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ABSTRACT: 
 
In modern geospatial applications object extraction becomes increasingly part of larger cycles of GIS updates. In such update cycles, 
the objective is to compare new information to older one, and to identify changes that occurred in the meantime. In this paper we 
present an image-based GIS updating framework and corresponding image analysis algorithms developed by our group to automate 
GIS updates. More specifically, we present an overview of our work on two different types of objects to be extracted and monitored, 
roads and buildings, and the corresponding algorithms, namely differential snakes and differential template matching. Our approach 
to both problems is characterized by the comparison of a new image to pre-existing information through an automated image analysis 
tool. This is equivalent to comparing an object as it is represented in an image to the same object represented in a GIS at a prior 
instance, setting up a novel matching problem, whereby an object is compared to itself to identify how it has changed. For both roads 
and buildings our algorithms make use of accuracy estimates accompanying the pre-existing information, to ensure the meaningful 
update of geospatial databases. Making use of these accuracy measures we differentiate change detection and versioning. In this 
paper we present an overview of theoretical issues behind our algorithms and experimental results from the developed software 
solutions.  
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1. INTRODUCTION 

Object extraction from digital imagery is a key operation for 
modern geospatial applications. The evolution of the current 
state-of-the-art among digital image analysis and computer 
vision activities on the subject of automated object extraction 
from digital aerial and satellite imagery may be found in 
Suetens et al. (1992), Gruen et al. (1997), and Lukes (1998). 
Attempting to summarize the current state-of-the-art in this area 
we could point out that currently existing solutions are semi-
automatic, with a human operator providing manually 
approximations of the location and shape of the object to be 
extracted. Then, an automated algorithm uses these 
approximations to precisely delineate the object’s outline, or 
centerline as might be the case in roads.  
 
In modern geospatial applications object extraction becomes 
increasingly part of larger cycles of GIS updates. In such update 
cycles, the objective is to compare new information to older 
one, and to identify changes that occurred in the meantime. In 
this paper we present an image-based GIS updating framework 
and corresponding image analysis algorithms developed by our 
group to automate GIS updates.  
 
More specifically, we present an overview of our work on two 
different types of objects to be extracted and monitored: roads 
and buildings (and similar structures). Our approach to both 
problems is characterized by the comparison of a new image to 
pre-existing information through an automated image analysis 
tool. This is equivalent to comparing an object as it is 
represented in an image captured at instance T to the same 

object represented in a GIS at T-dt. This sets up an interesting 
matching problem, whereby an object is compared to itself, to 
identify how it has changed. The algorithms we developed to 
support this type of differential image analysis make use of 
accuracy estimates accompanying the pre-existing information, 
to ensure the meaningful update of geospatial databases. This 
allows the differentiation of change detection from versioning, 
an important distinction to improve information flow within 
modern geospatial databases. 
 
In this paper we present an overview of the theoretical issues 
behind the algorithms we developed to monitor roads and 
buildings. Regarding roads, we have extended the model of 
deformable contour models (snakes) to function in a differential 
mode, producing the concept of differential snakes. Regarding 
buildings, we have developed differential application of 
template matching to compare the content of an image to the 
record of a building in an older GIS database and identify 
changes in it.   
 
The paper is organized as follows. In Section 2 we present our 
view of image-based change detection and versioning. In 
Section 3 we present an overview of our work on differential 
snakes for the updating of road segments. In Section 4 we 
present an overview of our work on differential template 
matching to update building outlines. Experimental results form 
our algorithms are presented in Section 5, and concluding 
remarks are presented in Section 6.  
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2. IMAGE-BASED CHANGE DETECTION 

Image-based change detection processes typically proceed in 
two steps. First, a complex algorithm (e.g. snakes, template 
matching) is used to identify objects in a new image. Then, the 
GIS database is updated by comparing the newly extracted 
outline to the prior recorded information. If the new outline is 
different, we commonly proceed by using it to replace the older 
information and thus update the database. In this context, 
information is treated as deterministic in nature: any difference 
between the two outlines is considered as change. This often 
results in storing multiple slightly different representations of an 
object, even though this object has actually remained 
unchanged.  
 
