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ABSTRACT: 
 
In this paper, we study some problems linked to the integration of data in a spatio-temporal data warehouse. In many cases, the 
specifications of the data sets have evolved over time, especially when the observed period is large. Under those circumstances, data 
sources have temporal, spatial and semantic heterogeneity. In order to explore and analyse spatio-temporal data sets in a SOLAP 
(Spatial On Line Analytical Processing) application, we propose two approaches to model heterogeneous data in multidimensional 
structures. The first solution consists in a unique temporally integrated cube with all the data of all epochs.  The second solution 
consists in creating a specific cube (data mart) for each specific view that users want to analyse. The final objective is to support 
geographic knowledge discovery through data exploration of detailed data for an epoch and of integrated comparable data for time-
variant studies. Using a practical example in the field of forestry, we evaluate the implementation of these two models. 
 
RESUMÉ :  
 
Dans cet article, nous abordons les problèmes liés à l’intégration de données spatio-temporelles au sein d’un entrepôt de données.  
Dans de nombreux cas, notamment lorsque la période d’étude est relativement longue dans le temps,  les spécifications des jeux de 
données évoluent. Dans ce cas, les données sont hétérogènes à la fois des points de vue temporel, spatial et sémantique. Afin 
d’explorer et d’analyser des jeux de données spatio-temporels dans une application SOLAP (Spatial On Line Analytical Processing), 
nous proposons deux approches pour modéliser ce type de données dans des structures multidimensionnelles. La première solution 
consiste à intégrer toutes les données dans un seul cube. La deuxième solution propose de créer un cube spécifique (un marché de 
données) pour chaque vue que l’utilisateur veut analyser. L’objectif final est de permettre l’extraction de connaissances 
géographiques par l’exploration des données détaillées associées à une époque et des études temporelles sur les données intégrées et 
comparatives. A partir d’un exemple pris dans le domaine de la foresterie, nous évaluons l’implémentation de ces deux modèles. 
 
 
 
 

1. INTRODUCTION 

On-Line Analytical Processing (OLAP) technology enables 
users to quickly analyse large sets of data. Hence decision-
making is facilitated. OLAP systems are generally based on a 
three-tiers architecture including a data warehouse with 
integrated data, an OLAP server for the dimensional view and 
an OLAP client, i.e. a user interface for the rapid and easy 
exploration of data (Han, 2001). Similarly, SOLAP (Spatial On-
Line Analytical Processing) systems are built to support the 
rapid and easy spatio-temporal analysis as well as the 
exploration of data according to a multidimensional approach 
typical of data warehouses (Bédard, 1997). This approach is 
comprised of aggregation levels supporting cartographic 
displays as well as tabular and diagram displays at various 
levels of detail. SOLAP systems provide the exploration and 
navigation tools required to analyze and explore spatial data, 
identify potential clusters, discover potential trends and build 
hypothesis (Rivest, 2001).  However, building spatio-temporal 
data warehouses for SOLAP applications implies significant 

work of data integration especially when the data acquisition 
specifications have evolved over time.  In this case, databases 
sources differ from one epoch to another not only in data coding 
and structures, but also in semantic contents. In order to permit 
temporal comparative studies, data must be integrated following 
a compatible set of temporal, spatial and semantic definitions. 
In this paper, we focus on some of the data warehouse supply 
difficulties in the case of conventional multidimensional models 
coupled to high heterogeneity issues. We expose a practical 
example in the field of forestry that considers forest maps of 
three 10-years periods elaborated following different acquisition 
specifications. We propose two solutions that are implemented 
and evaluated. At last, we discuss their advantages and 
disadvantages. 
 

