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Abstract 

Topological predicates on spatial objects have been a main area of research in 
spatial data handling, reasoning, and query languages. The focus of research, has, 
to a large extent, been on the design of and reasoning with these predicates, 
whereas implementation issues have been somewhat neglected. The goal of this 
paper is to show how an abstract design of topological predicates for complex 
regions can be efficiently implemented. The resulting algorithms are based on the 
realm concept, which is well known in the spatial database community. 
Keywords: complex region, topological predicate, implementation, realm, ROSE 
algebra 

1 Introduction 

In recent years, significant achievements have been made on the design of 
topological predicates for spatial objects. Almost all results have been based on 
either the 9-intersection model (Egenhofer et al., 1990), which rests on point sets 
and point set topology, or the RCC model (Cui et al., 1993), which employs 
spatial logic. The foundation for this work is the first model, since the goal of the 
paper is to address the efficient implementation of topological predicates for 
regions in a spatial database or GIS context. 

Whereas the predicates in the aforementioned two models operate on simplified 
abstractions of spatial objects like simple regions, we are interested in the design 
and implementation of topological predicates for complex regions, which may 
consist of several components (faces) and which may have holes. 

Implementation issues for these predicates, regardless of whether they operate 
on simple or complex geometries, have so far been somewhat neglected. Hence, it 
is especially the goal of this paper to demonstrate how an abstract design of 
topological predicates for complex regions can be efficiently implemented. 
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Section 2 discusses related work. Section 3 presents an abstract, formal model 
of topological predicates for complex regions. This model is called abstract, 
because it makes clean and simple definitions in terms of infinite point sets and 
point set topology, without worrying whether finite representations of these sets 
exist. Section 4 describes a corresponding discrete model. This model is called 
discrete, because it takes into account finite representations only available in 
computers. In this sense it is nearer to implementation. Realms (Güting et al., 
1993; Schneider, 1997) will be the basis of this model. Section 5 discusses the 
implementation level. We will show a realm-based data structure for complex 
regions and algorithms for the predicates operating on this data structure. Finally, 
Section 6 draws some conclusions. 

2 Related Work 

In the past, a number of data models and query languages for spatial data have 
been proposed with the aim of formulating and processing spatial queries in 
databases. Spatial data types (Schneider, 1997) like point, line, or region are the 
central concept of these approaches and provide fundamental abstractions for 
modelling the structure of geometric entities, their relationships, properties, and 
operations. Whereas in older models the geometric structure of spatial data has 
been restricted (only simple regions, continuous lines, single points), in the 
meantime a few models (Güting et al., 1995; Clementini et al., 1996) also allow 
complex spatial objects which may consist of several disjoint components. 
Additionally, a region object may have holes, and a component of a line object 
may be a connected collection of curves. The reasons for defining complex 
geometric structures are closure properties for spatial operations and application-
specific requirements. The OpenGIS Consortium (OGC) has incorporated similar 
generalised geometric structures, called simple features, into their OGC Abstract 
Specification (OGC, 1999) and into the Geography Markup Language (GML) 
(OGC, 2001), which is an XML encoding for the transport and storage of 
geographic information. These geometric structures are called MultiPoint, 
MultiLineString, and MultiPolygon. Implementation descriptions for these 
structures have so far not been given. 

A well known, abstract model for characterising topological relationships 
between simple regions is the 9-intersection model (Egenhofer et al., 1989). For 
two simple regions, eight meaningful configurations have been identified which 
lead to the eight predicates of the set Tsr = {disjoint, meet, overlap, equal, inside, 
contains, covers, coveredBy}. Each predicate is determined by a unique 9-
intersection matrix representing the nine intersections of the boundary, interior, 
and exterior of the first region with the corresponding parts of the second region. 
All predicates are mutually exclusive and cover all topological situations. 
However, a generalisation of spatial data types also necessitates a generalisation of 
the corresponding topological predicates. It is surprising that such predicates have 
until recently not been defined. In (Clementini et al., 1995) the so-called TRCR 



(Topological Relationships for Composite Regions) model only allows sets of 
disjoint simple regions without holes. In (Egenhofer et al., 1994) only topological 
relationships of simple regions with holes are considered; multi-part regions are 
not permitted. Recently, a general (Behr et al., 2001) and a limited model 
(Schneider, 2001) have been presented for topological predicates on complex 
regions. This paper will be based on the limited model (see Section 3). 

