
Implementing Topological Predicates for
Complex Regions

Markus Schneider

University of Florida, Department of Computer and Information Science and
Engineering, Gainesville, FL 32611, USA, mschneid@cise.ufl.edu

Abstract

Topological predicates on spatial objects have been a main area of research in
spatial data handling, reasoning, and query languages. The focus of research, has,
to a large extent, been on the design of and reasoning with these predicates,
whereas implementation issues have been somewhat neglected. The goal of this
paper is to show how an abstract design of topological predicates for complex
regions can be efficiently implemented. The resulting algorithms are based on the
realm concept, which is well known in the spatial database community.
Keywords: complex region, topological predicate, implementation, realm, ROSE
algebra

1 Introduction

In recent years, significant achievements have been made on the design of
topological predicates for spatial objects. Almost all results have been based on
either the 9-intersection model (Egenhofer et al., 1990), which rests on point sets
and point set topology, or the RCC model (Cui et al., 1993), which employs
spatial logic. The foundation for this work is the first model, since the goal of the
paper is to address the efficient implementation of topological predicates for
regions in a spatial database or GIS context.

Whereas the predicates in the aforementioned two models operate on simplified
abstractions of spatial objects like simple regions, we are interested in the design
and implementation of topological predicates for complex regions, which may
consist of several components (faces) and which may have holes.

Implementation issues for these predicates, regardless of whether they operate
on simple or complex geometries, have so far been somewhat neglected. Hence, it
is especially the goal of this paper to demonstrate how an abstract design of
topological predicates for complex regions can be efficiently implemented.

�����
����

���
���

���
	���

���������	�
��
��
�����������������

���������
��
�
�������������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

Section 2 discusses related work. Section 3 presents an abstract, formal model
of topological predicates for complex regions. This model is called abstract,
because it makes clean and simple definitions in terms of infinite point sets and
point set topology, without worrying whether finite representations of these sets
exist. Section 4 describes a corresponding discrete model. This model is called
discrete, because it takes into account finite representations only available in
computers. In this sense it is nearer to implementation. Realms (Güting et al.,
1993; Schneider, 1997) will be the basis of this model. Section 5 discusses the
implementation level. We will show a realm-based data structure for complex
regions and algorithms for the predicates operating on this data structure. Finally,
Section 6 draws some conclusions.

2 Related Work

In the past, a number of data models and query languages for spatial data have
been proposed with the aim of formulating and processing spatial queries in
databases. Spatial data types (Schneider, 1997) like point, line, or region are the
central concept of these approaches and provide fundamental abstractions for
modelling the structure of geometric entities, their relationships, properties, and
operations. Whereas in older models the geometric structure of spatial data has
been restricted (only simple regions, continuous lines, single points), in the
meantime a few models (Güting et al., 1995; Clementini et al., 1996) also allow
complex spatial objects which may consist of several disjoint components.
Additionally, a region object may have holes, and a component of a line object
may be a connected collection of curves. The reasons for defining complex
geometric structures are closure properties for spatial operations and application-
specific requirements. The OpenGIS Consortium (OGC) has incorporated similar
generalised geometric structures, called simple features, into their OGC Abstract
Specification (OGC, 1999) and into the Geography Markup Language (GML)
(OGC, 2001), which is an XML encoding for the transport and storage of
geographic information. These geometric structures are called MultiPoint,
MultiLineString, and MultiPolygon. Implementation descriptions for these
structures have so far not been given.

A well known, abstract model for characterising topological relationships
between simple regions is the 9-intersection model (Egenhofer et al., 1989). For
two simple regions, eight meaningful configurations have been identified which
lead to the eight predicates of the set Tsr = {disjoint, meet, overlap, equal, inside,
contains, covers, coveredBy}. Each predicate is determined by a unique 9-
intersection matrix representing the nine intersections of the boundary, interior,
and exterior of the first region with the corresponding parts of the second region.
All predicates are mutually exclusive and cover all topological situations.
However, a generalisation of spatial data types also necessitates a generalisation of
the corresponding topological predicates. It is surprising that such predicates have
until recently not been defined. In (Clementini et al., 1995) the so-called TRCR

(Topological Relationships for Composite Regions) model only allows sets of
disjoint simple regions without holes. In (Egenhofer et al., 1994) only topological
relationships of simple regions with holes are considered; multi-part regions are
not permitted. Recently, a general (Behr et al., 2001) and a limited model
(Schneider, 2001) have been presented for topological predicates on complex
regions. This paper will be based on the limited model (see Section 3).