2. MULTIDIMENSIONAL MODELING OF SPATIAL 
DATA IN A DATA WAREHOUSE 

To perform spatio-temporal analysis, multidimensional database 
modelling is very useful. Multi-dimensional views are produced 
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when measures are analysed against the different dimension 
categories of a cube (Marchand, 2001). The most popular 
multidimensional model for relational OLAP (ROLAP) is 
certainly the star schema (Kimball, 1996). This model is centred 
on a fact table containing measures with related dimension 
tables, which characterize these facts. Each dimension has a 
number of attributes used for selection or grouping. A 
dimension is usually organized in hierarchies supporting 
different levels of data aggregation as well as multiple 
inheritances. The snowflake schema is a variant model where 
the hierarchies in the dimensions are explicit following 
normalized tables. Pedersen and al. (2001) analyse 14 
multidimensional data models including star and snowflake 
models and show that these models do not support requirements 
such as multi dimension in each dimension, non strict 
hierarchies, handling change and time and handling different 
levels of granularity. They define an extended multidimensional 
data model for these requirements; their model is adapted for 
imprecise data. Some papers propose solutions for 
multidimensional structures with spatial data. Han and al. 
(1998) use a star/snowflake model to build a spatial data cube. 
They propose the idea of spatial measures with a method to 
select spatial objects for materialization. Papadias and al. 
(2001) use the star-schema with spatial dimensions and present 
methods to process arbitrary aggregations. In both cases, 
hierarchies of the spatial dimension are unknown at design time 
and are arbitrarily created by the user. Allowing change in 
aggregation hierarchies, Eder (2001) introduces a temporal 
multidimensional data model allowing the registration of 
temporal versions of dimension data. This solution is based on 
structure version and supports functions to transform data from 
one structure version to another. Espil (2001) and Hurtado 
(2001) also study multidimensional schemas with redefinition 
of aggregation hierarchies and heterogeneous schemas. In their 
solutions, they describe a new framework for modelling 
dimensions.   
 
 

3. DATA INTEGRATION ISSUES 

Spatial information is often organized according to spatial 
objects with geometric and descriptive attributes. For example, 
forest inventory information is usually vector-based and 
represents the boundaries of forest stands with their associate 
attributes. A forest stand is defined as a part of territory with 
homogeneous characteristics (species, height, age and so on). In 
Quebec, Canada, for each inventory, a new map is made by 
aerial photo-interpretation. Thus, each inventory is a complete 
new set of spatial data with no reference to the precedent set. 
Furthermore, from one inventory to another (usually every 10 
years), the definition, the acquisition mode and specifications 
can change significantly, which make temporal, geometric and 
semantic integration as well as multidimensional modelling a 
difficult task. To integrate and model spatio-temporal data in a 
multidimensional structure with evolving specifications, several 
inter-related problems appear. We present the ones we have 
encountered once we have described our data sets. 
 

 
3.1 The Data Sets Used  

Three inventories of Montmorency forest compose the data set 
used in this study. Table 1 gives the characteristics of each 
inventory. 
 

Year Number of forest stands 
1973 ≈ 1 700 
1984 ≈ 2 400 
1992 ≈ 3 800 

 
Table 1. Composition of inventories 

 
The number of forest stands varies according to the evolution of 
the characteristics used for the photo-interpretation because the 
legislation changes. As specifications evolve over time, the 
definition and the number of attributes and classes vary from 
one inventory to another. Over the 20 years period covered by 
these 3 inventories, we have determined that only 12 % of data 
types can be compared over time and temporal analysis is 
hardly achievable.  
 
For example, we present here the different classifications of the 
Age attribute for each inventory. In 1973, this attribute is 
composed of five qualitative classes (In regeneration, Young, 
Regular Mature, Irregular Mature, By stage). In 1984 classes 
have become quantitative data segmented in 20-years periods 
whereas in 1992 it is segmented in 15-years periods. 
 
Descriptive data attributed to forest stand characterize the 
dominant trees. Even if the measured attributes of forest stands 
change over time, descriptive data can be grouped in time-
invariant items such as Age, Density, Height, Diseases and 
slope.  
 
 
3.2 Integration Problems  

To support spatial and temporal analysis and exploration in the 
case of these forest inventories, we must cope with four issues: 
1- each map is made independently of the previous one for the 
same territory, leading to delineating forest stands without 
relationship to the stands in the preceding epoch; 2- spatial 
referencing systems may change from a map to the other, 
sometimes without proper metadata, creating spatial matching 
problems 3- geometric heterogeneity caused by the temporal 
variation of forest stands definitions and 4- the descriptive 
heterogeneity caused by the evolution of the definitions and 
specifications.  
 
Exploration of spatial dimension is the first requirement of our 
application. In order to supply time-invariant spatial reference, 
we propose to translate spatial data in an arbitrary regular 
tessellation. For each inventory, an overlay of the spatial vector-
based objects and a fixed tessellation representation is 
produced.  The cells become objects with invariant geometric 
characteristics and, as such, can be used as spatial reference. 
Figure 1 shows forest maps of the same area spanning the 3 
studied epochs. At the top, we have initial forest stands as they 
were delimited in each inventory. Below we have the result of 
the overlay with a regular tessellation. The spatial reference is 
composed of regular cells as represented at the bottom of Figure 
1. Each cell inherits the descriptive attributes of the dominant 
forest stand of a given inventory. With this solution, a new 
inventory is easy to add because it does not modify the existing 
data. 
 