We aim to remedy this problem by integrating object extraction 
and change detection in a single process. It is meant to function 
within an integrated geospatial environment, whereby image 
analysis proceeds by having access to pre-existing information 
for the processed area. We assume a process where a new image 
is analyzed to determine changes in and update the existing GIS 
of a specific area. Within this environment pre-existing GIS 
information provides us with shape information for geospatial 
objects (e.g. roads, buildings) and accuracy estimates for this 
information. This prior information may have been produced by 
prior image analysis processes (exploiting older imagery), or by 
any of the other established methods to collect GIS information 
(e.g. traditional surveying processes).  
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Figure 1: GIS updating process  

 
A schematic overview of our process is described in Fig. 1. As 
mentioned above we make use of pre-existing object outline 
information. The older outline is projected onto the new image, 
using standard orientation parameters and relevant 
transformations. Once projected onto the new image, we 
proceed with differential image analysis, whereby the older 
outline together with its accuracy information becomes the 
input for a GIS update cycle. This update cycle comprises two 
processes: 

• a mandatory change detection process, whereby we 
identify any parts of an object that have changed since its last 
record, and 
• an optional versioning process, whereby we replace an 
otherwise unchanged object (or object segment) by a higher 
accuracy version of it, if the current imagery so permits.  

The results are used to update the GIS information for this 
object by modifying its outline and/or updating its uncertainty 
estimates.  
 
Following common practice in computer vision, we have 
developed two distinct differential analysis algorithms for 
smooth curvilinear (e.g. roads, rivers) and regularly shaped (e.g. 
buildings) objects. Details of these two algorithms are presented 
in the following two sections.  
 
 

3. DIFFERENTIAL SNAKES FOR ROAD UPDATES 

Deformable contour models (a.k.a. snakes) have been developed 
in the computer vision community as object extraction tools 
(Cass et al., 1987). In its numerical solution the snake is 
represented by a polygonal line, defined by nodes and segments 
connecting these nodes. The geometric and radiometric 
relations of these nodes are expressed as energy functions, and 
object extraction becomes an optimization problem (see e.g. 
(Williams & Shah, 1982) for an appropriate optimisation 
algorithm). 

 
In a traditional snake model the total energy of each snake point 
is expressed as: 
 
Esnake = α⋅Econt + β⋅Ecurv + γ⋅Eedge           (1) 

 
where : Econt , Ecurv are energy terms expressing first and second 
order continuity constraints (internal forces); Eedge is an energy 
term expressing edge strength (external force); and α, β, γ are 
(relative) positive weights of each energy term. For brevity we 
avoid further analysis of the snakes model here. The reader is 
referred to (Cass et al., 1987) and sub-sequent publications of 
these researchers for further details on the formulation of these 
parameters.  
 
To support change detection we expand the traditional snake 
model to perform a comparison of the current image content to 
the prior outline projected on it (and its uncertainty measures) 
instead of standard object extraction. We use the term 
differential snakes model to refer to this model, as it is used to 
identify differences. In this differential model, the snake 
solution is constrained not only by the radiometric and 
geometric terms of Eq. 1, but also by the pre-existing 
information. We accomplish that by expanding Eq. 1 to 
introduce an additional energy term Eunc and a corresponding 
(relative) weight δ: 
 
Esnake = α⋅Econt + β⋅Ecurv+γ⋅Eedge + γ⋅Eedge + δ⋅Eunc            (2) 

 
The additional energy term Eunc describes the discrepancy 
between the current snake solution and the pre-existing 
information. It has an effect similar to that of a spring attracting 
the current snake solution towards its prior record. Change is 
detected if and only if the gray value content of the new image 
supports the notion that the object has moved beyond the range 
of attraction of its older record, breaking its spring-like effect. If 
the new image content is only suggesting a small move within 
the limits of the older information’s attracting force we do not 
detect change. In this case, the spring-like force will keep the 
snake in its earlier location, avoiding the extraction of yet 
another version that does not differ statistically from its older 
version.  



 

 
3.1 Modeling Uncertainty 

The above presented differential snakes model is making use of 
expressions of the uncertainty with which information can be 
extracted from an image. To model this type of uncertainty we 
use a method based on fuzzy logic.  
 
Uncertainty information resides implicitly in the values of snake 
energy Et  and the rate of energy change (DEt) along a road 
segment. The analysis of these values at various locations along 
the snake contour describes how well the extracted contour 
approximates an ideal road model (as it is expressed by Eq. 1) at 
these points. More specifically, we use snake energy 
information to generate uncertainty values (U) using fuzzy 
linguistic rules. One can select various sets of linguistic values 
to express the range of energy, uncertainty, and energy rate 
values. In our approach we use: Et={low, medium, high}, 
DEt={low, medium, high}, and U={low, medium, high}, with 
each membership function following a Gaussian shape. A fuzzy 
rule base is the generated, expressing the interrelationship 
between energy, energy gradients and uncertainty. A sample 
from this fuzzy rule base is: 

• If Et is LOW and DEt is LOW, then U is LOW 
Through this analysis we can assign uncertainty estimates to all 
points along an extracted outline. The uncertainty coefficients 
(in the range 0-1) are saved together with the coordinates of the 
points. By multiplying an uncertainty coefficient by a global 
accuracy measure we obtain pixel accuracy measures for points 
along a snake. The global accuracy measures are expressions (in 
pixel units) of the expected accuracy in extracting a linear 
object from a specific image. 
 
