
 

 

RESPECTING HIERARCHICALLY STRUCTURED TAXONOMIES IN SUPERVISED 
IMAGE CLASSIFICATION: A GEOLOGICAL CASE STUDY FROM THE WESTERN 

CANADIAN SHIELD 
 
 

E. M. Schetselaar a,* and C. F. Chungb 
a Department of Earth Systems Analysis, International Institute for Geoinformation Science and Earth Observation,  

Hengelosestraat 99 7514 AE Enschede The Netherlands, schetselaar@itc.nl 
b Geological Survey of Canada Geological Survey of Canada, Ottawa, 601 Booth St. Ottawa, Canada K1A 0E8, 

chung@NRCan.gc.ca 

 
Commission IV, WG IV/1 

 
 
KEY WORDS:  Hierarchical, Knowledge Base, Classification, Integration, Data Mining, Geology, Geophysics   
 
 
ABSTRACT: 
 
Supervised image classification is based on assembling statistics between site-specific ground observations and remotely sensed 
measurements. If supervised image classification is applied within the context of a particular theme (e.g. vegetation, soil, lithology, 
land use), one is often confronted with extracting the statistical correlations from a hierarchically arranged network of taxonomic 
classes spatially abstracted and hierarchically generalized over a range of mapping scales. In practice, however, supervised image 
classification often appears to be based on a pragmatic approach, a priori categorizing the samples into classes from various levels or 
from a subset of the hierarchic network. Such approaches are suspect, since the sampling often appears to be biased towards 
maximizing the discrimination potential of the multivariate data set at cost of representing the categories identified by direct ground 
observation. The classification performance is, as a result, often assessed within the context of arbitrarily defined class schemas that 
only partly correspond to the schemas obtained by field surveys. Clearly, to gain more insight in how supervised classifiers are 
behaving with respect to ground observations, sampling procedures are required that respect the hierarchy of the taxonomy obtained 
in ground surveys. Herein we report the results of classification experiment applied to gamma-ray spectrometry and aeromagnetic 
data where samples are extracted at ground stations for each level of a four-level hierarchically arranged class network of bedrock 
lithology. The number of classes in this network ranges from n = 2 for the highest level and to n = 14 for its lowest. A number of 
classification experiments suggest that classification performance can be improved if the estimation of prior probabilities at a more 
detailed level in the taxonomy is conditioned by spatial patterns at more general levels in the taxonomy. This improvement in 
performance may even apply when such patterns are obtained by classification of the same data and sample set.  
 

1. INTRODUCTION 

Image classification methods have since the launch of the first 
earth orbiting remote sensing platforms been routinely applied 
for mapping land cover and natural resource themes. 
Regardless the application, one of the most complicating 
factors inherent to the image classification problem, is the 
incongruence between what and how physical properties are 
measured and how geospatial objects are identified and 
classified through the eyes of the geoscientific expert. Even 
when the sensing device is an optical system sensitive to the 
wavelength range of human vision, human cognition is rarely 
based on spectral properties alone. For example, it is well 
known to earth scientists that colour (i.e. perceived relative 
spectral properties between 400 and 700 nm) is often one of the 
least diagnostic and most misleading criteria for classifying a 
particular mineral or rock type (as it is frequently a function of 
the abundance of trace elements in the crystal lattice 
respectively state of weathering).  
 
Clearly, image classification is no exception to any other 
application of multivariate statistics, namely to explore the 
universe between what an expert sees and categorizes with 
what is measured. Unique to the image classification task, 
however, is the uncertainty to what extent observed features 
match patterns in fields of measurements. In most multivariate 

statistical applications there is an unequivocal relationship 
between the category and the set of measurements on the 
category.  In remote sensing applications, however, the object 
of interest “blends-in” with its immediate neighbourhood and 
the criteria used to classify may vary from general to detailed 
over a range of scales within a taxonomy of information 
classes. A geological example of class inheritance of geospatial 
objects over such a hierarchy would be: terrane, subterrane, 
lithotectonic domain, lithologic assemblage, plutonic suit, 
granitoid pluton, granite, monzogranite.  A large variety of 
criteria are employed within such a hierarchy based on a 
multitude of geoscience themes, such as: regional tectonic 
synthesis, geochronology, lithogeochemistry, mineralogy, 
texture and structure. 
 