 



 

 

 73 Inventory Extract 84 Inventory Extract 92 Inventory Extract

 
 
 

Figure 1. Data transformation using a regular tessellation 
 
 The hierarchy of the spatial dimension is derived from forest 
management rules. The hierarchy has three levels, by grouping 
cells in forest stands, then in compartments and in units or 
forest station (figure 2). A cell belongs to different forest stands 
depending on the inventory. The surface attributed to a cell is 
pondered in order to maintain correct surface measure of the 
forest stand. The results of different tests demonstrate that a grid 
of 20x20 meter is suitable to depict spatially the forest stands in 
Montmorency forest, it produces 162 000 cells to cover the 
territory of interest.  

 1973 1984 1992 

Cell

Forest stand Forest stand
Eco-forest 
stand 

Ecologic 
polygon

Forest 
Station

Compartment

Unit

NA

NA

 

Figure 2. Hierarchy of the spatial dimension based on 
inventories 

 
 
With this structure, users get access to the detailed data for each 
specific epoch i.e. 1973, 1984 and 1992 (it is especially useful 
for the most recent one). They also get access to evolution of 
the forest over the 20 of aggregated data. In other words, users 
access both detailed data for an epoch and to integrated 
comparable data for time-variant studies. So, we keep all the 
detailed data even if it is not homogeneous over time and it is 
up to the user to wisely navigate in the data set (or to the 
developer to restrain navigation).  
 
Based on a multidimensional conceptual model of the data, data 
integration consists of building new data groupings by 
aggregating initial classes in a temporally compatible manner 
(Rebout, 1998). For each type of attributes, we define new 
generalized classes based on similar meanings. The aim of these 
new classes is to obtain comparable categories at the aggregated 
levels from one inventory to another. Each grouping is a level in 
a dimension hierarchy. At the lowest level (finest granularity) of 
a descriptive dimension, data is not time-comparable whereas 
the upper levels (coarser granularity) are time-comparable 

hierarchies with roll-up and drill-down functions. In Figure 3, 
the hierarchy of the dimension Age is shown. The attribute 
values are grouped in seven Age classes, and three Age Groups. 
At these two hierarchical levels, measures are time-comparable. 
For example the mature or out of age territory is identified as a 
category existing for all the inventories. Hence the evolution of 
mature or out of age areas during the last 20 years can be 
studied. 
 

Age Group Age Class Detailed Age Items

In Regeneration
/Young

Mature or 
Out of Age

Young

Pre-
mature

Mature

Out of Age
Mature/
Out of Age

By 
Stages

1973 1984 1992

In 
Regeneration

In regeneration 0 0

1-15

20-40 15-30

40-60

30-45

45-60

60-80

60-75

80-100 75-90

More than 90
Regular Mature 

Irregular Mature

By stage mature 30/70

70/30

1-20

By Stages

Young

Most general 
level

Aggregated 
level

Detailed level (non-comparable 
raw data)

Figure 3. Hierarchies of Age dimension 
 

Figure 4 shows other descriptive dimensions with detailed data 
at the lowest levels. The hierarchy labels have been chosen 
according to the vocabulary used in forestry. One can note that 
the Density dimension is a single level dimension. The 
codification of forest stand density was maintained over time. 
Hence there is no integration issue in this case. In all other 
cases, these new aggregated classifications integrate the data 
semantically and over time. All the raw data are cleaned and 
encoded with these classifications in a common database. Then, 
different cubes can be designed and produced. 
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Figure 4. Hierarchy of the Descriptive Dimensions  
 

 
4. MULTIDIMENSIONAL MODELS 

Using these spatial and descriptive dimensions, we design two 
models that show the link between facts and dimensions. In the 
star multidimensional schema, the fact table groups measures at 
the finest granularities of all dimensions. For forest inventories 
data, facts are measured areas with given characteristics 
(species, height, age…). In order to allow easy and complete 
exploration and analysis of this large set of data, we propose 
two approaches for modelling the spatio-temporal 
multidimensional data. The first solution is based on a unique 
temporally integrated cube. The second solution is a 
combination of 4 multidimensional structures that share 



 

 

dimension, one for each epoch and one for the 12% of data that 
are time-comparable at their finest level. 
 