So far, implementation issues for topological predicates have been almost
completely neglected in the literature. In (Clementini et al., 1994) query
processing strategies are discussed for topological predicates on simple regions.
The central idea is to find a minimal but still unique subset of the nine
intersections for each predicate. Only this subset has then to be evaluated, and the
hope is that this reduction leads to a better performance. It is assumed that the
computational cost of each of the nine possible intersections is equal. Although
this approach is interesting from a theoretical point of view, it is doubtful from an
implementation perspective, because the computation of all nine intersections can
be and has to be performed by the same algorithmic scheme (see Section 5).

The implementation of spatial objects and predicates is impeded by the
assumption of a Euclidean space and an infinite-precision arithmetic in spatial
data models which conflicts with the reality of finite-precision number systems
available in computers (Schneider, 1997). This leads inevitably not only to
numerical but especially to topological errors and thus to wrong query results in
database systems. A solution for this problem is the realm concept (Güting et al.,
1993). A realm replaces the Euclidean space with a discrete geometric basis and is
intended to represent the entire underlying geometry of an application. It is based
on a finite resolution computational geometry and consists of a finite set of points
and non-intersecting line segments which are defined over a discrete point grid
and which form a spatially embedded planar graph. We will see that on top of
realms complex regions and topological predicates operating on them can be
easily implemented.

3 The Abstract Model

In this section we review the limited abstract model for topological predicates on
complex regions, which has been described in (Schneider, 2001). The objective of
this model is not to find all possible topological relationships between two
complex regions but to generalise the eight topological relationships for simple
regions to complex regions in a straightforward way. This may be regarded as an
ad hoc approach leading to too coarse predicates. For many spatial applications,
however, this predicate collection is practicable enough, and a more fine-grained
differentiation is even not desired.

3.1 Complex Regions

First, we informally describe the structure of complex regions, which results in the
spatial data type region. A formal definition can be found in (Schneider, 2001)
and is based on point set theory and point set topology. Regions are embedded
into the two-dimensional Euclidean space IR2 and are thus point sets.

A simple region has a connected interior, a connected boundary, and a single
connected exterior. Hence, it does not consist of several components, and it does
not have holes.

A simple region with holes F, which is also called a face (Fig. 1c-e), is a simple
region with an outer boundary containing several other simple regions, which are
called holes. Holes represent areas (simple regions) that do not belong to the
region object but are enclosed by it. A hole is allowed to touch the outer boundary
of F or the boundary of another hole in at most single points. To permit holes to
have a partially common border with other holes makes no sense because then
adjacent holes could be merged to a single hole by eliminating the common border
(similarly for adjacency of a hole with the outer boundary). A face is atomic and
cannot be decomposed into two or more faces. For example, the configuration
shown in Fig. 1a, must be interpreted as two faces with two holes and not as a
single face with four holes.

Fig. 1. Unique representation of a face (a), a complex region with five faces (b), a simple
region with two holes (c), its boundary (d), and its interior (e)

Finally, a complex region (Fig. 1b) is a set of faces. A face has to be disjoint to
another face, or to meet another face in one or several single boundary points, or
to lie within a hole of another face and possibly share one or several single
boundary points with the boundary of the hole. Faces having common connected
boundary parts with other faces or holes are disallowed. The argumentation is
similar to that for the face definition.

3.2 Topological Predicates on Simple Regions with Holes

In the following we use the notation (P1|P2|…|Pn)(F,G) as a syntactical
simplification for the term P1(F,G) � P2(F,G) � … � Pn(F,G) where Pi : region �
region ! � bool is a topological predicate for each 1 � i � n.

As a first step to a general definition of topological predicates for complex
regions we consider such predicates for simple regions with holes and base their

(a) (b) (c) (d) (e)

definition on the well known semantics of the topological predicates Tsr for simple
regions (Section 2), as they have been derived from the 9-intersection model.

