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ABSTRACT:  

The most crucial but difficult task in the analysis of the risk due to landslide hazard is the estimation of the conditional probability of 
the occurrence of future landslides in a study area within a specific time period given the presence of spatial and geomorphologic 
features.  This contribution explores a modeling procedure for estimating that conditional probability.  The procedure proposed 
consists of two steps.  The first step is to divide the study area into a number of “prediction” classes according to the hazard level for 
the likely occurrence of future landslides.  “Favourability Functions” based on the spatial and geomorphological data in the study 
area were used for the sub-division.  The number of the classes is dependent on the quantity and quality of the input data.  Each class 
represents a level of hazard with respect to the future landslides.  We term it the “hazard-mapping step”.  For this step, several 
quantitative models have been developed and the strategy is to reconstruct the typical settings in which the future landslides are 
likely to occur.  The second step is to empirically estimate the conditional probability in each prediction class given the spatial and 
geomorphologic data based on cross- validation techniques.  For the second step, termed the “probability estimation step” the basic 
strategy of the cross-validation is to construct the prediction classes in the first step using the occurrences of the landslides from the 
first time-period and then to compare the prediction classes with the distribution of the landslide occurrences from the later time 
period.  The statistics obtained from the comparison provides the crucial quantitative measure to estimate the conditional probability.  
We illustrate the modeling procedure using a case study, La Baie, Quebec in Canada. 

 

1.  Introduction 

For a given study area, geomorphologists, experts 
in surficial earth processes have traditionally constructed a 
landslide hazard map identifying areas likely to be affected 
by future landslides.  It has been achieved by 
geomorphological understanding of the area through aerial 
photographs and field works.  The hazard map is usually 
derived from geomorphological maps containing the basic 
geomorphological characteristics of landforms and it 
includes a systematic inventory of the past landslides 
(Panizza et al, 1998).  On the other hand, quantitative 
geomorphologists and civil engineers have constructed a 
slope stability map based on deterministic models by 
studying and interpreting the physical processes of landslides 
using slope angles, soil cohesion, water saturation capacities, 
shearing resistance and etc.  Each point in the stability map 
shows a level for “the safety factor of slope failure” of the 
unit area surrounded the point (Terlien et al, 1995). 

While the hazard maps from geomorphological 
maps usually show three or five levels of hazard, the slope 
stability maps are shown the level for the safety factor in a 
continuous scale.  These prediction maps representing both 
the hazard and the slope stability maps are generated for 
guiding the decision makers for land-use planning.  The 
difficulty facing the land-use planners is how to interpret the 
hazard levels.  For example, if only a small sub-area has been 
assigned as “extreme hazard class” in a hazard map or has 

consistently extreme values for the safety factors of slope 
failures in slope stability map, then it may be relatively easy 
to make a decision not to allow any types of economic and 
human activities, the economic sterilization by the ban may 
outweigh the possible future damage due to the occurrences 
of future landslides in that small sub-area.  However, if a 
sub-area is classified as “high hazard class” or has a high 
value for the safety factor in a relatively large sub-area, then 
although it obviously indicates that the sub-area is possibly 
be affected by a future landslide, the decision of what to do 
with the sub-area becomes much more difficult, because the 
decision makers must compare the economic sterilization 
with the possible damage.   

What the decision makers want to have from the 
hazard maps or the slope stability maps is not only the 
relative levels of hazard but also the estimates of the 
probabilities of the occurrences of future landslides in any 
given points under certain future scenarios such as a number 
of future landslides are going to be occurred in the study area 
within the next 30 years.  If we have such estimates of the 
probabilities, then based on a cost-benefit analysis the 
decision makers can quantitatively compare the economic 
sterilization with the possible damage under the assumptions 
of the scenarios, and hence make a learned and an informed 
decision, rather than an emotional or a “gut-feeling” 
decision. 