SOLUTION 1: One temporally integrated multi-epoch cube 
 
In the first model, fact table is associated to a cell and to the 
descriptive dimensions (Figure 5). In this simplified schema, 
only Age, Height and Species are represented. The temporal 
variation is integrated within the descriptive and spatial 
dimensions. 
 
This simple conceptual schema hides some implementation 
difficulties. The first lies in the storage of the large set of data 
resulting from the regular tessellation representation. Because 
of the homogeneous descriptive characteristics of a cell, the 
resulting multidimensional structure is sparse. The OLAP server 
will have to optimise the storage of this sparse structure. 
 
The second difficulty lies in the management of the exploration 
paths (i.e. allowing a priori all dimension combinations). An 
additional user interface layer needs to be implemented to 
capture the user actions in order to control the exploration of 
the warehouse. Time varying queries using detailed descriptive 
dimensions granularities will be prohibited until allowed for 
upper granularities studies dealing with several epochs. 
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Figure 5. A temporally integrated cube 
 
 

SOLUTION  2: spatially-specific/ mono-epoch cubes and 
spatially-unified/multi-epoch cube 
 
The second model is based on the fact constellation schema 
(Figure 6). In this case, multiple fact tables share dimension 
tables. In our application, a fact table is implemented for each of 
our 3 ten-year inventories and the measures are associated to 
forest stands. The descriptive dimensions include the Age, the 
Height and the Species. The finest granularities correspond to 
the detailed attributes for one inventory.  
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Figure 6. Fact Constellation Schema with 4 Multidimensional 

Cubes 
 
The heterogeneity of dimensions hierarchies is explicit. A 
fourth fact table integrates the data which are comparable 
between the three inventories. This table shares a part of the 
hierarchical dimensions with the other fact tables. Measures are 
associated to single cells and one inventory (lowest levels of the 
spatial and time dimensions). This schema defines 4 
multidimensional structures: one for each inventory and one for 
the integrated data. Each multidimensional cube associated to 
each inventory is based on forest stands as opposed to the multi-
epoch cube which is based on the regular cells. The 
multidimensional cube with integrated data is unified both from 
a spatial and a time point of view. This schema optimises the 
data storage but requires the use of 4 multidimensional 
structures by the users. From a conceptual point of view, this 
model is a better representation of the complexity of the data 
and its intrinsic links.     
 
 

5. PROTOPTYPE AND EVALUATION  

 
The proposed solutions have been implemented using MS SQL 
Server and Analysis Services. These models are similar to the 
logical models previously presented. We defined each 
hierarchical dimension by one descriptive dimension for each 
inventory. All the multidimensional structures have been stored 
in a Multidimensional OLAP (MOLAP) database. In a MOLAP 
database, information (raw and aggregated data) is stored as 
series of multidimensional arrays. MOLAP databases respond 
faster to multidimensional queries as the structures are highly 
denormalized and stored in RAM. 
 
The SOLAP prototype has been designed to support the spatio-
temporal exploration of multidimensional structures using 
Proclarity and Intergraph Geomedia software components. A 
Visual Basic Application drives Proclarity functionalities to 
perform OLAP operators on descriptive data and drives 
Geomedia functionalities for spatial navigation and cartographic 
displays. 
 
Figure 7 shows the interface of the SOLAP application. It is 
composed of two windows. The first one, on the right, is a 
classical OLAP interface with selection of dimensions to 
analyse, the navigation operators and the data displays. Using 
this interface, a user explores his data and obtains the 



 

 

representation of the selected measures by histogram and 
tabular displays. On the left, the spatial window presents the 
map of the selected data. Between these two windows, the same 
graphic semiology codes are used (colour, pattern, etc.). 
 

 

 
 

Figure 7. Interface of the SOLAP Application 
 

 
Table 2 presents a quantitative evaluation of the two previous 
described solutions. The number of elements in the fact table 
depends on data organisation. The cube size is the storage size. 
Finally, performance gain is estimated by a ratio of pre-
calculated data over stored data. 
 
When we built cubes, we used an SQL-Server Analyse Services 
functionality to determine how many aggregations to create. 
The wizard adds aggregations until the performance gain 
reaches a specified percentage. We tried several values and 
chose a compromise between a percentage and a time running to 
optimise the structures. 
 