The problem is that it is unclear, how the above criteria are 
related to the patterns in the remote sensing measurements that 
provides the discrimination potential. Any attempt to assign 
ground based information classes to measurements by 
multivariate statistical methods, therefore, should not only be 
based on samples of information classes at a particular level 
within a taxonomy, but also exploit the a priori knowledge on 
how the information classes are ordered within it. This paper 
presents image classification methods and experiments that 
respect the taxonomic knowledge of earth scientists by which 
geospatial objects have been classified.      
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2. A STRATIFIED BAYSIAN IMAGE 
CLASSIFICATION ALGORITM  

In general form, the posterior probability that an m-
dimensional vector of measurement X at pixel p belongs to 
class Cj can be expressed in Bayesian formula: 
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The term P{ Xl | Cj } in this expression is the probability that 
the measurement vector will take on the value Xl given that the 
pixel is a member of class Cj. This probability can be 
determined by sampling a population of measurement vectors 
for  pixels known to be a member of class Cj. In practice, 
because of the limited availability of measurement vectors with 
known class membership, this probability is estimated by 
assuming a particular distribution, such as the multivariate 
normal or the multivariate student t-distribution (McLachlan, 
1992). P{Xl} in expression 1 is the probability of the 
occurrence of measurement vector Xl. The term P{Cj} in 
expression 1 is the prior probability that a pixel will be a 
member of class Cj. This probability is estimated by computing 
the mixing proportions of the total number of samples Nj of 
class Cj to the total number of samples over all the classes.         
 
Dependent on the assumption for the distributions to estimate 
P{Xl| Cj}, a classification decision rule is defined whereby the 
pixel  p is allocated to the class with the highest posterior 
probability, provided that it is above a threshold, below which 
p is assigned the label “unclassified”. Assuming, for example, 
multivariate normal distributions for the classes and including 
estimation of priors, expression 1 can be written as: 
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Where fj(Xl) is the probability density function of a multivariate 
normal distribution for class Cj. Using a Maximum likelihood 
classifier, a decision rule can be formulated substituting class 
variance-covariance matrices Vj and class mean vectors mj 
computed from the sample set to parameterize multivariate 
normal class distributions: 
 
DR1: Choose j that minimizes:   
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The incorporation of prior probabilities in the decision rule led 
some workers to the development of methods to improve on the 
estimation of prior probabilities. Strahler (1980) showed how 
thematic classes from one or more additional variables can be 
used to refine the estimation of prior probabilities. Gorte 
(1998) extended such concepts to non-parametric classification 
methods (based on the k-nearest neighbour method) and used 
iterative estimation of class mixing proportions to obtain local 
priors. In this paper, the estimation of prior probabilities is 
based on a stratified classification over a taxonomy based on 
geoscientific knowledge of the study area. Thematic maps or 

classified patterns at general levels within this hierarchy are 
used as collateral variables to estimate prior probabilities for 
the classification at a more detailed level within the hierarchy. 
The classification is called stratified, because it proceeds 
stepwise from general to detail over the taxonomy. Distinctive 
properties of the classification problem at more general levels 
in the hierarchy leads to the formulation of assumptions on the 
sample set and spatial distribution of classes that can be 
exploited to improve classification performance at lower levels 
in the hierarchy.  
 