So far, implementation issues for topological predicates have been almost 
completely neglected in the literature. In (Clementini et al., 1994) query 
processing strategies are discussed for topological predicates on simple regions. 
The central idea is to find a minimal but still unique subset of the nine 
intersections for each predicate. Only this subset has then to be evaluated, and the 
hope is that this reduction leads to a better performance. It is assumed that the 
computational cost of each of the nine possible intersections is equal. Although 
this approach is interesting from a theoretical point of view, it is doubtful from an 
implementation perspective, because the computation of all nine intersections can 
be and has to be performed by the same algorithmic scheme (see Section 5). 

The implementation of spatial objects and predicates is impeded by the 
assumption of a Euclidean space and an infinite-precision arithmetic in spatial 
data models which conflicts with the reality of finite-precision number systems 
available in computers (Schneider, 1997). This leads inevitably not only to 
numerical but especially to topological errors and thus to wrong query results in 
database systems. A solution for this problem is the realm concept (Güting et al., 
1993). A realm replaces the Euclidean space with a discrete geometric basis and is 
intended to represent the entire underlying geometry of an application. It is based 
on a finite resolution computational geometry and consists of a finite set of points 
and non-intersecting line segments which are defined over a discrete point grid 
and which form a spatially embedded planar graph. We will see that on top of 
realms complex regions and topological predicates operating on them can be 
easily implemented. 

3 The Abstract Model 

In this section we review the limited abstract model for topological predicates on 
complex regions, which has been described in (Schneider, 2001). The objective of 
this model is not to find all possible topological relationships between two 
complex regions but to generalise the eight topological relationships for simple 
regions to complex regions in a straightforward way. This may be regarded as an 
ad hoc approach leading to too coarse predicates. For many spatial applications, 
however, this predicate collection is practicable enough, and a more fine-grained 
differentiation is even not desired. 



3.1 Complex Regions 

First, we informally describe the structure of complex regions, which results in the 
spatial data type region. A formal definition can be found in (Schneider, 2001) 
and is based on point set theory and point set topology. Regions are embedded 
into the two-dimensional Euclidean space IR2 and are thus point sets. 

A simple region has a connected interior, a connected boundary, and a single 
connected exterior. Hence, it does not consist of several components, and it does 
not have holes. 

A simple region with holes F, which is also called a face (Fig. 1c-e), is a simple 
region with an outer boundary containing several other simple regions, which are 
called holes. Holes represent areas (simple regions) that do not belong to the 
region object but are enclosed by it. A hole is allowed to touch the outer boundary 
of F or the boundary of another hole in at most single points. To permit holes to 
have a partially common border with other holes makes no sense because then 
adjacent holes could be merged to a single hole by eliminating the common border 
(similarly for adjacency of a hole with the outer boundary). A face is atomic and 
cannot be decomposed into two or more faces. For example, the configuration 
shown in Fig. 1a, must be interpreted as two faces with two holes and not as a 
single face with four holes. 

 

 

 

 

Fig. 1. Unique representation of a face (a), a complex region with five faces (b), a simple 
region with two holes (c), its boundary (d), and its interior (e) 

Finally, a complex region (Fig. 1b) is a set of faces. A face has to be disjoint to 
another face, or to meet another face in one or several single boundary points, or 
to lie within a hole of another face and possibly share one or several single 
boundary points with the boundary of the hole. Faces having common connected 
boundary parts with other faces or holes are disallowed. The argumentation is 
similar to that for the face definition. 