Let F and G be two simple regions with holes, F consisting of the simple region
with the outer boundary F0 and the holes F1, …, Fn, and G consisting of the simple
region with the outer boundary G0 and the holes G1, …, Gm. The topological
predicates operating on F and G are defined as follows:

 disjointsrh(F, G) := disjoint(F0, G0) �
 (� 1 � i � n : inside(G0, Fi)) �
 (� 1 � j � m : inside(F0, Gj))

 meetsrh(F, G) := meet(F0, G0) �
 (� 1 � i � n : coveredBy(G0, Fi)) �
 (� 1 � j � m : coveredBy(F0, Gj))

 insidesrh(F, G) := inside(F0, G0) �
 (� 1 � j � m : disjoint(F0, Gj) �
 (inside(Gj, F0) � (� 1 � i � n : inside(Gj, Fi)))

 containssrh(F, G) := insidesrh(G, F)

 equalsrh(F, G) := equal(F0, G0) � n = m �
 � � : {1, …, n} � {1, …, n}, � bijective,
 � 1 � i � n : equal(Fi, G�(i))

 coveredBysrh(F, G) := 	 ((insidesrh|equalsrh)(F, G)) �
 (inside|coveredBy|equal)(F0, G0) �
 (� 1 � j � m : ((disjoint|meet)(F0, Gj) �
 (� 1 � i � n : (inside|coveredBy|equal)(Gj, Fi))))

 coverssrh(F, G) := coveredBysrh(G, F)

 overlapsrh(F, G) := 	 ((disjointsrh|meetsrh|coveredBysrh|coverssrh|
 insidesrh|containssrh|equalsrh)(F, G))

In (Schneider, 2001) we have shown that the set Tsrh = {disjointsrh, meetsrh,
coveredBysrh, coverssrh, insidesrh, containssrh, equalsrh, overlapsrh} provides a
complete coverage of topological relationships for two simple regions with holes,
and its elements are mutually exclusive. The set Tsrh of topological predicates on
simple regions with holes is in two ways compatible with the set Tsr of topological
predicates on simple regions obtained by the 9-intersection model. First, if both F
and G do not have holes, then Tsrh and Tsr coincide. Second, each of the eight
topological predicates on simple regions with holes has the same boolean results
for the nine intersections as the corresponding predicate on simple regions.

3.3 Topological Predicates on Complex Regions

With the aid of the topological predicates on simple regions with holes we are now
able to define the corresponding predicates on complex regions. Let F and G be
complex regions, F consisting of the simple regions with holes F1, …, Fn, and G
consisting of the simple regions with holes G1, …, Gm. We define the following
predicates:

 disjointcr(F, G) := � 1 � i � n � 1 � j � m : disjointsrh(Fi, Gj)

 meetcr(F, G) := 	disjointcr(F, G) �
(� 1 � i � n � 1 � j � m :
 (disjointsrh|meetsrh)(Fi, Gj))

 insidecr(F, G) := � 1 � i � n � 1 � j � m : insidesrh(Fi, Gj)

containscr(F, G) := insidecr(G, F)

 equalcr(F, G) := n = m � � � : {1, …, n} � {1, …, n}, � bijective,
 � 1 � i � n : equalsrh(Fi, G�(i))

 coveredBycr(F, G) := 	 ((insidecr|equalcr)(F, G)) �
 (� 1 � i � n � 1 � j � m :
 (insidesrh|coveredBysrh|equalsrh)(Gj, Fi))

 coverscr(F, G) := coveredBycr(G, H)

 overlapcr(F, G) := 	 ((disjointcr|meetcr|coveredBycr|coverscr|
 insidecr|containscr|equalcr)(F, G))

With similar arguments as in Section 3.2 we can recognise that two complex
regions satisfy exactly one of these topological predicates. In other words, the
topological predicates of the set Tcr = {disjointcr, meetcr, insidecr, containscr,
equalcr, coveredBycr, coverscr, overlapcr} are mutually exclusive and complete.