The additional energy term of Eq. 2, describing the effect of 
prior information (and its corresponding measures of 
uncertainty), is expressed conceptually as: 
 
Eunc = f [Unc(v0i),d]        (3) 
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Figure 2: Uncertainty energy (Eunc) diagram 

 
This additional energy term at a specific point is a function of 
the uncertainty with which we know the corresponding prior 
information (Unc(v0i)), and the distance (d) of the current point 
from the older outline. Drawing from physics we define this 
energy term to be proportional to the distance between the 
current solution and the prior outline, inversely proportional to 
the corresponding uncertainty of the older outline, and acting 
within a threshold Di. Beyond the threshold, this energy 
component is cancelled. In mathematical terms, this energy 
function is given by the set of equations: 
 

Eunc = [1 / Di⋅Unc(vOi)]⋅d    (if d < Di)            (4) 
Eunc = 0    (if d > Di) 

 
where Unc(v0i) and Di are as defined above, and d is the 
distance between current point (vi) and original outline. The 
diagram of this function is shown in Fig. 2.  
Based on this modeling of uncertainty energy, when prior 
information is known with high uncertainty (low accuracy), its 
equivalent force is small but operates over a rather large 
interval. When it is known with low uncertainty (high 
accuracy), its equivalent force is strong but operates over a short 
interval. 

 
The threshold Di is a parameter that defines the neighborhood 
over which the prior information is actively affecting the current 
object extraction process. Its statistical meaning is equivalent to 
the selection of confidence intervals in statistical analysis (e.g. 
selecting a global interval Do for a complete curve to be equal to 
3 times the standard deviation of our solution). Accordingly, the 
local evaluation Di of this parameter can be defined at each 
location along an outline as: 
 
Di = Do ⋅ Unc(vOi)       (5)
 
where Unc(v0i) = local uncertainty value, in the range (0,1),  
and D0 = global threshold. A more detailed description of the 
differential snakes model may be found in (Agouris et al., 
2001b).  
 
 

4. DIFFERENTIAL TEMPLATE MATCHING 

While the differential snakes method presented in section 3 
above is suitable for roads and other curvilinear smooth objects, 
it does not support operations on buildings and other similar 
objects. The outlines of such box-like objects violate the 
smoothness criteria of Eq. 1, forcing the extracted outlines to 
overshoot corners. Accordingly, we have developed a technique 
that makes use of least squares template matching to detect 
changes in buildings.  
 
Our change detection method employs least squares matching 
for the detection and tracking of edges in digital images. Using 
prior information we generate a window depicting an edge 
pattern, and introduce it as a reference template. This reference 
template will be matched to digital image patches in the vicinity 
of actual edge segments. The concept behind the method is 
simple yet effective: by matching the edge template window to 
an image window, we can identify edge locations in the image 
as conjugate to the a priori known template edge positions 
[Gruen & Agouris, 1994]. 
 
Assuming f(x,y) to be the reference edge template and g(x,y) to 
be the actual image patch, a matching correspondence is 
established between through least squares matching, 
observation equations can be formed relating the gray values of 
corresponding pixels, and they are linearized as: 
 
f(x,y)-e(x,y) = go(x,y)+[fgo(x,y)/fx]dx+[fgo(x,y)/fy]dy   (6) 
 
The derivatives of the image function in this equation express 
the rate of change of gray values along the x and y directions, 
evaluated at the pixels of the patch. Depending on the type of 
edge, the geometric relationship describing the two windows 
may be as complex as an affine transformation, or as simple as a 
simple shift and/or rotation. Regardless of the choice of 



 

geometric transformation, the resulting observation equations 
are grouped in matrix form as: 
 
-e = AX-l ;    P    (7) 
 
In this system, l is the observation vector, containing gray value 
differences of conjugate pixels. The vector of unknowns x 
comprises the shift at the x direction, while A is the 
corresponding design matrix containing the derivatives of the 
observation equations with respect to the parameters, and P is 
the weight matrix. A standard east squares solution allows the 
determination of the unknown parameters as: 
 
X = (ATPA)-1ATPl    (8) 
 
While the above formulas reflect a standard template matching 
method, our problem introduces certain challenges. Indeed, 
comparing templates of the same object in various time 
instances and often captured by different cameras introduces 
large amounts of noise. In order to optimize the performance of 
our template matching method, we have to minimize the effect 
of radiometric variations among the two images (e.g. due to 
noise, differences in general histogram properties, or even 
different resolutions). Towards this goal we have developed a 
technique that analyses the content of matching windows to 
identify edges in them and assign higher weights to these 
locations (Agouris et al., 2000). This allows the solution of Eq. 
8 to focus mostly on the information conveyed by outlines and 
thus be less susceptible to changes in common radiometric 
variations.  
 