We have adapted a two-step approach proposed by 
Chung (2002) to tackle the problem of estimating the 
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probability of the occurrence of future landslide given 
geomorphological information on a sub-area under an 
assumption of a scenario.  The first step is to construct a 
hazard map with a number of hazard classes as similarly 
done by the geomorphologists or civil engineers. Then the 
second step is to estimate the probability in each class given 
a scenario.  Depending on the availability of the input data 
set with respect to the locations and timings of the past 
landslides, it may not be possible to estimate the probabilities 
of the occurrences of future landslides under certain 
scenarios (Chung, 2002).   

The basic strategy is that the occurrences of the 
past landslides in the study area are first divided into 
mutually exclusive two groups.  One group is used to build a 
prediction model, which will generate a prediction map 
showing several levels of prediction classes.  Counting the 
landslides in the other group in the prediction classes of the 
prediction map, we estimate the conditional probabilities of 
the occurrences of the future landslides in the prediction 
classes. 

Consider a study area with m layers of spatial data.  
Each layer consists of several non-overlapping thematic 
classes such as soil types or observations of a continuous 
measurement such as slope angle, which represent coverage 
of “one theme” known to correlate spatially and genetically 
with the type of landslides under study.  At each pixel in the 
study area, m values are observed, one value representing the 
thematic classification of the pixel or a continuous 
measurement at the pixel for each layer.  Using these m 
values at the pixel, we wish to construct a prediction model, 
which measures the hazard of future landslides at the pixel.   

 Several favourability function models (Chung and 
Fabbri, 1993, 1998, 1999, 2001, 2002) have been developed 
to tackle the prediction models.  To illustrate the proposed 
strategy, we have selected the likelihood ratio function model 
as the prediction model.  We have used a case study from La 
Baie area in Quebec, Canada (Chung and Perret, 2002).  

2.  Input spatial data matrix. 

Let A denote the study area.  Consider that we have 
m map-layers (causal factors) containing geomorphological 
information related to the occurrences of landslides in A.  
Each layer contains one particular causal factor such as 
surficial geological information or the slope angles.  In 
addition to the m map-layers, we also have the landslide 
map-layer containing the scars of the past landslides in A.  
When the landslide scars are rather small with respect to the 
map scale, we may have only the locations of the past 
landslides as points on the map rather than the polygons of 
the scars.  In each scar, geomorphologists typically delineate 
the scarp where the landslide is triggered.  Whenever we 
refer a landslide in this manuscript, we mean it as either the 
scarp or the point location of the landslide. 

For a quantitative study, we overlay a fine grid 
over A, such that each grid cell covers a small unit area.  The 
size of the unit area is depended on both the original input-
map-scales and the purpose of the study.  The size ranges 
typically from 5m x 5m to 50m x 50m on ground.  Each grid 
cell is termed a pixel.  For each map-layer, one data value, 
termed pixel value is assigned to each pixel.  Consider the 
case study of La Baie, Quebec.  The database typically 
contains the binary information on the past landslides, a 

number of thematic classification maps such as the bedrock 
geology, and DEM information.  From the database, a data 
matrix is constructed for quantitative analysis.  In the data 
matrix, for the landslide map-layer, Y, “1” is assigned to the 
pixel value, when more than 50% of a pixel is covered by a 
scarp of a past landslide.  Otherwise, “0” is assigned to the 
pixel value. 

A digital elevation model (DEM) containing three 
spatial information at each pixel: (i) slope angle; (ii) aspect 
angle; and (iii) elevation, was included in the input data 
matrix.  From the elevation contours, we usually obtain 
DEM. 

The input data matrix usually consists of two 
different types of spatial data: (i) categorical data layers such 
as geological map containing rock types, and (ii) continuous 
data layers such as slope angles.  Combining these two 
different types of data layers is one of the difficulties of 
constructing prediction maps. 