4 The Discrete Model

The discrete model is the interface between the abstract model and the
implementation level. It provides a discrete, finite representation based on the
realm concept for the complex region type of the abstract model with its infinite
point set representation. Similarly, the topological predicates of the abstract model
are mapped to corresponding predicates of the discrete model and operate now on
the finite representations. The discrete model still “abstracts” from implementation
aspects (that is, from concrete data structures and algorithms) and gives a
definition of the region type and the predicates on a discrete geometric basis.
Efficiency does not play a role here. The challenge is to ensure numerical
robustness (due to rounding errors) and topological consistency of predicates. We
show how these requirements can be satisfied. Needed realm concepts are briefly

reviewed in Section 4.1. Topological predicates on discrete regions are defined in
Section 4.2.

4.1 Needed Realm Concepts

In Section 2 we briefly addressed the problems of implementing spatial objects
and topological predicates in a numerically robust and topologically consistent
way. Further, we mentioned the realm concept (Güting et al., 1993; Schneider,
1997) as a successful approach to solving these problems. In this subsection we
will informally give some needed realms definitions. The formal definitions can
be found in (Güting et al., 1993).

The underlying space of a realm is a finite discrete grid N � N with N = {0, …,
m�1}
 IN. As primitive objects, points and line segments with co-ordinates in N
are defined over this grid. A realm represents a finite, user-definable set of points
and non-intersecting1 line segments over this grid and is characterised by the
following features: (i) Each point and each end point of a line segment of a realm
is a grid point, (ii) each end point of a realm segment is also a point of the realm,
(iii) no realm point lies properly within a realm segment, and (iv) no two realm
segments intersect except at their end points. There is an obvious interpretation of
a realm as a spatially embedded planar graph with the realm points as nodes and
the realm segments as edges. For the formal realm definition robust geometric
primitives on realm points and realm segments are needed whose definition can
also be found in (Güting et al., 1993). Their essential feature is that they can be
implemented in a numerically precise way based on integer arithmetic.

In Section 3.1 we have used a bottom-up strategy at the abstract model to
(informally) define “abstract” complex regions, and we have started with simple
regions as the fundamental and simplest kind of regions. In (Schneider, 2001) all
more complex kinds of regions are derived from this notion by finite means,
because in their definitions we only employ finite quantifications and already
known predicate specifications. Hence, at the discrete level, it is sufficient to
define the finite analogy of a simple region in the realm context. Discrete versions
of simple regions with holes and of complex regions are then straightforward! The
analogy of a simple region is called cycle alluding to the graph interpretation of a
realm and describes the well known linear approximation of a region as a simple
polygon. A cycle c is defined by a set of realm segments S(c) = {s0, …, sm�1} such
that any two consecutively indexed segments (also s0 and sm�1) meet, that is, share
exactly one common end point, and such that no more than two segments from
S(c) meet in any point. Cycle c partitions all grid points into the three finite
subsets Pin(c) containing the grid points lying inside c, Pon(c) containing the grid
points lying on c, and Pout(c) containing the grid points lying outside c. Let P(c) :=

1The task of transforming an application’s set of intersecting line segments into a realm’s

set of non-intersecting line segments is performed by the concept of redrawing (Güting
et al., 1993).

Pin(c) � Pon(c). Furthermore, let region be the type of all discrete, complex
regions.

4.2 Topological Predicates on Discrete Regions

Since the topological predicates derived from the 9-intersection model are defined
on “abstract” simple regions based on infinite point sets and real numbers, they
cannot be directly implemented. However, even if their geometry would be based
on floating-point numbers, the simple test whether a point lies on a segment is
doomed to fail due to rounding errors. If two computed segments are intended to
meet in a common point, a corresponding meet predicate will probably yield the
wrong result because the equality test of the two common end points is error-
prone due to presumably slightly different point representations. In the realm
context all these computations are numerically precise and robust and do not cause
any problems.

