SIPT UCI ACSG Table des matières Index des auteurs Recherches S		U CIG CI ACSG	-	Table of contents Table des matières		Search Recherches	
---	--	------------------	---	---	--	----------------------	--

ELABORATION OF PRODUCTS DERIVED FROM THE EO DATA AND GIS INFO-LAYERS FOR FLOODING RISK ANALYSIS

Gheorghe Stancalie*, Corina Alecu, Elena Savin

National Institute of Meteorology and Hydrology (INMH), 97, Soseaua Bucuresti-Ploiesti, Sector 1, 71552 Bucharest, Romania – (george, corinaal, esavin)@meteo.inmh.ro

KEY WORDS: Natural Hazards, Flooding, Earth Observation (EO), Risk Indices, Geographic Information System (GIS), Sensitive Area, Land Cover/Land Use, Image Processing

ABSTRACT:

The risk of flooding due to runoff is a major concern in many areas around the globe and especially in Romania. The modern management of spatial data related of river flooding largely relies on the functional facilities supplied by the Geographic Information System (GIS) info-layers, combined with Earth Observation (EO) data-derived information, Digital Elevation Models (DEM) and hydrological modeling. The paper assumes this multidisciplinary approach, in view to establish a methodology, which should further allow the elaboration of products useful for flooding risk analysis, such as: more accurate updated maps of land cover/land use, comprehensive thematic maps at various spatial scales with the extent of the flooded areas and the affected zones, maps of the hazard prone areas, etc. The supplying of the products, extracted directly from EO data or obtained after regrouping digitizing and integrating them in a GIS environment, has highly contributed to the elaboration of precise thematic maps at different scales, with corresponding generalizing levels. There are stressed the facilities supplied by the geo-referenced information and the satellite images to manage floodings during their characteristic phases: before, during and after floodings; accent is laid on the pre and post-crisis phases. The application was developed for the Arges hydrographic basin in Romania, a critical area, keeping in mind that it withholds many localities, including the capital and also important economic centers.

1. INTRODUCTION

Ever since the first satellite observations of the Earth, numerous studies have been achieved using information from the satellite systems and the facilities of GIS technology in the topic of managing flooding connected phenomena. Satellite images are objective information sources, available in time and relatively cheap, for the determination of parameters necessary to monitor and assess floods and their consequences (Wang et al., 1995).

The main contribution of EO derived information could be envisaged at the level of mapping aspects. EO satellites can provide information necessary to elaborate cartographic documents, important for hazard and vulnerability mapping. EO derived data are useful to locate, measure and spatially represent up-to-date information such as: flooded areas, parameters on vegetation, human presence and terrain properties, which are directly used in the decision - making process.

In order to obtain high-level thematic products the EO useful extracted data must be integrated with other non-space ancillary data (topographical, pedological, meteorological data) and hydrologic/hydraulic models outputs. So, the management of data helping to monitor the generated high floods largely relies on an integrated approach using the functional facilities supplied by the GIS (Harms et al., 1996).

This approach may be used in different phases of establishing the sensitive areas such as: the management of the database - built up from the ensemble of the spatially geo-referenced information; the elaboration of the risk indices from morpho-hydrographical, meteorological and hydrological data; the interfacing with the models in order to improve their compatibility with input data; recovery of results and the possibility to work out scenarios; presentation of results as synthesis maps easy to access and interpret, additionally adequate to be combined with other information layouts resulted from the GIS database.

2. STUDY AREA – THE ARGES BASIN

The study area represented by the Arges hydrographic basin is affected by flooding as ascertained by the frequency of these phenomena: 1972 - 1973, 1975, 1979, 1983, 1991, 1997, 1998. This area is so much the more critical one, considering that it comprises the capital, as well as several other important economic centres. As regards the results damages, the high flood of March 29 - April 10 1997, alone affected nearly 600 households and annexes, over 4000 ha of arable land, 4 bridges, more than 40 footbridges and 40 Km of roads, with important hydrotechnical along constructions.

Situated in the south of the country, the Arges river, its tributaries included, constitutes one of the most important hydrographic basin in the country with respect to its hydro-energetic potential and the water supplies of the industrial centres and crop lands. Through the position it occupies in a physico-geographic ensemble with specified characters, with a moderate continental climate, sufficiently humid in the mountain areas and drier in the plain, is playing a large variety of the relief and lithology, the Arges river hydrographic basin has a complex hydrological regime.

