1.18. So W1 is the Wm 
(in bold typeface in table 1). Fig. 4 shows pairs of (L1.i,L2.j) associated with this 
minimal way. 

 
 
 
 
 
 
 
 

Fig. 4. Pairs of (L1.i,L2.j) of the minimal way represented by dot lines 

We can remark that: 
�� This matching can be a:  

�� one-to-one (between L1.1 and L2.1 for example) 
�� many-to-one (between L1.5 and L2.4, L2.5, L2.6 for example) 
�� one-to-many (between L1.2, L1.3 and L2.2 for example). 

Generally, a matching of vertices L1 and L2 would imply a one-to-one 
mapping. In our case, many-to-one, or one-to-many matching are not errors, 
it is only a "turn" with more detail in one data set. 

�� The average distance method forgives the many-to-many matching.  
�� Pairs take into account the order of vertex of lines. Graphically, Pairs are a 

collection of non-crossing dotted lines 
 
This shows that the discrete Fréchet distance can be used to match the points of 

homologous lines. 

3.3 Partial Data Matching of Line's Points 

Some pairs of lines, such as the pair shown in Fig.5 can only be  partially 
matched. More precisely, only parts of the lines are matched. For example, still 
using the lines of Fig. 5, we can visually show that L1 can be matched to the 

L2.1 

L2.8 

L1.7

L1 

L2 
L1.1 



partial line <L2.5…L2.14>. To identify this kind of data matching, ddF cannot be 
employed. Some other parts of line (<L2.1…L2.5> and <L2.14…L2.17>) cannot be 
used to compute ddF. Therefore, a new measure, so-called the partial discrete 
Fréchet distance (dpdF), is introduced: 

�� To detect the partial homologous line < L2.begin…L2.end >. 
�� To compute dpdF. dpdF is equal to ddF(L1, < L2.begin…L2.end >) L2.begin and L2.end 

are chosen such as begin < end and ddF(L1, < L2.begin…L2.end >) are smaller. 
Phase 1 and 2 are simultaneous. 

�� To chose the minimal way Wm. This phase is similar to the one of data 
matching between homologous lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Example of partial homologous lines with new intermediary vertices 

A non-optimal algorithm to compute this measure is: 
 B = {L2.1, L2.2 , …, L2.m-1}; E = {L2.m, L2.m-1 , …, L2.2};  
 dFdp = + 	 ; 
 For L2.j in B 
  If dE(L1.1, L2.j) < dFdp then 
   For L2.jj in E 
    If j� jj and dE(L1.m, L2.jj) < dFdp then 
     If dFd(<L1.1…L1.n>,<L2.j… L2.jj>) < dFdp then 
      {dFdp = dFd(<L1.1…L1.n>,<L2.j… L2.jj>);  
      L2.begin = L2.j ; 

      L2.end = L2.jj ;} 
 
For the lines of Fig. 5, the matrix of dE between points of L1.i and L2.j is given in 

table 2 to illustrate the result. Note that dpdF is equal to 1.22. Only one way (grey 
cells in the matrix) is possible for this example. So the Wm is (L1.1,L2.5) (L1.2,L2.6) 
(L1.3,L2.7) (L1.3,L2.8) (L1.4,L2.9) (L1.5,L2.10) (L1.6,L2.11) (L1.7,L2.12) (L1.8,L2.13) 
(L1.9,L2.14). 

L1.9 

L2.1 

L1.1 

L1 with new intermediary vertices 
L2 with new intermediary vertices 

L2.17



Table 2. Matrix of dE between the partial homologous lines of Fig. 5 

 L2 L2.j.x 4.6 4.8 3.4 3.4 4.1 5.05 6 7 8 9 10 11 12 13 13.2 13.8 14 
L1  L2.j.y 1.6 2.6 1.8 2.8 3.8 5.15 6.5 7 8.25 9.5 9.75 10.5 11.9 13.2 12.6 12.6 11.7 

