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ABSTRACT: 
 

In the field of terrain visualization, the most efficient tool for real time rendering of complex landscape is level of detail (LOD) 
technique. In this paper, an optimization quadtree-based algorithm for dynamic generation continuous levels of a given complex 
landscape in real time is developed. In this algorithm, the conception of view-dependent is introduced, the fast searching algorithm 
for quadtree nodes is realized and the algorithm for repairing the cracks intrinsically caused by quadtree data structure is improved. 
The experimental results shows that the algorithm proposed can dynamically generate multi-resolution terrain model and real time 
terrain rendering can be attained. Furthermore, an all-in-one terrain visualization system which integrates adaptive triangulation, 
dynamic scene paging and spatial data updating is realized, thus large-scale terrain visualization  at interactive frame rate can be 
achieved. 
 
 

1. INTRODUCTION 

In recent years, with the rapid development of technology 
and the progress made in the fields of Computer Vision, 
Science Visualization, Photogrammetry, Remote Sensing and 
Computer Graphics, it’s common to generate high detailed 
terrain model with the data gained by photogrammetry. These 
complex terrain models consist of millions of triangles or more 
satisfied people’s demand for high sense of realism, however, 
the rendering performance of these data is seldom considered, 
which challenges the ability of rendering efficiency and 
computation capability of computers greatly. The most 
common approach is to exploit the traditional 3D graphics 
pipeline, which is optimized to transform and texture-map 
triangles and can provide high performance of geometry 
acceleration. But it’s still far to meet the practical demand even 
with the most advanced graphics pipeline available. With 
Digital Earth project presented and the demand for large-scale 
terrain simulation, the visualization of large-scale Digital 
Terrain Model (DTM) proves to be the bottleneck.  

General speaking, a complete system to display views of 
large datasets at high frame rates consists of components to 
manage disk paging of geometry and texture, LOD selection for 
texture blocks, LOD for triangle geometry, culling to the view 
frustum and triangle stripping. Thus, terrain simplification, 
multi-resolution representation and real-time dynamic 
rendering have become the focuses of large-scale terrain 
visualization. As to these topics, three kinds of effective 
methods were developed, i.e. the visibility preprocessing[1,2], 
the image-based rendering[3,4] and LOD(level of detail) 
algorithm[5-17]. Considering the efficiency and performance of 
terrain rendering, the most common used is LOD model, also 
called multi-resolution model, which is used to represent 
terrain models at multiple levels of detail. In this way, the 

complexity of the scene can be reduced and real-time smooth 
browse can be achieved.  
 

2. RELATED WORK 

Although the model representations achieved are not always 
the same, they can always fall into two types: the triangle-based 
multi-resolution terrain model[5-9] and tree-based multi-
resolution terrain model [10-17].  

Several methods use Delaunay triangulation to develop 
multi-resolution hierarchies [5, 6]. In particular, Cohen-Or and 
Lev-anoni [6] support on-line view-dependent LOD with 
temporal coherence, but must resort to “two-stage” geomorphs. 
Klein et.al [7] proposed one algorithm with precise error 
control mechanism, TINS are reconstructed by Delaunay  
triangulation when the viewpoint changed, so that any local 
simplification may leads to global triangulation and restrict the 
rendering efficiency. And now, the main idea is to save the 
information of vertex split and vertex collapse at the pre-
triangulation stage, in the process of real-time rendering, only 
use the information saved to avoid the time-consuming work of 
triangulation. Such as the Progressive Meshes algorithm 
proposed by Hoppe[8]. This algorithm defines a continuous 
sequence of meshes for increasing accuracy and store an 
arbitrary mesh as a much coarser base mesh together with a 
sequence of n detail records, from which approximations of any 
desired complexity can be efficiently retrieved. Jie Li[9] 
introduced an algorithm called Sorted Decremental Triangular 
Mesh (SDTM ) ,which is based on three transformations: Edge 
Collapsing, Surface Flattening and Line Straightening, through 
each transform can remove a vertex without holes and thus re-
triangulation process can be avoid . 