3. STRUCTURE, ATTRIBUTES AND FUNCTIONS OF GIS DATABASE

The database was structured as an ensemble of file-distributed quantitative and qualitative data.

Organizing the files was focused on a relational structure as information thematic layouts. With this approach, spatial objects may be described through three main property classes: those determining the objects position on the Earth surface, those establishing spatial relations with other objects and those referring to the spatial objects attributes.

Coding the existing relationships between spatial entities was performed with the help of facilities supplied by the complete topology of the PC ARC/INFO software. The achievement was viewed of a database apt to allow elaborating indices of hydrological risk to flooding, made up of information associated to three main criteria:

- morphology and topography: hydrographic network, dams and channels network, subbasins, confluence order; hydrographic and/or drainage network density; mean slopes of the sub-basins; mean slopes in different river sections;
- land cove/land use: land impermeability, insoil water resilience to infiltration;
- vulnerability to flooding: communication ways network (highways, railroads), localities, meteorological, hydrometric stations network and rain measurement points network.

GIS database info-layers have been divided in three large categories:

- those relative static (land topography and altimetry, basin and sub-basin boundaries, the communication ways network, the localities, the network of meteorological and hydrometric stations);
- those with specific dynamic characteristics which required periodical updates, with frequencies of the order of year (land cover/use, hydrographical network, the network of dams and canals);
- those determined by particular events.

The database was connected so as to allow obtaining synthetic representations of the hydrological risk for the Arges basin, through using the risk parameters separately or combined. For instance, there can be considered the mean slopes of the mountainsides, the insoil water absorption, the water resilience to infiltration and the vulnerability degree. The advantage consists in that the system allows greater parameters combination diversity, allotted with various weights, associated to the mentioned three main criteria.

4. ELABORATION OF PRODUCTS FOR FLOODING RISK ANALYSIS

Within the framework of flood surveying, optical and radar satellite images can provide up-to-date geographical information. Integrated within the GIS, flood derived and landscape descriptive information are helpful during their characteristic phases of the flood (Tholey et al., 1997) :

- before flooding, the image enables the description of the land cover of the studied area under normal hydrological conditions;
- during flooding the image data set provide information on the inundated zones, flood map extent, flood's evolution;
- after flooding, the satellite image point out the flood's effects, showing the affected areas, flood deposits and debris, with no information about the initial land cover description unless a comparison is performed with a normal land cover description map or with pre-flood data.

The products useful for flooding risk analysis, referred to: accurate updated maps of land cover/land use, comprehensive thematic maps at various spatial scales with the extent of the flooded areas and the affected zones, maps of the hazard prone areas.

4.1 EO data processing and analysis

Optical (LANDSAT-TM, IRS-PAN/LISS, SPOT-AN/XS) and radar satellite data (RADARSAT) have been used to perform the

analysis for inventory purposes and different kind of flood related thematic information.

A series of specific processing operations for the images were performed, using the ERDAS Imagine software; geometric correction and geo-referencing in the stereographic 70 map projection system (using control points on the 1/50 000 scale map), image improvement (contrast enhancing, slicking, selective contrast, combinations between spectral bands, resampling operation), statistic analyses (for the characterization of classes, the selection of the instructing samples, conceiving classifications).

Optical high resolution data have been used to perform the analysis for the inventory purposes under normal hydrological conditions as well as for determining the hydrographic network. The radiometric information contained in these the derivation images allows of both biophysical criteria and those from human activity. through supervised standard classification methods advanced or segmentation of specific thematic indices. Once these geographical extracted. information coverages were integrated within the GIS for further water crisis analysis and management.

The interpretation and analysis of remotely sensed data in order to identify, delineate and characterize flooded areas was based on relationships between physical parameters such as reflectance and emittance from feature surface: located on the reflectance and/emittance decreases when a water layer covers the ground or when the soil is humid; also reflectance and/emittance increases in the red band because of the vegetation stress cause by moisture; reflectance and/emittance changes noticeably when different temperatures, due to thick water layer are recorded.