We now give the definitions of the eight topological predicates for simple
polygons (cycles), which correspond to the 9-intersection model but are specified
on a discrete geometric domain. Let F and G be two simple polygons. Then we
define:

 disjoint(F, G) := P(F) � P(G) = � S(F) � S(G) =

 meet(F, G) := Pin(F) � P(G) = � P(F) � Pin(G) = �
(Pon(F) � Pon(G) � � S(F) � S(G) �)

 equal(F, G) := P(F) = P(G) � S(F) = S(G)

 inside(F, G) := P(F) � P(G) � Pon(F) � Pon(G) = �
S(F) � S(G) =

 contains(F, G) := inside(G, F)

 coveredBy(F, G) := P(F) � P(G) �
(Pon(F) � Pon(G) � � S(F) � S(G) �)

 covers(F, G) := coveredBy(G, H)

 overlap(F, G) := 	 ((disjoint|meet|coveredBy|covers|
 inside|contains|equal)(F, G))

In Section 3 we have used a bottom-up strategy to define topological predicates
on abstract complex regions. We have based their definitions on the predicates on
simple regions derived from the 9-intersection model and, as an intermediate step,
on the predicates on simple regions with holes. Since the definitions of the
predicates on simple regions with holes and on complex regions in addition only
employ logical connectives and finite quantifications, we can simply adopt these
definitions for topological predicates on discrete complex regions! Consequently,
there is not more to do at this point.

5 Data Structure and Algorithms

It is obvious that, in this context, computing with finite points sets is not very
efficient in practice. Hence, an efficient data structure for the complex data type
region (Section 5.1) as well as efficient algorithms for the topological predicates
operating on this data structure are needed (Section 5.2). For the data structure a
special version of the classical linear boundary representation is used.

5.1 A Data Structure for Complex Regions

Rather than describing the data structure directly in terms of arrays, records, etc.,
we introduce a higher level description which offers suitable access and
construction operations to be used in the algorithms. In a further step, one can then
easily design and implement the data structure itself.

Let N = {0, …, m�1}
 IN, and let PN = N � N denote the set of all N-points
(grid points). We define an (x, y)-lexicographical order on PN, which is defined for
p = (x1, y1) and q = (x2, y2) as p < q � x1 < x2 � (x1 = x2 � y1 < y2). Let SN = PN �
PN denote the set of N-segments. We normalise SN by the requirement that �s � SN
: s = (p, q) � p < q. This enables us to speak of a left and a right end point of a
segment.

The crucial idea for the representation of region objects is to regard them as
ordered sequences of halfsegments (Güting et al., 1995). Let HN = {(s, d) | s � SN,
d � {left, right}} be the set of halfsegments where flag d emphasises one of the N-
segments’ end points, which is called the dominating point of h. If d = left, the left
(smaller) end point of s is the dominating point of h, and h is called left
halfsegment. Otherwise, the right end point of s is the dominating point of h, and h
is called right halfsegment. Hence, each N-segment s is mapped to two
halfsegments (s, left) and (s, right). Let dp be the function which yields the
dominating point of a halfsegment.

For two distinct halfsegments h1 and h2 with a common end point p, let ��be the
enclosed angle such that 0� < � � 180� (an overlapping of h1 and h2 is excluded by
the realm properties). Let a predicate rot be defined as follows: rot(h1, h2) is true if
and only if h1 can be rotated around p through ��to overlap h2 in counterclockwise
direction. We can now define a complete order on halfsegments which is basically
the (x, y)-lexicographical order by dominating points. For two halfsegments h1 =
(s1, d1) and h2 = (s2, d2) we obtain:

 h1 < h2 � dp(h1) < dp(h2) � (dp(h1) = dp(h2) �
((d1 = right � d2 = left) � (d1 = d2 � rot(h1, h2)))

A value of type region (an example is given in Fig. 2) is now defined as an
ordered sequence �(h1, a1), …, (hn, an)� of n halfsegments2 where each halfsegment
hi has an attached set ai of attributes. Attribute sets are used in algorithms to attach
auxiliary information to segments. For example, those halfsegments of a region
object F carry an associated attribute InsideAbove where the area of F lies above
or left of its segments.

Fig. 2. Example of the halfsegment sequence of a region. If hi
l = (si, left) and hi

r = (si, right)
denote the left and right halfsegments belonging to the segments si for 1 � i � 6, the
halfsegment sequence is �(h1

l, {I}), (h2
l, �), (h3

l, �), (h4
l, {I}), (h4

r, {I}), (h5
l, {I}), (h2

r, �),
(h6

l, �), (h5
r, {I}), (h3

r, �), (h6
r, �), (h1

r, {I})�. I stands for the attribute InsideAbove.