3.2 Topological Predicates on Simple Regions with Holes 

In the following we use the notation (P1|P2|…|Pn)(F,G) as a syntactical 
simplification for the term P1(F,G) � P2(F,G) � … � Pn(F,G) where Pi : region � 
region ! � bool is a topological predicate for each 1 � i � n. 

As a first step to a general definition of topological predicates for complex 
regions we consider such predicates for simple regions with holes and base their 

(a) (b) (c) (d) (e) 



definition on the well known semantics of the topological predicates Tsr for simple 
regions (Section 2), as they have been derived from the 9-intersection model. 

Let F and G be two simple regions with holes, F consisting of the simple region 
with the outer boundary F0 and the holes F1, …, Fn, and G consisting of the simple 
region with the outer boundary G0 and the holes G1, …, Gm. The topological 
predicates operating on F and G are defined as follows: 

 disjointsrh(F, G) := disjoint(F0, G0) � 
   (� 1 � i � n : inside(G0, Fi)) � 
   (� 1 � j � m : inside(F0, Gj)) 

 meetsrh(F, G) := meet(F0, G0) � 
   (� 1 � i � n : coveredBy(G0, Fi)) � 
   (� 1 � j � m : coveredBy(F0, Gj)) 

 insidesrh(F, G) := inside(F0, G0) � 
   (� 1 � j � m : disjoint(F0, Gj) � 
    (inside(Gj, F0) � (� 1 � i � n : inside(Gj, Fi))) 

 containssrh(F, G) := insidesrh(G, F) 

 equalsrh(F, G) := equal(F0, G0) � n = m � 
   � � : {1, …, n} � {1, …, n}, � bijective, 
   � 1 � i � n : equal(Fi, G�(i)) 

  coveredBysrh(F, G) := 	 ((insidesrh|equalsrh)(F, G)) � 
   (inside|coveredBy|equal)(F0, G0) � 
   (� 1 � j � m : ((disjoint|meet)(F0, Gj) � 
        (� 1 � i � n : (inside|coveredBy|equal)(Gj, Fi)))) 

  coverssrh(F, G) := coveredBysrh(G, F) 

 overlapsrh(F, G) := 	 ((disjointsrh|meetsrh|coveredBysrh|coverssrh| 
         insidesrh|containssrh|equalsrh)(F, G)) 

In (Schneider, 2001) we have shown that the set Tsrh = {disjointsrh, meetsrh, 
coveredBysrh, coverssrh, insidesrh, containssrh, equalsrh, overlapsrh} provides a 
complete coverage of topological relationships for two simple regions with holes, 
and its elements are mutually exclusive. The set Tsrh of topological predicates on 
simple regions with holes is in two ways compatible with the set Tsr of topological 
predicates on simple regions obtained by the 9-intersection model. First, if both F 
and G do not have holes, then Tsrh and Tsr coincide. Second, each of the eight 
topological predicates on simple regions with holes has the same boolean results 
for the nine intersections as the corresponding predicate on simple regions. 



3.3 Topological Predicates on Complex Regions 

With the aid of the topological predicates on simple regions with holes we are now 
able to define the corresponding predicates on complex regions. Let F and G be 
complex regions, F consisting of the simple regions with holes F1, …, Fn, and G 
consisting of the simple regions with holes G1, …, Gm. We define the following 
predicates: 

 disjointcr(F, G) := � 1 � i � n � 1 � j � m : disjointsrh(Fi, Gj) 

 meetcr(F, G) := 	disjointcr(F, G) � 
(� 1 � i � n � 1 � j � m : 
             (disjointsrh|meetsrh)(Fi, Gj)) 

 insidecr(F, G) := � 1 � i � n � 1 � j � m : insidesrh(Fi, Gj) 

containscr(F, G)  := insidecr(G, F) 

 equalcr(F, G) := n = m � � � : {1, …, n} � {1, …, n}, � bijective, 
   � 1 � i � n : equalsrh(Fi, G�(i)) 

  coveredBycr(F, G) := 	 ((insidecr|equalcr)(F, G)) � 
   (� 1 � i � n � 1 � j � m :  
        (insidesrh|coveredBysrh|equalsrh)(Gj, Fi)) 

  coverscr(F, G) := coveredBycr(G, H) 

  overlapcr(F, G) := 	 ((disjointcr|meetcr|coveredBycr|coverscr| 
         insidecr|containscr|equalcr)(F, G)) 

With similar arguments as in Section 3.2 we can recognise that two complex 
regions satisfy exactly one of these topological predicates. In other words, the 
topological predicates of the set Tcr = {disjointcr, meetcr, insidecr, containscr, 
equalcr, coveredBycr, coverscr, overlapcr} are mutually exclusive and complete. 