L1.i.x L1.i.y i.j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
4.5 3.2 1 1.60 0.67 1.78 1.17 0.72 2.03 3.62 4.55 6.14 7.74 8.55 9.77 11.4 13.1 12.8 13.2 12.7 
5.15 5.2 2 3.64 2.62 3.82 2.97 1.75 0.11 1.55 2.58 4.17 5.77 6.65 7.89 9.58 11.2 10.9 11.3 10.9 
5.8 7.2 3 5.73 4.71 5.91 5.01 3.80 2.18 0.73 1.22 2.44 3.94 4.91 6.16 7.78 9.37 9.16 9.65 9.35 
7.15 8.5 4 7.36 6.35 7.68 6.82 5.60 3.95 2.31 1.51 0.89 2.10 3.11 4.34 5.92 7.50 7.31 7.81 7.56 
8.5 9.8 5 9.08 8.10 9.49 8.66 7.44 5.79 4.14 3.18 1.63 0.58 1.50 2.60 4.08 5.64 5.47 5.99 5.82 
9.5 10 6 9.72 8.77 10.2 9.44 8.22 6.58 4.95 3.91 2.30 0.71 0.56 1.58 3.14 4.74 4.52 5.02 4.81 
10.5 11.3 7 11.3 10.4 11.8 11.0 9.86 8.22 6.58 5.54 3.94 2.34 1.63 0.94 1.62 3.14 3.00 3.55 3.52 
11.5 12.7 8 13.0 12.1 13.5 12.7 11.5 9.93 8.29 7.26 5.66 4.06 3.31 2.26 0.94 1.58 1.70 2.30 2.69 
12.5 14 9 14.7 13.7 15.2 14.4 13.2 11.5 9.92 8.90 7.30 5.70 4.93 3.81 2.16 0.94 1.57 1.91 2.75 

 

Partial data matching is required to match one line to a part of another line. To 
match a part of a given line to another line, detection of homologous parts of lines 
is a more complex process. It is always possible to reduce the ddF between parts, 
by part reduction. This more complex data matching process is not treated in this 
paper. 

3.4 Data Matching of Polygon's Points 

This process can also be applied to match vertices of homologous polygon 
borderlines. However, for oriented lines, the beginning pair of points and the end 
pair of points are known. Unfortunately, for polygon borderlines, these pairs are 
not predetermined. Thus, the process must define a function T to translate 
polygons borderlines P1 and P2 into lines L1 and L2 such as the dFd between L1 and 
L2 is minimal. Subscripts of L1 and P1 are identical. On the other hand, the L2 
subscripts correspond to P2 subscripts only by a circular translation (if L2.j' = P2.m 
then L2.j+1 = P2.1 else L2.j'+1 = P2.j+1). 

A new method is defined as follows: 
 

�� To find j' such as <P2.j', P2.j'+1… P2.m, P2.1…P2.j'-1> is the ordered set of vertex of 
L2. 

�� To compute ddF(L1, L2), j' is chosen such as ddF(L1, L2) is minimal. So, phase 1 
and 2 are simultaneous. 

�� To chose the minimal way (Wm). This phase is similar to the data matching 
between homologous lines. 

�� To translate this Wm from L1, L2 into P1,P2 using the inverse circular translation 



 
 
 
 
 
 
 
 
 

Fig. 6. Example of homologous polygons 

Table 3. Matrix of dE between homologous polygons of Fig. 6 

 L2 L2.j.x 2 1.7 4.9 9.6 10.4 10.5 9.5 6 4 
L1  L2.j.y 1 2.3 4 3.4 3.1 2.4 1.3 1.2 1.4 

L1.i.x L1.i.y  1 2 3 4 5 6 7 8 9 
6.2 0.5 1 4.23 4.85 3.73 4.47 4.94 4.70 3.40 0.73 2.38 
3.3 0.8 2 1.32 2.19 3.58 6.82 7.46 7.38 6.22 2.73 0.92 
2.2 1.6 3 0.63 0.86 3.61 7.62 8.34 8.34 7.31 3.82 1.81 
1.7 3.3 4 2.32 1.00 3.28 7.90 8.70 8.85 8.05 4.79 2.98 
4.6 4.2 5 4.12 3.47 0.36 5.06 5.90 6.17 5.69 3.31 2.86 
5.9 4.4 6 5.17 4.70 1.08 3.83 4.68 5.02 4.75 3.20 3.55 
11.5 3.5 7 9.82 9.87 6.62 1.90 1.17 1.49 2.97 5.96 7.79 
10 0.8 8 8.00 8.43 6.02 2.63 2.33 1.68 0.71 4.02 6.03 

 
The matrix of dE between points P1.i and P2.j in Fig. 6 is given in table 3 to 

visualise the ddF and ways. In this example, j' is equal to 8. So ddF(P1, P2) is equal 
to 1.90 and four ways are possible. Pairs of points are the grey cells of table 1. The 
value Wm is given in bold typeface.  

4 Weighting Function of the Merging Process  

The new merging process proposed in this paper, requires the minimal way (Wm) 
and the weighting function (fw). The kth vertex of the resulting line (LM) is defined 
thanks to the kth pair (L1.i., L2.j) of the Wm and fw, it is defined as follows: 
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For each pair, the weight (
1.k, 
2.k) is proportional to: 
 

�� The accuracy of the input layers, 

P1.1 

P2.9 
P1 

P2 
P2.1 P1.8 



�� The kind of points considered. The weight of a vertex is more important than 
the weight of a new intermediary vertex. According to (Vergin 1999), vertices 
are more accurate than the other points of the line. 