 
 Elements of 

Fact Table 
Cube Size  

(MB) 
Performance 

gain 
First Solution 
1 temporally 

integrated cube 
 

162 000 17.73 9 % 

Second Solution 
3 spatially-specific / 
mono-epoch cubes 

 
1 spatially-unified 
/multi-epoch cube 

From  
1 700 to  

3 800 
 

496 000 

From 
0.15 to 

0.65 
 

18.5 

100 % 
 
 
 

50 % 

 
Table 2. Quantitative evaluation of the implementation 

 
 
With the first solution, the cube has a fixed number of elements 
into the fact table because the structure is stored by cell. By 
adding a new inventory, this value will not vary. Only the size 
of the multidimensional structure (actually 17.7 MB) will 
increase. The performance gain is very low (9%) indicating that 
almost any aggregation is pre-calculated. Here, the wizard failed 
to optimise structure in an acceptable delay. 
  
With the second solution, four physical multidimensional 
structures are implemented. For the structure associated to each 

inventory, the number of table fact elements and the structure 
size depend on the number of forest stands because descriptive 
data are grouped according to forest stands. The fact table of the 
spatially-unified structure has an element for each cell and each 
inventory. Half the aggregated values are calculated and stored. 
In this solution, data are duplicated between the cubes 
associated to each inventory and the spatially-unified and time-
integrated cube. More aggregations are pre-calculated, 
increasing the total storage size. The comparative table 1 
displays the link between the size of the storage structure and 
the performance gain. 
 

 
 Temporal 

Analysis 
Spatial 

Analysis 
Detailed 

data 
Naviga 
-tion 

First Solution 
1 temporally 

integrated 
cube 

 

Possible Cell 
level 

 
Yes 

 
For 

expert 

Second 
Solution 

3 spatially-
specific / 

mono-epoch 
cubes 

 
1 spatial-

unified/multi-
epoch cube 

 
Easy 

for the 
multi-
epoch 
cube 

Forest 
stand 
level 

 
 
 

Cell 
level 

 
Yes 

 

 
 

Easy and 
intuitive 

 
 

 
Table 3. Qualitative evaluation of the implementation 

 
Capabilities of the implemented solutions are evaluated in table 
3. Both solutions allow analysis on detailed data. Temporal 
analysis is possible but difficult in the first solution because 
time is not a specific dimension. However all the necessary 
information is available in the stored cube. In this solution, 
spatial navigation in the smallest level (the cell) is possible 
allowing very abundant spatial analysis. Generally, navigation 
in this cube is quite difficult because a user can select any view 
he wants without any assistance and constraint. He can perform 
faulty analysis by comparing non-comparable detailed data and 
the result of complex queries depends on the order of the 
elementary queries. On the other hand, only possible temporal 
comparisons are implemented in the second solution, so the 
navigation is easy and secure in the multi epoch cube. To 
analyse data on one epoch, a user simply selects the cube 
associated to the inventory he wants to study. All the detailed 
data are easily available with classical OLAP operators. Users 
can navigate in hierarchical dimensions with different levels. 
These aggregated levels are used also in the spatially-unified 
cube in which temporal analysis can be performed.  
 
 

6. CONCLUSION  

In this work, we propose solutions to design multidimensional 
structures when source data sets have temporal, spatial and 
semantic variations. First, time-variant objects (forest stands) 
are converted in a fixed, invariant tessellation (cells) for proper 
spatial referencing. Then, new classifications of descriptive data 
are introduced by grouping initial detailed classes in 
comparable time-invariant super-classes. At last, several 
multidimensional structures are designed in order to explore 
data with a SOLAP application. Two opposed approaches have 
been implemented. The first solution consists in a temporally-



 

 

integrated cube with all the data (detailed and aggregated), even 
if a lot of comparisons are meaningless at the lowest level. This 
solution is valid only if the SOLAP front-end tools guide data 
exploration by imposing navigation constraints. The design of 
the OLAP server is very simple but front-end tools need to be 
specifically designed. The second solution consists in creating a 
specific cube (data mart) for each specific view that users want 
to analyse. In this approach, navigation constraints are taken 
into account immediately in the design of the multidimensional 
structures.  The analysis and the exploration of data can be done 
with standard front-ends tools for the descriptive part of data.  
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