4 The Discrete Model 

The discrete model is the interface between the abstract model and the 
implementation level. It provides a discrete, finite representation based on the 
realm concept for the complex region type of the abstract model with its infinite 
point set representation. Similarly, the topological predicates of the abstract model 
are mapped to corresponding predicates of the discrete model and operate now on 
the finite representations. The discrete model still “abstracts” from implementation 
aspects (that is, from concrete data structures and algorithms) and gives a 
definition of the region type and the predicates on a discrete geometric basis. 
Efficiency does not play a role here. The challenge is to ensure numerical 
robustness (due to rounding errors) and topological consistency of predicates. We 
show how these requirements can be satisfied. Needed realm concepts are briefly 



reviewed in Section 4.1. Topological predicates on discrete regions are defined in 
Section 4.2. 

4.1 Needed Realm Concepts 

In Section 2 we briefly addressed the problems of implementing spatial objects 
and topological predicates in a numerically robust and topologically consistent 
way.  Further,  we mentioned the realm concept (Güting et al., 1993; Schneider, 
1997) as a successful approach to solving these problems. In this subsection we 
will informally give some needed realms definitions. The formal definitions can 
be found in (Güting et al., 1993). 

The underlying space of a realm is a finite discrete grid N � N with N = {0, …, 
m�1} 
  IN. As primitive objects, points and line segments with co-ordinates in N 
are defined over this grid. A realm represents a finite, user-definable set of points 
and non-intersecting1 line segments over this grid and is characterised by the 
following features: (i) Each point and each end point of a line segment of a realm 
is a grid point, (ii) each end point of a realm segment is also a point of the realm, 
(iii) no realm point lies properly within a realm segment, and (iv) no two realm 
segments intersect except at their end points. There is an obvious interpretation of 
a realm as a spatially embedded planar graph with the realm points as nodes and 
the realm segments as edges. For the formal realm definition robust geometric 
primitives on realm points and realm segments are needed whose definition can 
also be found in (Güting et al., 1993). Their essential feature is that they can be 
implemented in a numerically precise way based on integer arithmetic. 

In Section 3.1 we have used a bottom-up strategy at the abstract model to 
(informally) define “abstract” complex regions, and we have started with simple 
regions as the fundamental and simplest kind of regions. In (Schneider, 2001) all 
more complex kinds of regions are derived from this notion by finite means, 
because in their definitions we only employ finite quantifications and already 
known predicate specifications. Hence, at the discrete level, it is sufficient to 
define the finite analogy of a simple region in the realm context. Discrete versions 
of simple regions with holes and of complex regions are then straightforward! The 
analogy of a simple region is called cycle alluding to the graph interpretation of a 
realm and describes the well known linear approximation of a region as a simple 
polygon. A cycle c is defined by a set of realm segments S(c) = {s0, …, sm�1} such 
that any two consecutively indexed segments (also s0 and sm�1) meet, that is, share 
exactly one common end point, and such that no more than two segments from 
S(c) meet in any point. Cycle c partitions all grid points into the three finite 
subsets Pin(c) containing the grid points lying inside c, Pon(c) containing the grid 
points lying on c, and Pout(c) containing the grid points lying outside c. Let P(c) := 

                                                           
1The task of transforming an application’s set of intersecting line segments into a realm’s 

set of non-intersecting line segments is performed by the concept of redrawing (Güting 
et al., 1993). 