Simple implementations for type region would represent a sequence of n
halfsegments in a linked list or sequentially in an array. Unfortunately, in the latter
case, inserting a halfsegment at an arbitrary position then needs O(n) time.
Alternatively, an AVL-tree embedded into an array can be used whose elements
are additionally linked in sequence order. An insertion then requires O(log n) time.

5.2 Algorithms for Topological Predicates

We now study the algorithms for our set Tcr of topological predicates on complex
regions. These algorithms are realm-based in the sense that the regions as their
arguments are defined over the same realm, that no two segments intersect within
their interiors and that no point lies within a segment. The description of the
algorithms requires three important concepts, namely realm-based plane sweep,
parallel object traversal, and overlap numbers, which are explained first in the
following.

5.2.1 Realm-Based Plane Sweep

The algorithmic scheme we employ for all predicates is the same and is based on
the popular plane sweep technique (Preparata et al., 1985) of Computational
Geometry. A vertical sweep line sweeping the plane from left to right stops at

2Note that this data structure only stores halfsegments and attributes. The algorithms using

this structure are responsible for constructing only halfsegment sequences that maintain
the region properties.

s1

s2 s6
s4 s5 s3

special points called event points which are generally stored in a queue called
event point schedule. The event point schedule must allow one to insert new event
points discovered during processing; these are normally the initially unknown
intersections of line segments. The state of the intersection of the sweep line with
the geometric structure being swept at the current sweep line position is recorded
in vertical order in a data structure called sweep line status. Whenever the sweep
line reaches an event point, the sweep line status is updated. Event points which
are passed by the sweep line are removed from the event point schedule. Note that
in general an efficient fully dynamic data structure is needed to represent the event
point schedule and that in many plane-sweep algorithms an initial sorting step is
needed to produce the sequence of event points in (x, y)-lexicographical order.

In the special case of realm-based algorithms where no two segments intersect
within their interiors, the event point schedule is static (because new event points
cannot exist) and given by the ordered sequence of halfsegments of the operand
objects. No further explicit event point structure is needed. Also, no initial sorting
is necessary, because the plane sweep order of segments is the base representation
of region objects anyway.

We assume some operations on the sweep line status which later make the
description and understanding of the algorithms easier. Each segment stored in
this structure is associated with a set of attributes. A new sweep line status
structure is initialised by the operation new_sweep. If a left (right) halfsegment of
a region object is reached during a plane-sweep, the operation add_left (del_right)
stores (removes) its segment component into (from) the segment sequence of the
sweep line status sorted by the order relation above. A segment s lies above a
segment t if the intersection of their x-intervals is not empty and if for each x of
the intersection interval the y-co-ordinate of s is greater than the one of t (except
possibly for a common end point where the y-co-ordinates are equal). The
operation pred_exists (common_point_exists) checks whether for the segment
currently considered in the sweep line status a predecessor (a neighboureded
segment with a common end point) exists. The operation set_attr (get_pred_attr)
sets (gets) a set of attributes for (from the predecessor of) the segment currently
considered in the sweep line status.

For the sweep line status an efficient internal dynamic structure like the AVL-
tree can be employed which realises the operations add_left and del_right each in
time O(log n) and the other operations in constant time.

5.2.2 Parallel Object Traversal

Four further operations make the algorithms more readable. The access to the
current element of the halfsegment sequence of a region object is given by the
operation get_hs. The operation get attr yields the pertaining attribute set of this
halfsegment.

For the evaluation of a predicate we have to perform a parallel traversal through
the ordered halfsegment sequences of both operand objects. To simplify the
description of this parallel scan, two operations are provided. The operation
rr_select_first(F, G, object, status) selects the first halfsegment of each of the

region objects F and G and positions a logical pointer on both of them. The
parameter object with possible values {none, first, second, both} indicates which
of the two object representations contains the smaller halfsegment. If the value of
object is none, no halfsegment is selected, since F and G are empty. If the value is
first (second), the smaller halfsegment belongs to F (G). If it is both, the first
halfsegments of F and G are identical. The parameter status with possible values
{end_of_none, end_of_first, end_of_second, end_of_both} describes the state of
both halfsegment sequences. If the value of status is end_of_none, both objects
still have halfsegments. If it is end_of_first (end_of_second), F (G) is empty. If it
is end_of_both, both object representations are empty. The operation
rr_select_next(F, G, object, status) searches for the next smaller halfsegment of F
and G; parameters have the same meaning as for rr_select_first. Both operations
together allow one to scan in linear time two object representations like one
ordered sequence.