In the microwave region the water presence could be appreciated by estimating the surface roughness, where water layers smooth surfaces dielectric constant is then heavily correlated to soil water content. In case of radar images the multitemporal techniques was considered to identify and highlight the flooded areas. This technique uses black and white radar images of the same area taken on different dates and assigns them to the red, green and blue colour channels in a false colour image. The resulting multi-temporal image is able to reveals change in the ground surface by the presence of colour in the image ; the hue of a colour indicating the date of change and the intensity of the colour the degree of change. The proposed technique requires the use of a reference image from the archive, showing the « normal » situation.

4.1.1. The land cover/land use mapping: The methodology for the achievement of the land cover/land use from medium and high-resolution images developed within the Remote Sensing & GIS Laboratory of NIMH (Stancalie et al., 2000), is based on the observation of the following requirements:

- the structure of this type of information must be at the same time cartographic and statistic;
- it must be suited to be produced at various scales, so as to supply answers adapted to the different decision making levels;
- up-dating of this piece of information must be performed fast and easily.

The used methodology implies following the main stages below:

- preliminary activities for data organizing and selection;
- computer-assisted photo-interpretation and quality control of the obtained results;
- digitisation of the obtained maps (optional);
- database validation at the level of the studied geographic area;
- obtaining the final documents, in cartographic, statistic and tabular form.

Preliminary activities comprise collection and inventorying of the available cartographic documents and statistic data connected to the land cover: topographic, land survey, forestry, and other thematic maps at various scales.

To obtain the land cover map, images used must have a fine geometrical resolution and rich multispectral information. That is why the data preparation stage consisted in merging data obtained from the panchromatic channel, which supply the geometric fineness (spatial resolution of 5 m for the IRS, 10 m for the SPOT), with the multispectral data (LISS for IRS, XS for SPOT), which contain the multispectral richness.

The computer-assisted photo-interpretation finalizes in the delimitation of homogeneous areas from images, in their identification and within framing а class of interest Discriminating and identifying the different land occupation classes rely on the classical procedures of image processing and leads to a detailed management of the land cover/land use, followed by a generalizing process, which includes:

- identification of each type of land occupation, function of the exogenous data, of the "true-land" data establishing a catalogue;
- delimitation of areas suspected to represent a certain unity of the land;
- expanding this delimitation over the ensemble of the image areas, which display resembling features.

Validation of results from photo-interpretation, mapping (by checking through on land sampling at local and regional level) and building up the database aims at knowing the reliability level and the precision obtained for the delimitation of the units and their association to the classes in the catalogue.

The satellite based cartography of the land cover/land use is important because it makes possible periodical updating and comparisons, and thus contribute to characterize the human presence and to provide elements on the vulnerability aspects, as well as the evaluation of the impact of the flooding.

The figure 1 presents the updated land cover/land use maps (7 main classes) for a test area situated in the middle section of the Arges basin, characterized by a large variety of the land cover/use classes. The product was obtained using IRS/PAN and IRS/LISS images from 9 April and 23 September 1999.

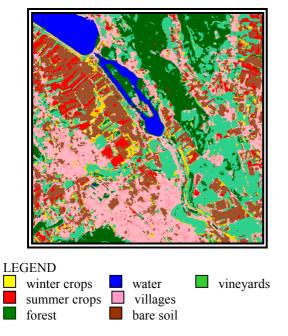


Figure 1. The land cover maps for the test-zone in the Arges basin, obtained from IRS images.

4.2 Methodology for the flooding risk maps preparation

The assessment of the flooding risk hazard requires a multidisciplinary approach; coupled with the hydraulic modelling, the contribution of geomorphology can play an exhaustive and determining role using the GIS tools.

In order to obtain the flood risk map for the test-area, a important step refers to construction of the DTM and its integration, together with the land cover/land use maps in the GIS using a common cartographic reference system.

The DEM was realized after the following steps:

- scanning the maps. 12 plans at 1:5000 scale and 3 topographic maps at 1:25000 were scanned at 300 dpi resolution;
- geo-referencing the maps. The scanned images were geo-referenced in STEREO 70 projection;
- colour separation. Each raster information layer is extracted as a linear image (black & white without gray tones;
- vectorization of raster images.
- merging the maps;

- generating a triangulated irregular network (TIN) model.