Pin(c) � Pon(c). Furthermore, let region be the type of all discrete, complex 
regions. 

4.2 Topological Predicates on Discrete Regions 

Since the topological predicates derived from the 9-intersection model are defined 
on “abstract” simple regions based on infinite point sets and real numbers, they 
cannot be directly implemented. However, even if their geometry would be based 
on floating-point numbers, the simple test whether a point lies on a segment is 
doomed to fail due to rounding errors. If two computed segments are intended to 
meet in a common point, a corresponding meet predicate will probably yield the 
wrong result because the equality test of the two common end points is error-
prone due to presumably slightly different point representations. In the realm 
context all these computations are numerically precise and robust and do not cause 
any problems. 

We now give the definitions of the eight topological predicates for simple 
polygons (cycles), which correspond to the 9-intersection model but are specified 
on a discrete geometric domain. Let F and G be two simple polygons. Then we 
define: 

 disjoint(F, G) := P(F) � P(G) =  � S(F) � S(G) =  

 meet(F, G) := Pin(F) � P(G) =  � P(F) � Pin(G) =  � 
(Pon(F) � Pon(G) �  � S(F) � S(G) � ) 

 equal(F, G) := P(F) = P(G) � S(F) = S(G) 

 inside(F, G) := P(F) � P(G) � Pon(F) � Pon(G) =  � 
S(F) � S(G) =  

 contains(F, G) := inside(G, F) 

 coveredBy(F, G) := P(F) � P(G) � 
(Pon(F) � Pon(G) �  � S(F) � S(G) � ) 

  covers(F, G) := coveredBy(G, H) 

  overlap(F, G) := 	 ((disjoint|meet|coveredBy|covers| 
         inside|contains|equal)(F, G)) 

In Section 3 we have used a bottom-up strategy to define topological predicates 
on abstract complex regions. We have based their definitions on the predicates on 
simple regions derived from the 9-intersection model and, as an intermediate step, 
on the predicates on simple regions with holes. Since the definitions of the 
predicates on simple regions with holes and on complex regions in addition only 
employ logical connectives and finite quantifications, we can simply adopt these 
definitions for topological predicates on discrete complex regions! Consequently, 
there is not more to do at this point. 



5 Data Structure and Algorithms 

It is obvious that, in this context, computing with finite points sets is not very 
efficient in practice. Hence, an efficient data structure for the complex data type 
region (Section 5.1) as well as efficient algorithms for the topological predicates 
operating on this data structure are needed (Section 5.2). For the data structure a 
special version of the classical linear boundary representation is used. 

5.1 A Data Structure for Complex Regions 

Rather than describing the data structure directly in terms of arrays, records, etc., 
we introduce a higher level description which offers suitable access and 
construction operations to be used in the algorithms. In a further step, one can then 
easily design and implement the data structure itself. 

Let N = {0, …, m�1} 
 IN, and let PN = N � N denote the set of all N-points 
(grid points). We define an (x, y)-lexicographical order on PN, which is defined for 
p = (x1, y1) and q = (x2, y2) as p < q � x1 < x2 � (x1 = x2 � y1 < y2). Let SN = PN � 
PN denote the set of N-segments. We normalise SN by the requirement that �s � SN 
: s = (p, q) � p < q. This enables us to speak of a left and a right end point of a 
segment. 

The crucial idea for the representation of region objects is to regard them as 
ordered sequences of halfsegments (Güting et al., 1995). Let HN = {(s, d) | s � SN, 
d � {left, right}} be the set of halfsegments where flag d emphasises one of the N-
segments’ end points, which is called the dominating point of h. If d = left, the left 
(smaller) end point of s is the dominating point of h, and h is called left 
halfsegment. Otherwise, the right end point of s is the dominating point of h, and h 
is called right halfsegment. Hence, each N-segment s is mapped to two 
halfsegments (s, left) and (s, right). Let dp be the function which yields the 
dominating point of a halfsegment. 