5.2.3 Overlap Numbers

Overlapping of region parts plays an important role for computing their
topological relationships. For this purpose we introduce the concept of overlap
numbers. A point of the realm grid obtains the overlap number 2 if it is covered by
(or part of) two region objects. This means that for two intersecting simple
polygons the area outside of both polygons gets overlap number 0, the intersecting
area gets overlap number 2, and the other areas get overlap number 1. Since a
segment of a region separates space into two parts, an inner and an exterior one,
each segment is associated with a pair (m/n) of overlap numbers, a lower (or right)
one m and an upper (or left) one n. The lower (upper) overlap number indicates
the number of overlapping region objects below (above) the segment. In this way,
we obtain a segment classification of two region objects and speak of (m/n)-
segments. Obviously, m, n � 2 holds. Of the nine possible combinations only
seven describe valid segment classes. This is because a (0/0)-segment contradicts
the definition of a region object, since then at least one of both regions would have
two holes or an outer cycle and a hole with a common border. Similarly, (2/2)-
segments cannot exist, since then at least one of the two regions would have a
segment which is common to two outer cycles of the object. Hence, possible
(m/n)-segments are (0/1)-, (0/2)-, (1/0)-, (1/1)-, (1/2)-, (2/0)-, and (2/1)-segments.
Examples of (m/n)-segments are given in Fig. 3.

Fig. 3. Example of the segment classification of two region objects

5.2.4 Algorithms

The algorithmic scheme, which is common to all topological predicates, is
demonstrated by the algorithm for coveredBycr(F,G). For this predicate all
segments of F must lie within the area of G but no segment (and hence no hole) of
G may lie within F. If we consider the objects F and G as halfsegment sequences
together with the segment classes, the predicate coveredBycr is true if (i) all
halfsegments that are only elements of F have segment class (1/2) or (2/1), since
only these segments lie within G, (ii) all halfsegments that are only elements of G
have segment class (0/1) or (1/0), since these definitely do not lie within F, and
(iii) all common halfsegments have segment class (0/2) or (2/0), since the areas of
both objects lie on the same side of the halfsegment. We have to require that F and
G share at least a common segment or a common point. In the case of a (1/1)-
segment the areas would lie side by side so that F could not be covered by G. In
the algorithm, whenever a segment is inserted into the sweep line status, first the
pair (mp/np) of overlap numbers of the predecessor is determined (it is set to (�/0)
if no predecessor exists). Then the overlap numbers (ms/ns) for this segment are
computed. Obviously ms = np must hold; ns is also initialised to np and then
corrected. We can now formulate the algorithm coveredBycr:

 algorithm coveredBycr
 input: Two region objects F and G
 output: true, if F is covered by G
 false, otherwise

 begin
 S := new_sweep();
 inside := true;
 common_segment := false;

0

0

0 0

0

1

1
1

1

1
1

1
1

2

2
2

2

1

 common_point := false;
 rr_select_first(F, G, object, status);
 while (status � end_of_first) and inside do /* Let h = (s, d). */
 if (object = first) or (object = both) then h := get_hs(F);
 else h := get_hs(G);
 endif;
 if d = right then S := del_right(S, s);
 else
 S := add_left(S, s);
 if not pred_exists(S) then (mp/np) := (�/0)
 else {(mp/np)} := get_pred_attr(S);
 endif;
 ms := np; ns := np;
 if ((object = first) or (object = both)) and (InsideAbove � get_attr(F))
 then ns := ns+1
 else ns := ns�1
 endif;
 if ((object = second) or (object = both)) and
 (InsideAbove � get_attr(G))
 then ns := ns+1
 else ns := ns�1
 endif;
 S := set_attr(S, {(ms/ns)});
 if object = first then
 inside := ((ms/ns) � {(1/2), (2/1)});
 if common_point_exists(S) then common_point := true endif
 else if object = second then inside := ((ms/ns) � {(0/1), (1/0)})
 else inside := ((ms/ns) � {(0/2), (2/0)}); common_segment := true
 endif;
 endif;
 rr_select_next(F, G, object, status);
 endwhile;
 return inside and (common_segment or common_point);
 end coveredBycr.