The variance-covariance matrix ΣX of the solution of Eq. 8 
expresses the error in locating the object’s outline, and can be 
used to differentiate between change detection and versioning in 
a manner similar to the process outlined in the previous 
segment. A more detailed description of our differential 
template matching approach for change detection in buildings 
may be found in (Agouris et al., 2000). 
 
 

5. EXPERIMENTS 

The differential image analysis methods presented in this paper 
has been implemented in a PC, using Matlab. Fig. 3 and 4 
present the application of our differential snakes technique to 
update road segments. In Fig. 3 we can see a prior record of a 
road’s outline projected onto th enew image. In this specific 
application the outline was extracted from an older image using 
a snake solution, and points 1-5 are nodes from that snake 
solution. Of course, prior information may have been extracted 
with any of available techniques, and then points along the 
outline may be selected using any type of sampling technique. 
The circles around the nodes of Fig. 3 are a visualization of the 
corresponding accuracy measures. It is easy to see that nodes 1 
and 2 are available with higher accuracy than nodes 3-5.  
 
Fig. 4 shows the result of change detection (top) and versioning 
(bottom) for the data of Fig. 3. By comparing these figures it 
can be easily seen how the new road segment (as captured in the 
image) lies within the threshold of nodes 3-5, but clearly 
beyond the threshold of nodes 1 and 2.   Accordingly, during 
change detection nodes 1 and 2 move to the correct location and 
this change is recorded (dashed line in Fig. 4 top). 
Subsequently, nodes 3-5 are moved during versioning, to 
improve the accuracy of the recorded outline. The result of 
versioning is marked as dashed line in Fig 4 bottom. Together, 

change detection and versioning comprise a complete updating 
process for this road segment.  
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Figure 3: Pre-existing information (outline and accuracy 

information) projected onto a new image window. 
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Figure 4: The results of change detection (top) and versioning 

(bottom). 

In our applications, the average time required to perform change 
detection for a typical road segment was 2.1 sec, while 
versioning required 0.6 sec, for a complete cycle requirement of 
less than 3 sec per road segment (using a 1.1GHz processor). 
When proceeding with a node redistribution process to best 
describe the geometric complexity of the extracted outline 



 

(Agouris et al., 2001a) we can expect an additional 0.4 sec in 
computational time per segment.   

Fig. 5 shows an application of differential template matching to 
update a building outline. An older outline has been projected 
onto a new image. The lower part of the figure shows a zoomed 
window of the shaded area of the top. We can see that the older 
outline (thick black line) did not include the new addition (at 
the bottom left of the figure). Our algorithm proceeded by 
checking points along the outline as indicated by the check 
marks and crosses in Fig. 5. A check mark indicates a successful 
match (where established that nothing changed), while a cross 
indicates a failure (and therefore marks change). We can see 
crosses marking correctly the part of the older outline where the 
new wing was added. The spacing of the points to be checked 
along the outline depends on the resolution of change that we 
are after. It also affects in an obvious manner the time required 
to perform this differential analysis process. For the set-up of 
Fig.5 the time required to complete the process was 
approximately 1 minute.  
 

 
Figure 5: Application of differential template matching for 

building updating.  

 
6. CONCLUSIONS 

The accelerated rate of change of modern environments is 
bringing forward the need for frequent updates of GIS 
databases. Digital imagery is highly suitable for this task, as 
advances in sensors and platforms have expanded its availability 
to unprecedented levels of spatial and temporal coverage. In this 
paper we presented an image-based GIS updating framework 
and corresponding image analysis algorithms developed by our 
group to automate GIS updates. They can handle both smooth 
curvilinear features (like roads) and regularly-shaped ones (like 
buildings). Our approach is characterized by the comparison of 
a new image to pre-existing information through an automated 
image analysis tool. 
 

By making use of pre-existing information in the form of 
outlines and accuracy estimates we establish a fully automated 
updating process. This allows us to update the record of a road 
segment in less than 5 seconds, and to examine a complete 
building outline in approximately 1 minute. We are also able to 
differentiate between change detection and versioning, 
eliminating the confusion caused by the recording of numerous 
slightly different records of an object that has actually remained 
unchanged. We are currently working on integrating our 
techniques with work on scene similarity metrics to support the 
updates of abstract GIS views, and on extending the application 
of the techniques presented here to handle moving objects. 
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