�� The cardinality of the pairs of Wm where this point is included. The weight of a 
point included in a single pair is more important than the weight of a point 
included in several pairs. Indeed, a point included in several pairs, represents a 
curve more detailed in the other layer. The resulting curve must be closer to 
the more detailed curve. 

 
In the case of the two lines of Fig. 3, the merging line can be computed thanks 

to their Wm and fw (cf. table 4). For the example, we suppose L1 less accurate than 
L2. A default weight of 0.8 is associated with the points of L1 and a default weight 
of 1 is associated with the points of L2. For each point, the default weights are 
divided by the number of pairs in the line.. Weights: 
1.5, 
1.6, 
1.7 associated with 
L1.5 are divided by 3 and weights 
2.2, 
2.3 are divided by 2. The merging line is 
given in Fig. 7.  

This example visually shows that this merging process gives a suitable result. 
In order to define the merging line, this process uses the accuracy of lines and the 
"local" accuracy. This last one is taken into account by the cardinality of pairs. In 
the case of Fig. 7, the merging line is: 

 

�� Globally closer to L2 (the more accurate line), 
�� Locally closer to more accurate than part of line (L2.2, L2.3 and L1.4, L1.5, L1.6). 

 

Table 4. Merging process of lines of Fig. 3, thanks to the pairs of Wm and fw 
 

Wm     weight Merging line 
L1.i L2.j L1.i.x L1.i y L2.j x L2.j.y �1.k �2.k Lmk.x Lmk.y 
L1.1 L2.1 0 0,7 0,5 0 0,80 1,00 0,28 0,31 
L1.2 L2.2 0,8 2,5 1,7 2,3 0,80 0,50 1,15 2,42 
L1.3 L2.2 1,8 3,2 1,7 2,3 0,80 0,50 1,76 2,85 
L1.4 L2.3 5,9 4,4 4,9 3,3 0,80 1,00 5,34 3,79 
L1.5 L2.4 11,5 3,5 9,6 3,4 0,27 1,00 10,00 3,42 
L1.5 L2.5 11,5 3,5 10,4 3,1 0,27 1,00 10,63 3,18 
L1.5 L2.6 11,5 3,5 10,5 2,4 0,27 1,00 10,71 2,63 
L1.6 L2.7 10 0,8 9,5 1,3 0,80 1,00 9,72 1,08 
L1.7 L2.8 6,2 0,5 6 1,1 0,80 1,00 6,09 0,83 

 
 

For this example, all points are vertices, thus, new intermediary vertices are not 
considered. Empirically, to consider the lower accuracy of the additional point, the 
weight of these points should be multiplied by 0.8. 



 
 

 
 
 
 
 

Fig. 7. Merging line obtained by the merging process 

To merge partial homologous lines or polygons, the kth vertex of LM or PM is 
also defined thanks to the kth pair and a similar weighting function. Weights are 
proportional to the three same arguments (accuracy of the input layers, kind of 
points and cardinality of pairs). Fig. 8 shows the resulting line LM (see (a)) and the 
polygon PM (see (b)) computed for our examples. 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8. Merging line obtained by the partial merging process and merging polygon obtained 
by the merging process 

5 Joining Process 

When the merging process transforms a point (Li.j) into several points (LM.j', 
LM.j''…) there is a join problem at the line (Lk) which is connected to Li.j. To 
preserve the topology, Lk must be joined with one point of LM. 

Two situations are distinguished: 

�� Li.j is transformed into an odd number of points. The average point is used to 
join Lk (see Fig. 9a) 

�� Li.j is transformed into an even number of points. A new point is defined at 
the halfway of the middle edge (see Fig. 9b). 
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Fig. 9. Examples of junction between the merging line and another line 

6 Conclusion 

This paper introduces a new merging process that can be an alternative to fuzzy 
tolerance methods for a better data integration of homologous objects. It makes 
the distinction between different and homologous objects, thanks to data matching 
and measures derived from the Fréchet distance. Thus, homologous objects are 
merged and different objects are overlaid. 

Moreover, it uses homologous points and not closest points to compute 
merging lines. Another advantage of this merging process relies on the fact that it 
can be automatic and generic. In others words, it can be applied to homologous 
lines, homologous polygons and partial homologous lines. Additionally, this 
process takes into account connections of merging lines to other lines.  

This approach  must be combined, however, with other data integration 
processes like rubber sheeting (to smooth displacements induced by the merging 
and joining processes). Any data integration based on this novel merging  (e.g. 
overlaying, merging, joining and rubber sheeting) must be organised in terms of 
data and process schedule. The proposed merging technique is defined to integrate 
data from different layers in the same geographic area, it can also be extended to 
integrate data from adjacent coverages. 
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