La Baie, Quebec Study area covers 10km x 6km.  
The image consists of 2000 x 1200 pixels and each pixel 
covers 5m x 5m in ground.  We have five layers of 
geomorphological information related to the landslides in the 
area.  It contains, (1) bedrock geology (12 rock types), (2) 
forest coverage (binary), (3) elevations, (4) aspect angles and 
(5) slope angles.  We have the locations of 22 landslides 
occurred in 1964 and 51 landslides occurred in two time-
periods, 1976 and 1996.  Seven of the latter 51 landslides 
were occurred in the same areas of the 22 landslides occurred 
in 1964.  The average size of the 73 landslides is 
approximately 15m x 15m covering 9 pixels.  Among 
2,400,000 pixels, 445, 164 pixels covered by the lake, the 
rivers were excluded in the study, and the remaining 
1,954,836 pixels were included in the study. For each 
variable, the autocorrelation of two pixels depends on the 
distance between two pixels. Every variable has a strong 
spatial characteristic. 

3.  Favourability function model for Step 1 

Consider that we have m map-layers containing the 
causal factors, which are known to correlate with the scarps 
of landslides in a study area A.  Consider a pixel i in A with 
m pixel values, X1(i) = c1, L , Xm(i) = cm, one for each 
map-layer, let Y(i) represent the presence (Y(i) = 1) or 
absence (Y(i) = 0) of a past landslide and let Z(i) represent 
the presence or absence of a future landslides at the pixel i. 

As discussed in Chung (2002), suppose that, for 
every pixel i ∈∈∈∈ A, we can construct a “favourability” 
function  g : 

g: (X1(i), L ,Xm(i)) →→→→ R,       (3.1) 

where R = )( ∞∞− ,  such that g(c1, L , cm) represents 
(or measures) a relative level of hazard of the ith pixel for 
given m pixel values, (c1, L , cm) for both past (Y(i) = 1) 
or future (Z(i) =1) landslides.  For the ith pixel, we rewrite 
g(c1, L , cm) as gi(Y=1 or Z=1 | c1, L , cm) instead. 

Then by computing iĝ (Y=1 or Z=1 | c1, L , cm) 
for every pixel in A, we can construct a hazard map for A. 



 

 

4.  Likelihood ratio function model for Step 1 

Suppose that the study area is divided into two 
non-overlapping sub-areas, the scarps and the remaining 
areas.  Suppose that the slope angles provide useful 
information to identify the scarps, and then the slope angle 
data of the scarps should have unique characteristics that are 
different from the data for the remaining areas.  This 
suggests that the frequency distribution functions of the 
scarps and the remaining areas should be distinctly different 
as illustrated in Figure 1(a).  The likelihood ratio function, 
which is the ratio of the two frequency distribution functions, 
can not only highlight this difference as illustrated in Figure 
1(b) but also be the favourability function satisfying all three 
conditions discussed in the previous section.   

To formalize the idea, let us consider a pixel p with 
m pixel values, c1, L , cm in the whole study area A 
consisting of two sub-areas, the scarps M and the remaining 
area M.   

 M : set of pixels from the scarps,  (4.1) 
M: set of pixels from the remaining area. 

Let f{c1, L ,cm | M } and f{c1, L , cm | M} be 
the multivariate frequency distribution functions assuming 
that the pixel is from M, and from M, respectively.  Then 
the likelihood ratio (Kshirsagar, 1972; Cacoullos, 1973, 
McLachlan, 1992) at p is defined as: M 
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For the slope angle whose distributions shown in 
Figure 1(a), the corresponding likelihood ratio function in 
logarithmic scale is illustrated in Figure 1(b).  The ratio in 
Figure 1(b) obviously displays significant differences. 

The discriminant analysis (Kshirsagar, 1972; Cacoullos, 
1973; Chung, 1975; Chung, 1977) consists of estimating the 
likelihood ratio function λλλλp(c1, L , cm ) in (2) based on the 
data from Table 1.  To apply discriminant analysis, we 
assume that: (i) all m layers are based on continuous 
observations, (ii) f{c1, L ,cm|M } and f{c1, L , cm| M} 
are the normal density functions.  Many statistical packages 
such as SPSS (SPSS, 1994) and S-Plus (Chambers and 
Hastie, 1992) provide solutions to the traditional discriminant 
analysis and the variation of the analysis.  We take the 
estimates of λλλλp(c1, L , cm ) in (4.2) as the favourability 

function iĝ (Y=1 or Z=1 | c1, L , cm) discussed in Section 
3.  We compute the estimates of λλλλp(c1, L , cm) for every 
pixel in the study area.  The pixel with the largest estimate is 
considered as the most hazardous sub-area for future 
landslides according to this discriminant model.  