We start by redefining Cj , the class membership of the jth class, 

as k
jC : the class membership of the jth class at the kth level in a 

taxonomy ranging from [k-q, …,k-1 , k], where q {1, .. , k-1} is 
an index variable between referring to the level above the kth 
level in the taxonomy. We rewrite expression 1 and define the 

posterior probability that a pixel will be a member of class k
jC  

given X and the fact that p is a member of the ith class at the (k-
1)th level: 
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If the jth class descends directly from one and only one class at 
the (k-1)th level, then it can be shown that: 
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If, instead, there are multiple inheritances in the taxonomy (e.g. 
a class may descend from more than one superclass) expression 
5 is the assumption stating that the class probability densities 
do not vary with the class membership at the (k-1) th level. This 

assumption states that }C|X{P k
jl e.g. the distribution of the 

measurement vectors for a particular class Cj is invariant with 

the classes 1k
iC −  at higher levels in the taxonomy. This 

assumption is violated, for example, when the measurement 
vectors of classes with limited spatial extent are affected by 
different ‘background’ distributions of measurement vectors at 
more general levels in the taxonomy.  Another example where 
this assumption is violated would be chemical alterations 
affecting Xl (by metamorphic or metasomatic processes) 
conditioned by the superclass in which a particular class is 
enclosed.         
 

The joint probability }C,C{P k
j

1k
i

−  in expression 4 can be 

rewritten in the form of a conditional probability: 
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Substituting expressions 5 and 6 into 4 we obtain:  
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So that }C{P 1k
i

− cancels from de numerator and denominator 

after substitution in expression 7, we obtain: 
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The term }C|C{P 1k
i

k
j

− in expression 8 can be directly 

computed from random samples that are hierarchically 
stratified into k levels.  
 
Accordingly, the classification decision rule can be states as: 
 
DR2: Choose j that minimizes: 
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Note that because of the assumption stated in expression 5, this 
expression could have simply been obtained by substituting the 
conditional prior into expression 3. If this assumption is not 
valid, however, the joint conditional probabilities of the form 

}C,C|X{P k
j

1k
il

−  must be computed from all the occurring 

combinations between j classes at the kth level and i classes at 
the (k-1)th level.    
 
 
3. A CASE STUDY PREDICTION OF UNITS FROM A 

BEDROCK TAXONOMY OF THE WESTERN 
CANADIAN SHIELD 

 
The above-derived method was tested in a number of 
classification experiments to predict a 4-level taxonomy of 
bedrock units from gamma-ray spectrometry and aeromagnetic 

data gridded on 100 x 100 meter pixels acquired over the 
western margin of the exposed Canadian Shield. The five grid 
(image) variables are: K: potassium channel (fig. 1a), eTh,: 
thorium channel (fig. 1b), eU uranium channel (fig. 1c), total 
magnetic field and residual magnetic field (fig 1dl). These five 
grids were augmented by their 9 x 9 average filtered 
derivatives, in analogy to the approach of Switzer (1980). This 
method exploits the spatial autocorrelation between pixels 
within each of the variables under the assumption that the 
alternation of bedrock units occurs on a large scale than that of 
a single pixel (Switzer, 1980). The statistical relationships 
between the image variables (Figure 1) and bedrock units was 
estimated at the field stations of several geological mapping 
projects, yielding 3528 samples, each having values of the K, 
eTh, eU, total magnetic field and residual magnetic field. The 
bedrock taxonomy is shown in Figure 2.  
 
In a previous study samples of bedrock units were amalgamated 
from the second and third level of this taxonomy (Schetselaar 
et al., 2000). This classification coincided for 70% to 
geological maps of the study area compiled on 1 : 50.000 scale 
(McDonough et al., 2000 and references therein). As can be 
seen from Figure 2 the relationships between the first, second 
and third levels within this taxonomy are defined by single 
inheritance. The relationships between the fourth and third 
level (between mylonitic units and protoliths) however is 
defined by multiple inheritance. These were forced to single 
inheritance by masking the shear zones with the mylonitic units 
from the three levels above it. This was necessary because the 
relationships between original rock units (protoliths) and 
mylonitic units could not be recovered from the digital map 
database of the study area. The number of classes in this 
network ranged from n = 2 for the highest level and to n = 14 
for its lowest. The hierarchic network was structured 
downwards according to lithotectonic domains (n = 2), 
basement-cover-plutonic assemblages (n = 4), bedrock units (n 
= 12 & n = 14). The bedrock classification was based on 
mineralogical, textural and structural field diagnostics.  
 