If F has l and G m halfsegments, the while-loop is executed at most n = l+m
times, because each time a new halfsegment is visited. The most expensive
operations within the loop are the insertion and the removal of a segment into and
from the sweep line status. Since at most n elements can be contained in the sweep
line status, the worst time complexity of the algorithm is O(n log n).

The other predicates mostly require slight modifications of the algorithm above.
The predicate coverscr is symmetric to coveredBycr. The predicate insidecr forbids
common (0/2)- and (2/0)- segments and also common points. The same holds for
the symmetric predicate containscr. The predicate disjointcr yields true if both
objects do not share common areas, common segments, and common points.

Hence, it only allows (0/1)- and (1/0)-segments and forbids common points. The
predicate meetcr is equal to disjointcr but additionally requires the existence of at
least one (1/1)-segment or a common point. The predicate overlapcr is true if two
regions have a common area which means that there exist segments of the
segment classes (1/2)) or (2/1).

6 Conclusions

Based on a formal and coherent definition of complex regions and their
topological predicates both at the abstract and the discrete level, we have
demonstrated how regions and predicates on them can be implemented in a
numerically robust and topologically consistent manner. Spatial query languages
can now also be employed to pose queries using topological relationships on more
complex regions.

References

Behr T, Schneider M (2001) Topological Relationships of Complex Points and Complex
Regions. In: Int. Conf. on Conceptual Modeling. pp 56-69

Clementini E, Di Felice P (1996) A Model for Representing Topological Relationships
between Complex Geometric Features in Spatial Databases. Information Systems
90:121–136

Clementini E, Di Felice P., Califano G (1995) Composite Regions in Topological Queries.
Information Systems 20(7):579–594

Clementini E, Sharma J, Egenhofer MJ (1994) Modeling Topological Spatial Relations:
Strategies for Query Processing. Computers and Graphics 18(6):815–822

Cui Z, Cohn A G, Randell DA (1993) Qualitative and Topological Relationships. In: 3rd
Int. Symp. on Advances in Spatial Databases, LNCS 692, pp 296–315

Egenhofer M J, Frank A, Jackson J P (1989) A Topological Data Model for Spatial
Databases. In: 1st Int. Symp. on the Design and Implementation of Large Spatial
Databases. LNCS 409, pp 271–286

Egenhofer M J, Herring J (1990) A Mathematical Framework for the Definition of
Topological Relationships. In: 4th Int. Symp. on Spatial Data Handling. pp 803–813

Egenhofer MJ, Clementini E, Di Felice P (1994) Topological Relations between Regions
with Holes. Int. Journal of Geographical Information Systems 8(2):128–142

Güting R H, Schneider M (1993) Realms: A Foundation for Spatial Data Types in Database
Systems. In: 3rd Int. Symp. on Advances in Spatial Databases, LNCS 692, pp 14–35

Güting R H, Schneider M (1995) Realm-Based Spatial Data Types: The ROSE Algebra.
VLDB Journal 4:100–143

OpenGIS Consortium (OGC) (1999) OGC Abstract Specification [online]. Available from:
http://www.opengis.org/techno/specs.htm.

OpenGIS Consortium (OGC) (2001) OGC Geography Markup Language (GML) 2.0
[online]. Available from: http://www.opengis.net/gml/01-029/GML2.html.

Preparata F P, Shamos M I (1985) Computational Geometry. Springer Verlag

Schneider M (1997) Spatial Data Types for Database Systems�Finite Resolution Geometry
for Geographic Information Systems. In: LNCS 1288, Springer-Verlag

Schneider M (2001) A Design of Topological Predicates for Complex Crisp and Fuzzy
Regions. In: Int. Conf. on Conceptual Modeling. pp 103-116