When we consider several layers simultaneously in 
the study area, we now have m pixel values, c1, L , cm, at a 
pixel p.  The likelihood ratio at p is the same as shown in 
(4.2).  Suppose that the m layers provide “independent” sets 
of information over the scarps and the remaining area (i.e., 

we assume the conditional independence, as discussed Duda 
and et al. 1976; Heckerman, 1986; Spiegelhalter, 1986; 
Agterberg, et al. 1990; Chung and Fabbri, 1998), then (4.2) 
becomes, 
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The advantage of (4.3) over (4.2) is that it depends 
only on the univariate distribution function for each layer.  
The price of the advantage, however, is that the 
simplification requires the assumption of the conditional 
independence.  Using (4.3), combining two different types 
(categorical and continuous) of data layers becomes a trivial 
matter.   

 To obtain the corresponding empirical distribution 
functions for f{ci | M} and f{ci | M} from the data, we have 
employed the smoothed kernel method.  The estimator of the 
likelihood ratio is obtained by: 
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where 

}M|{ˆ,}M|{ˆ,},M|{ˆ},M|{ˆ
mm11 cccc ffff L

are the corresponding empirical distribution functions.  In 

this case, we take ),,(ˆ
m1p cc Lλλλλ in (4.4) as the 

favourability function iĝ (Y=1 or Z=1 | c1, L , cm).  For 

every pixel, we compute ),,(ˆ
m1p cc Lλλλλ .  The pixel with 

the largest estimate is considered as the most hazardous sub-
area for future landslides according to this model. 

Using the 66 locations of the 73 landslides 
occurred during the past 38 years (1964 – 2002) five layers 
of geomorphological information related to the landslides in 

the area, we compute ),,(ˆ
m1p cc Lλλλλ in (4.4) for each of 

1,954,836 pixels in the study area.  According to the rank 

order of ),,(ˆ
m1p cc Lλλλλ for 1,954,836 pixels, we have 

divided the study area into 1000 classes.  Each class contains 
1,955 pixels (covers approximately 0.05 km2).  1,955 pixels 

with the highest ),,(ˆ
m1p cc Lλλλλ  were assigned as the most 

hazardous predicted area in the study area.  These classes are 
shown in Figure 2.  As in the color legend consisting of 40 
color bars in Figure 2, each color bar represents 25 classes of 
the 1000 original classes.  The most hazardous 25 classes 
(48,871 pixels covers approximately 1.22 km2 or 2.5% of the 
study area) were shown as purple and the subsequent most 
hazardous 48,871 pixels were shown as pink in Figure 2.   

5.  Estimation of conditional probability – Step 2 

The first step is to construct a hazard map with a 



 

 

number of hazard classes as similarly done by the 
geomorphologists or civil engineers. The second step is to 
estimate the probability in each class given a scenario or 
assumptions.   

Let us take an example.  Suppose that we build a 
house of size 10m x 25m (250 m2) within the most hazardous 
class (covers approximately 0.5 km2) of the 1000 classes in 
Figure 2.  The next logical step is to estimate the conditional 
probability that the house will be affected by a future 
landslide within the next 35 years.  We are proposing to 
estimate the probability empirically using the cross-
validation technique. 