In a TIN the point density on any part of the surface is proportional to the variation in terrain. A surface is a continuous distribution of an attribute over a two-dimensional region. TIN represents the surface as contiguous nonoverlapping triangular faces. The surface value is estimated in this way for any location by interpolation polynomial) simple (or of elevation in a triangle. As elevations are irregularly sampled in a TIN, it is possible to apply a variable point density to areas where the terrain changes sharply, yielding an efficient and accurate surface model. A TIN preserves the precise location and shape of surface features.

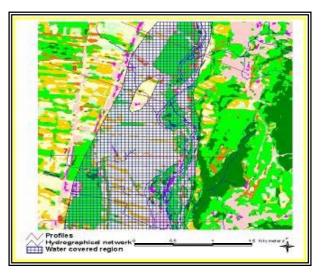


Figure 2. The risk map for the test-zone in the Arges basin

Various morphological criteria may be extracted from a DEM, designed using topographical maps and geodetic measurement criteria, such as altitudes, slopes, exposures, transversal profiles and thalweg locations. All these parameters are useful to evaluate the local or cumulated potential flowing into a zone of the basin. This approach is also useful to get a realistic simulation of floods, taking into account the terrain topography, the hydrological network and the water levels in different transversal profiles on the river, obtained from the hydraulical modelling.

Using the GIS database that include the DTM, the land cover/land use maps and the vector info-layers (hydrographical, dams and canals networks, the communication and localities network etc) several outputs of hydraulic simulations (with different flood probability) could be superimposed in order to elaborate the risk maps to flooding.

In the figure 2 an example of a risk map for a test area of the Arges basin is presented.

5. CONCLUSIONS

Considering the necessity to improve the means and methods to assess and monitor flooding, the paper presents the capabilities offered by remotely sensed data and GIS techniques to manage flooding and the related risk. The applications were developed on the Arges basin in Romania.

Although satellite sensors cannot measure the hydrological parameters directly, remote sensing can supply information and adequate parameters to contribute to identify and map the hydrological risk at the basin level (Puyou-Lascassies et al., 1996).

The basic concepts of the creation of products useful for flooding risk analysis (maps of land cover/land use, thematic maps of the flooded areas and the affected zones, flooding risk maps) can be summarized in the following stages:

- preparation of the EO data: radiometric, geometric correction and other basic image processing;
- combination of the interpretation techniques: automated and photointerpretation tools, as well as radiometric techniques;
- multi-sensor approach: make the analysis process easier and provide the opportunity to improve the quantity and quality of the information obtained;
- multi-temporal approach: gives the possibility to monitor low frequency (land modification) and high frequency

phenomena (evolution of the floods boundaries);

- integrated approach: the high level products are based on the EO derived information combined with other ancillary data, hydrologic/hydraulic models outputs using the GIS facilities.

REFERENCES

Harms J., Massue J.P., Tarel G., Pirre G., Petit J.C., Meyer-Roux J. and Cinotti C., 1996. Use of space technologies for major risks management. In: *Proc. of the 16-th Symposium: Integrated Applications for Risk Assessment and Disaster Prevention for Mediterranean*, EARSel Publications, pp84.

Puyou-Lascassies Ph., Harms J., Lemonnier H. and Cauzac J.P., 1996. Evaluation de contribution des moyens spatiaux a la gestion du risque d'inondation. *Projet de demonstration*, SCOT Conseil, pp. 54.

Stancalie G., Alecu C., Catana, S., Simota M. 2000. Estimation of flooding risk indices using the Geographic Information System and remotely sensed data. In: Proc. of the XX-th Conference of the Danubian Countries on hydrological forecasting and hydrological bases of water management, Bratislava (on CD).

Tholey N., Clandillon S, Fraipont P., 1997. Flood surveying using Earth Observation Data. In: *Proc. of the Eurisy Colloquim "Earth Observation and the Environment: benefits for Central and Eastern European Countries*", Budapest, pp. 77 – 88.

Wang Y., Koopmans B. and Pohl C., 1995. The 1995 flood in The Netherlands monitored from space – a multisensor approach. International *Journal of Remote Sensing*, vol. 16, pp. 2735 – 2739.