 

 
Figure 1. Four grid (image) variables used in the classification 
experiments, a) Potassium Channel (K); b) Thorium Channel 
(eTh); c) Uranium Channel (eU); residual magnetic field grid. 



 

  

 
 
Figure 2. Bedrock taxonomy of the Taltson magmatic zone 
(Canadian Shield of NE Alberta) after McDonough et al. 2000 
(and references therein). Classes that are striped out do not 
have enough samples (n < 10) for estimating the class 
distributions.       
 
At the fourth level two mylonitic units were added to the third 
level. This additional differentiation was made because the 
fabric and mineralogy within these units are altered by high 
shear strains to an extent that they their field diagnostics are not 
representative to their undeformed equivalents at the third 
level.  
 
First a standard Bayesian classification was applied to all levels 
separately, computing overall priors from the samples. The 
classified map patterns and their coincidence with compiled 
geological maps resulting from these classification experiments 
are shown in Figure 2a-h respectively Figure 3.  Note that the 
fall-off rate of the coincidence percentages for the classes is 
higher than the overall percentages. This is obviously due to 
the large bias towards the classes of great spatial extent at the 
first and second levels of the taxonomy. The average class 
coincidence percentage are rapidly decreasing with increasing 
number of classes, ranging from 80 at the first level to 40 
percent at the fourth level.  
 
Next, two types of stratified classification experiments were 
conducted were class information at more general levels 
conditioned the classifications at more detailed levels of the 
taxonomy: 
 
1. The computation of priors at k=2 and k=3 conditioned by 

units of map patterns at k=1 and k=2 of the taxonomy. 
This experiment is comparable to situations where detailed 
bedrock lithology classification is conditioned by regional 
geological maps showing lithotectonic domains and 
lithologic assemblages. This scenario is considered 
realistic in reconnaissance mapping projects where 
regional geological maps (typically between 1:250,000 
and 1,000000 scales) are available. 

 
2. The computation of priors at k=2 and k=3 conditioned by 

units of a map pattern obtained from a non-parametric 
classification method at k=1. Note that in this case no 
additional map layers or interpretations are used in the 
classification. The stratification is based on the same 
sample set used for the non-stratified classification 
experiments and proceeds stepwise from general to 
detailed levels in the taxonomy. 

 

 
 
Figure 3. Classified patterns and image variables. (a) map 
compilation lithotectonic domains with overlay of sample 
locations; (b) classification lithotectonic domains; (c) map 
compilation lithologic assemblages; (d) classification lithologic 
assemblages; (e) map compilation bedrock units; (f) 
classification bedrock units; (g) map compilation bedrock units 
(including fault rocks); (h) classification bedrock units 
(including fault rocks).  
 

 
 
Figure 4. Overall and average coincidence percentages between 
classifications and map compilations for the four levels of the 
bedrock taxonomy.   



 

  

The classified map patterns and coincidence percentages 
resulting from these experiments are shown in Figure 5 and 
Figure 6 respectively. The first method obviously appears to 
yields a considerable increase of the coincidence percentages 
(ca. 10%). This initial result suggests that it may be useful to 
integrate regional scale maps in a stratified classification 
approach. Alternatively, spatial patterns representing 
lithotectonic domains and lithologic assemblages can be 
outlined on remotely sensed data. Such regional units, for 
example, can often be easily outlined using anomaly patterns, 
texture and shape on colour-enhanced grid representations of 
aeromagnetic and gravity data, whereas it is often very difficult 
to use such grid representations to assign individual anomalies 
to particular bedrock units.  
 