For two distinct halfsegments h1 and h2 with a common end point p, let ��be the 
enclosed angle such that 0� < � � 180� (an overlapping of h1 and h2 is excluded by 
the realm properties). Let a predicate rot be defined as follows: rot(h1, h2) is true if 
and only if h1 can be rotated around p through ��to overlap h2 in counterclockwise 
direction. We can now define a complete order on halfsegments which is basically 
the (x, y)-lexicographical order by dominating points. For two halfsegments h1 = 
(s1, d1) and h2 = (s2, d2) we obtain: 

 h1 < h2 � dp(h1) < dp(h2) � (dp(h1) = dp(h2) � 
((d1 = right � d2 = left) � (d1 = d2 � rot(h1, h2))) 



A value of type region (an example is given in Fig. 2) is now defined as an 
ordered sequence �(h1, a1), …, (hn, an)�  of n halfsegments2 where each halfsegment 
hi has an attached set ai of attributes. Attribute sets are used in algorithms to attach 
auxiliary information to segments. For example, those halfsegments of a region 
object F carry an associated attribute InsideAbove where the area of F lies above 
or left of its segments. 
 
 
 
 
 

 
 
 

Fig. 2. Example of the halfsegment sequence of a region. If hi
l = (si, left) and hi

r = (si, right) 
denote the left and right halfsegments belonging to the segments si for 1 � i � 6, the 
halfsegment sequence is �(h1

l, {I}), (h2
l, �), (h3

l, �), (h4
l, {I}), (h4

r, {I}), (h5
l, {I}), (h2

r, �), 
(h6

l, �), (h5
r, {I}), (h3

r, �), (h6
r, �), (h1

r, {I})�. I stands for the attribute InsideAbove. 

Simple implementations for type region would represent a sequence of n 
halfsegments in a linked list or sequentially in an array. Unfortunately, in the latter 
case, inserting a halfsegment at an arbitrary position then needs O(n) time. 
Alternatively, an AVL-tree embedded into an array can be used whose elements 
are additionally linked in sequence order. An insertion then requires O(log n) time. 

5.2 Algorithms for Topological Predicates 

We now study the algorithms for our set Tcr of topological predicates on complex 
regions. These algorithms are realm-based in the sense that the regions as their 
arguments are defined over the same realm, that no two segments intersect within 
their interiors and that no point lies within a segment. The description of the 
algorithms requires three important concepts, namely realm-based plane sweep, 
parallel object traversal, and overlap numbers, which are explained first in the 
following. 

5.2.1 Realm-Based Plane Sweep 

The algorithmic scheme we employ for all predicates is the same and is based on 
the popular plane sweep technique (Preparata et al., 1985) of Computational 
Geometry. A vertical sweep line sweeping the plane from left to right stops at 
                                                           
2Note that this data structure only stores halfsegments and attributes. The algorithms using 

this structure are responsible for constructing only halfsegment sequences that maintain 
the region properties. 

 

s1

s2 s6
s4 s5 s3



special points called event points which are generally stored in a queue called 
event point schedule. The event point schedule must allow one to insert new event 
points discovered during processing; these are normally the initially unknown 
intersections of line segments. The state of the intersection of the sweep line with 
the geometric structure being swept at the current sweep line position is recorded 
in vertical order in a data structure called sweep line status. Whenever the sweep 
line reaches an event point, the sweep line status is updated. Event points which 
are passed by the sweep line are removed from the event point schedule. Note that 
in general an efficient fully dynamic data structure is needed to represent the event 
point schedule and that in many plane-sweep algorithms an initial sorting step is 
needed to produce the sequence of event points in (x, y)-lexicographical order. 

In the special case of realm-based algorithms where no two segments intersect 
within their interiors, the event point schedule is static (because new event points 
cannot exist) and given by the ordered sequence of halfsegments of the operand 
objects. No further explicit event point structure is needed. Also, no initial sorting 
is necessary, because the plane sweep order of segments is the base representation 
of region objects anyway. 