Suppose that the time of landslide hazard study in 
La Baie is 1967 (35 years ago from today, 2002).  In the 
study area, we know the locations of 22 landslides and we 
have five layers of geomorphological information.  Using 

these 1967 data, we have computed ),,(ˆ
m1p cc Lλλλλ in (4.4) 

for each of 1,954,836 pixels in the study area.  Similar to 

Figure 2, the 1,954,836 pixel values of ),,(ˆ
m1p cc Lλλλλ  

were sorted from the descending order, and then 1,954,836 
pixels into 1000 hazard classes according to the descending 
order.  For Figure 3, we have grouped 1000 classes into 40 
groups of 25 classes each.  In Figure 3, we have also shown 
51 landslides occurred in 1976 and 1996 as black dots.  The 
information on these 51 landslides was not used to construct 
Figure 3. 

The first column in Table 1 represents the portion 
of the whole study area assigned as “hazard” area for future 
landslides.  The first label “Top 1%” in the column is for the 
group of the most hazard 10 classes of the original 1000 
classes and subsequent “1 – 2%” group is for the next 10 
classes.  To generate the second column in Table 1, in each 
of the 1000 classes, we have first made a cumulative count of 
the 51 landslides.  For the classes without the landslides, 
instead of the cumulative counts, we have used interpolated 
values.  Among the 1000 pairs, we have selected the 20 pairs 
shown in the second column of Table 1 and it constitutes 
2/5th of red curve in Figure 4(a).  It is termed as “prediction 
rate curve.” 

To estimate the probability, we need more 
assumptions on the future landslides within the next 35 years.  
We need to have the “expected” number of future landslides 
in the area within the next 35 years and the “expected” size 
of the landslides.  Since we had 51 landslides for the past 35 
years in the study area and the average size of the past 51 
landslides is approximately 15m x 15m, we will make the 
following additional assumptions: 

(i) 50 landslides will be occurred in the  
study area in the next 35 years; (5.1) 

(ii) the average size of the 50 “future”  
landslides will be 15m x 15m. 

From the assumptions in (5.1), the affected area by 
50 landslides expected within the next 35 years is 50 x 15m x 
15m or 450 pixels (size 5m x 5m).  If we were to build a 
house of size 10m x 25m (250 m2 or 10 pixels) in the most 
hazard 1% area (“Top 1% area), then the probability that the 
house will be a part of the whole affected area can be 
estimated by: 

An estimate = 1 – ( 1 - δ )10 (=size of house)   (5.2) 

where δ = yprobabilit
351954

450
.

area)affectedofsize( =
, 

“probability” equals to 0.28 shown in the corresponding row 
for “Top 1% area” of the second column in Table 1.  The 
estimate is 6.26% shown in the corresponding row for “Top 
1% area” of the third column.  Similarly the numbers in the 
third column were generated from (5.2) using the 
corresponding probabilities in the second column in Table 1.  

Theoretically speaking, the prediction rate curve 
must satisfy two conditions: (i) monotone increment 
function, and (ii) the increment rate (the target of the curve) 
must be monotone decrement function.  Obviously, the red 
prediction rate curve in Figure 4(a) doesn’t satisfy the second 
condition.  For that, we have fitted a linear exponential 
function for the red prediction rate curve in Figure 4(a) and it 
is shown in Figure 4(a) as a blue curve.  The equation is: 

Fitted function = e1 −
−− area7.150.17 . (5.3)  

The “area” in the equation represents the portion of 
the whole area as shown in the first column of the Table 1.  
The corresponding fitted values are shown in the 4th column 
in Table 1. Using the probabilities in the 4th column, the 
numbers in the 5th column were generated from (5.2).   