The second method was based on non-parametric estimation of 
the class probability distributions for lithotectonic domains at 
k=1. It appeared that the Maximum Likelihood classification at 
k=1 did not result in an increase of coincidence percentage at 
k=2 and k=3. Apparently the number of misclassified pixels of 
large units at k=1 was not compensated by reduction of overlap 
of class probability distributions or refinement in the estimation 
of priors at lower levels. Only in situations where the number 
of misclassified pixels is low with respect to the misclassified 
pixels due to overlap between class probability distributions at 
higher k, an improvement in classification performance is to be 
expected. 
 
An attempt was made to improve the classification of 
lithotectonic domains at k=1, exploiting the following two 
characteristics of the classification problem at general levels 
(e.g. k=1 or k=2) of the bedrock taxonomy: 
 
1. The large number of samples available (nTaltson Basement = 

1708 and nTaltson Granitoids = 1512) at k=1 well spread over 
the entire study area. This permits direct estimation of 
P{Cj|Xl} from the samples instead of estimation under the 
assumption of multivariate normal distribution. 

 
2. The fact the lithotectonic domains form units of spatial 

dimensions at least two orders of magnitude larger with 
respect to the pixel size of 100 x 100 metres. This permits 
extensive post-classification smoothing without the risk of 
eliminating classes or to exploit the spatial distribution of 
the samples themselves in the classification. 

 
In theory direct estimation could proceed by cross labeling all 
combinations between the five image variables. In practice, 
however, this results in computationally inhibitive in allocating 
memory for all unique combinations between the five image 
variables. (for this dataset stored in  8 bits, it would require 
2555 =1.0782 x 1012   combinations). Although the 
combinations could be evaluated over larger bin intervals, we 
selected an alternative method by evaluating the probabilities 
over each variable separately before their multiplication, 
assuming that they are conditionally independent. Using this 
approach a classification decision rule is stated as follows: 

 
DR3: Choose j that maximizes: 
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Figure 5 Results of stratified image classification experiments. 
a) classification bedrock units stratified on map compilation of 
lithotectonic domains; (b) classification bedrock units stratified 
on map compilation of lithologic assemblages; (c) non-
parametric classification lithotectonic domains; (d) 
classification bedrock units stratified on classification 
lithotectonic domains (figure 5c).    
 

 
 
Figure 6. Coincidence percentages with geological map 
compilations for non-stratified Bayesian classification, for 
Bayesian classification stratified over map patterns at k=1 and 
k=2., for Bayesian classification at k=2 and k=3 stratified over 
non-parametric classification at k=1.   
 
Because the lithotectonic domains are large contiguous units 
and the samples are evenly distributed, distance to samples was 
used as an additional variable to improve the discrimination 
potential of the multivariate dataset. By considering M 
variable, and computing coincidence percentages for all 20 
combinations, it was found that the distance, potassium and 
magnetic grids provided the highest coincidence percentage 
(91%) improving the prediction of bedrock units with ca. 4 
percent (figure 5c). The propagation of this classification result 
to levels k=2, and k=3 for computing priors, yielded an 
increase in coincidence with the geological map compilations 
of respectively 5.5 and 1.7 percent (figure 5d).  Alternative 
non-parametric methods, such as the k-nearest neighbour 
classifier or algorithms based on artificial neural nets will be 
tested in the future to investigate if similar or higher 
classification performances can be obtained for the 
classifications at k=1 and k=2. 



 

  

4. CONCLUSIONS 

Initial results of a number of classification experiments suggest 
that classification performance can be improved by the 
estimation of prior probabilities at a particular level of a 
taxonomy that is conditioned by a more general level of the 
same taxonomy. In comparison to conventional approaches, the 
Bayesian stratified classification method provides mechanisms 
to introduce spatial data at more general levels in the 
classification, to which users have often better access or which 
can be easier derived through visual or automated image 
interpretation. An increase in classification performance may 
be obtained even when no additional data or visual 
interpretations are introduced, and spatial patterns associated to 
general levels in the taxonomy are also obtained by image 
classification.  In addition the user can adapt algorithms and 
combination of image variables to each level within the 
hierarchy. This enhances the potential to adapt the 
classification methods to available map data and better exploit 
the intrinsic hierarchical structure of field knowledge. 
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