We assume some operations on the sweep line status which later make the 
description and understanding of the algorithms easier. Each segment stored in 
this structure is associated with a set of attributes. A new sweep line status 
structure is initialised by the operation new_sweep. If a left (right) halfsegment of 
a region object is reached during a plane-sweep, the operation add_left (del_right) 
stores (removes) its segment component into (from) the segment sequence of the 
sweep line status sorted by the order relation above. A segment s lies above a 
segment t if the intersection of their x-intervals is not empty and if for each x of 
the intersection interval the y-co-ordinate of s is greater than the one of t (except 
possibly for a common end point where the y-co-ordinates are equal). The 
operation pred_exists (common_point_exists) checks whether for the segment 
currently considered in the sweep line status a predecessor (a neighboureded 
segment with a common end point) exists. The operation set_attr (get_pred_attr) 
sets (gets) a set of attributes for (from the predecessor of) the segment currently 
considered in the sweep line status. 

For the sweep line status an efficient internal dynamic structure like the AVL-
tree can be employed which realises the operations add_left and del_right each in 
time O(log n) and the other operations in constant time. 

5.2.2 Parallel Object Traversal 

Four further operations make the algorithms more readable. The access to the 
current element of the halfsegment sequence of a region object is given by the 
operation get_hs. The operation get attr yields the pertaining attribute set of this 
halfsegment. 

For the evaluation of a predicate we have to perform a parallel traversal through 
the ordered halfsegment sequences of both operand objects. To simplify the 
description of this parallel scan, two operations are provided. The operation 
rr_select_first(F, G, object, status) selects the first halfsegment of each of the 



region objects F and G and positions a logical pointer on both of them. The 
parameter object with possible values {none, first, second, both} indicates which 
of the two object representations contains the smaller halfsegment. If the value of 
object is none, no halfsegment is selected, since F and G are empty. If the value is 
first (second), the smaller halfsegment belongs to F (G). If it is both, the first 
halfsegments of F and G are identical. The parameter status with possible values 
{end_of_none, end_of_first, end_of_second, end_of_both} describes the state of 
both halfsegment sequences. If the value of status is end_of_none, both objects 
still have halfsegments. If it is end_of_first (end_of_second), F (G) is empty. If it 
is end_of_both, both object representations are empty. The operation 
rr_select_next(F, G, object, status) searches for the next smaller halfsegment of F 
and G; parameters have the same meaning as for rr_select_first. Both operations 
together allow one to scan in linear time two object representations like one 
ordered sequence. 

5.2.3 Overlap Numbers 

Overlapping of region parts plays an important role for computing their 
topological relationships. For this purpose we introduce the concept of overlap 
numbers. A point of the realm grid obtains the overlap number 2 if it is covered by 
(or part of) two region objects. This means that for two intersecting simple 
polygons the area outside of both polygons gets overlap number 0, the intersecting 
area gets overlap number 2, and the other areas get overlap number 1. Since a 
segment of a region separates space into two parts, an inner and an exterior one, 
each segment is associated with a pair  (m/n) of overlap numbers, a lower (or right) 
one m and an upper (or left) one n. The lower (upper) overlap number indicates 
the number of overlapping region objects below (above) the segment. In this way, 
we obtain a segment classification of two region objects and speak of (m/n)-
segments. Obviously, m, n � 2 holds. Of the nine possible combinations only 
seven describe valid segment classes. This is because a (0/0)-segment contradicts 
the definition of a region object, since then at least one of both regions would have 
two holes or an outer cycle and a hole with a common border. Similarly, (2/2)- 
segments cannot exist, since then at least one of the two regions would have a 
segment which is common to two outer cycles of the object. Hence, possible 
(m/n)-segments are (0/1)-, (0/2)-, (1/0)-, (1/1)-, (1/2)-, (2/0)-, and (2/1)-segments. 
Examples of (m/n)-segments are given in Fig. 3. 