The first 20 values in the 3rd and 5th columns were 
plotted and shown in Figure 4(b).  Under the assumptions in 
(5.1), they are the estimated probabilities that a house of size 
10m x 25m (250 m2 or 10 pixels) in the corresponding 1% 
areas will be affected by future landslides within the next 35 
years.  Obviously while the 3rd column is based in empirical 
estimates, the 5th column is based on the fitted prediction rate 
curve shown as blue curve in Figure 4(a). 
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Table 1. The first column represents the portion of the whole study area assigned as “hazard” area for future landslides.  The first 
label “Top 1%” in the column is for the group of the most hazard 10 classes of the original 1000 classes and subsequent “1 – 2%” 
group is for the next 10 classes.  As discussed in the text, the second column was generated by comparing the 1000 classes for Figure 
3 and the 51 landslides occurred in 1976 and 1996.  The 4th column was based a fitted function shown in (5.3) for the empirical 
values in the second column.  The 3rd and 5th columns show, under the assumptions in (5.1), the estimated probabilities that a house 
of size 10m x 25m (250 m2 or 10 pixels) in the corresponding 1% areas will be affected by a future landslides within the next 35 
years using (5.2) and the probabilities shown in the 2nd and 4th, respectively.  While the 3rd column is based in empirical estimates, 
the 5th is based on the fitted prediction rate curve shown as blue curve in Figure 4(a).  The corresponding plots are shown in the 
Figure 4(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Portion of the 
study area 
assigned as 
hazard area 

Cumulative 
portion of 51 

landslides within 
the class 

Empirical 
estimation based 
on the cumulative 

portion 

Fitted function 

e1 −
−− area7.150.17

 

Estimated from 
the fitted 

exponential 
function 

Top 1% 0.2800 0.0626 0.2177 0.0362 
1 – 2% 0.0373 0.0085 0.0540 0.0133 
2 – 3% 0.0704 0.0161 0.0503 0.0124 
3 – 4% 0.0476 0.0109 0.0468 0.0115 
4 - 5% 0.0452 0.0104 0.0436 0.0107 
5 – 6% 0.0480 0.0110 0.0406 0.0100 
6 – 7% 0.0559 0.0128 0.0378 0.0093 
7 – 8% 0.0186 0.0043 0.0352 0.0087 
8 – 9% 0.0455 0.0104 0.0327 0.0081 

9 – 10% 0.0120 0.0028 0.0305 0.0075 
10 – 11% 0.0150 0.0034 0.0284 0.0070 
11 – 12% 0.0207 0.0047 0.0264 0.0065 
12 – 13% 0.0186 0.0043 0.0246 0.0061 
13 – 14% 0.0186 0.0043 0.0229 0.0056 
14 - 15% 0.0171 0.0039 0.0213 0.0053 
16 – 17% 0.0100 0.0023 0.0198 0.0049 
17 – 18% 0.0100 0.0023 0.0185 0.0046 
18 – 19% 0.0090 0.0021 0.0172 0.0042 
19 – 20% 0.0090 0.0021 0.0160 0.0040 
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Figure 3. Landslide hazard prediction map based on 22 landslides occurred in 1967 and five layers (bedrock 

geology, forest coverage, elevation, aspect angle, slope angle maps) of geomorphological map 
information using likelihood ratio function model.  The 51 black dots represent 51 landslides 
occurred in 1976 and 1996.  The left side inset is an enlargement of a small area in black rectangle 
area in the middle left side.  The right side inset with “Year 1996” is an image showing a photograph 
of a landslides occurred in 1996 at the black circle area in the middle area. 

 
 
 

 
   (a)       (b) 

Figure 4. (a) Prediction rate curve for the prediction map shown in Figure 2.  It was obtained by comparing the 
1000 hazard classes generated for Figure 3 and the 51 landslides occurred in 1976 and 1996 as 
discussed in the text.  The 20 pairs shown in the second column of Table 1 constitutes 2/5th of red 
curve.  The fitted function shown in (5.3) is shown as blue curve.  (b) It shows, under the assumptions 
in (5.1), the estimated probabilities that a house of size 10m x 25m (250 m2 or 10 pixels) in the 
corresponding 1% areas will be affected by a future landslides within the next 35 years using (5.2) 
and the prediction rate curves shown in (a).  Obviously while the red histogram is based in empirical 
estimates, the blue histogram is based on the fitted prediction rate curve shown as blue curve in 
Figure 4(a).  The corresponding table values are shown in the 3rd and 5th columns in Table 1. 
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