 

 

 

 

 

 

 

 

 

 

Fig. 3. Example of the segment classification of two region objects 

5.2.4 Algorithms 

The algorithmic scheme, which is common to all topological predicates, is 
demonstrated by the algorithm for coveredBycr(F,G). For this predicate all 
segments of F must lie within the area of G but no segment (and hence no hole) of 
G may lie within F. If we consider the objects F and G as halfsegment sequences 
together with the segment classes, the predicate coveredBycr is true if (i) all 
halfsegments that are only elements of F have segment class (1/2) or (2/1), since 
only these segments lie within G, (ii) all halfsegments that are only elements of G 
have segment class (0/1) or (1/0), since these definitely do not lie within F, and 
(iii) all common halfsegments have segment class (0/2) or (2/0), since the areas of 
both objects lie on the same side of the halfsegment. We have to require that F and 
G share at least a common segment or a common point. In the case of a (1/1)-
segment the areas would lie side by side so that F could not be covered by G. In 
the algorithm, whenever a segment is inserted into the sweep line status, first the 
pair (mp/np) of overlap numbers of the predecessor is determined (it is set to (�/0) 
if no predecessor exists). Then the overlap numbers (ms/ns) for this segment are 
computed. Obviously ms = np must hold; ns is also initialised to np and then 
corrected. We can now formulate the algorithm coveredBycr: 

 algorithm coveredBycr 
 input: Two region objects F and G 
 output: true, if F is covered by G 
    false, otherwise 

 begin 
  S := new_sweep(); 
  inside := true; 
  common_segment := false; 
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  common_point := false; 
  rr_select_first(F, G, object, status); 
  while (status � end_of_first) and inside do /* Let h = (s, d). */ 
   if (object = first) or (object = both) then h := get_hs(F);  
   else h := get_hs(G); 
   endif; 
   if d = right then S := del_right(S, s); 
   else 
    S := add_left(S, s); 
    if not pred_exists(S) then (mp/np) := (�/0) 
    else {(mp/np)} := get_pred_attr(S); 
    endif; 
    ms := np; ns := np; 
    if ((object = first) or (object = both)) and (InsideAbove � get_attr(F)) 
    then ns := ns+1 
    else ns := ns�1 
    endif; 
    if ((object = second) or (object = both)) and 
      (InsideAbove � get_attr(G)) 
    then ns := ns+1 
    else ns := ns�1 
    endif; 
    S := set_attr(S, {(ms/ns)}); 
    if object = first then 
    inside := ((ms/ns) � {(1/2), (2/1)}); 
    if common_point_exists(S) then common_point := true endif 
    else if object = second then inside := ((ms/ns) � {(0/1), (1/0)}) 
    else inside := ((ms/ns) � {(0/2), (2/0)}); common_segment := true 
    endif; 
   endif; 
   rr_select_next(F, G, object, status); 
  endwhile; 
  return inside and (common_segment or common_point); 
 end coveredBycr. 

If F has l and G m halfsegments, the while-loop is executed at most n = l+m 
times, because each time a new halfsegment is visited. The most expensive 
operations within the loop are the insertion and the removal of a segment into and 
from the sweep line status. Since at most n elements can be contained in the sweep 
line status, the worst time complexity of the algorithm is O(n log n). 

The other predicates mostly require slight modifications of the algorithm above. 
The predicate coverscr is symmetric to coveredBycr. The predicate insidecr forbids 
common (0/2)- and (2/0)- segments and also common points. The same holds for 
the symmetric predicate containscr. The predicate disjointcr yields true if both 
objects do not share common areas, common segments, and common points. 



Hence, it only allows (0/1)- and (1/0)-segments and forbids common points. The 
predicate meetcr is equal to disjointcr but additionally requires the existence of at 
least one (1/1)-segment or a common point. The predicate overlapcr is true if two 
regions have a common area which means that there exist segments of the 
segment classes (1/2) ) or (2/1). 

6 Conclusions 

Based on a formal and coherent definition of complex regions and their 
topological predicates both at the abstract and the discrete level, we have 
demonstrated how regions and predicates on them can be implemented in a 
numerically robust and topologically consistent manner. Spatial query languages 
can now also be employed to pose queries using topological relationships on more 
complex regions. 
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