 Miller[10] uses a quadtree to preprocess a height field 
defined on a uniform grid. For each frame at run time, a 
priority queue drives quadtree refinement top-down from the 
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root, thus allowing specified triangle counts to be achieved 
directly. Taylor and Barrett [11] extract mesh approximations 
from rectangular quadtree hierarchies. Liu[12] presented the 
VDDMTM (view-dependent dynamic multi-resolution terrain 
model), the dynamic terrain simplification and the evaluation 
function are discussed and the bucket sorting method is 
adopted to repair cracks, but lacking of continuity constraints. 
Both Lindstrom et al. [13] and Duchaineau et al. [14] define 
bintree hierarchies, based on binary subdivision of right 
isosceles triangles, and demonstrate real-time view-dependent 
LOD. Because these representations are based on regular 
subdivision, they offer concise storage. Duchaineau et al. are 
able to create optimal approximating meshes through 
incremental changes at each frame. However, the meshes are 
only optimal within a restricted space of meshes, since the 
regular subdivision structure constrains both vertex locations 
and face connectivities. As a result, the approximations may be 
far from optimal when one considers the space of all possible 
triangulations of the domain. Chen Gang[15] concerns both 
quadtree-based and bintree-based algorithm .[17] depicted a 
visualization system integrated some key problems of terrain 
visulization. 
Focusing on the LOD control and culling to the view frustum 
and dealing with in-memory geometry and texture management, 
Our algorithm, a quadtree-based view-dependent algorithm 
applying to continuous multi-resolution terrain rendering is 
proposed , which can maintain the original topological 
structure without adding additional vertexes and the properties 
of original vertexes can all be used directly. 
 

3. MESH REPRESENTATION 

3.1 Terrain Quadtree 

When using quadtree to represent the terrain model, each node 
in the quadtree covers a rectangular region of the terrain. The 
root node which covers the whole terrain is the coarsest 
representation of the terrain, the lower nodes only cover a 
quarter of their father nodes. For two neighboring layers in the 
terrain quadtree, the top nodes have lower resolution than the 
bottom nods and hence the former induce more sampling errors 
than the later, thus less rendering quality, however, with fewer 
nodes to be rendered, the efficiency of the former is much 
higher than the later, which is key point in interactively 
browsing a terrain. Thus to gain a good balance between the 
efficiency and quality of terrain rendering, the key problem of 
quadtree-based terrain rendering is to decide a node set as a 
representation for the terrain quadtree considering both the 
static error (view-independent) and dynamic error (view-
dependent).  
In general, the original DEM data for terrain visualization can 
be expressed as a 2D matrix 
fpDEM[nMaxRow][nmaxCol].where mMaxRow and nMaxCol 
are the sampling points in the longitude and in latitude 
separately. When the DEM data are expressed as a terrain 
quadtree, each layer of the quadtree consists of the nodes 
gained by equidistantly resampling with a certain distance. For 
two neighboring layers, the top layer has half the resolution of 
the bottom layer. And any none-leaf node in DEM quadtree has 
four son nodes and each son node cover a quarter region of its 
father nodes.  
 
3.2 Static Errors Evaluation 

As the errors of terrain nodes can be defined accordingly to the 
terrain fluctuation, we give a static error evaluation function as 

following:   
Suppose that ),( yxh  is the elevation function and A(Star(P)) 
the average error plane. Node  static error can be expressed as 
formula (1):  

dxdyPStarAyxh
icd∫ −= ))((),()(ε （1） 

Where average error plane is a plane with least-squares fit from 
all the sampling points .Node static errors are often be 
computed in the stage of preprocessing and be saved in the 
fError field. 
 
3.3 Dynamic Error Evaluation 

In order to establish the direct relation between the viewpoint 
and the chosen resolution level, thus the farer the distance 
between the model and the viewpoint, the coarser the 
representation is used, the nearer, the more complex, we try to 
represent the importance by distance between the model and 
the viewpoint. Just as shown in Fig.1 , suppose the distance 
between the edge and the viewpoint is d, the length of the 
project plane is L,αααα is the field-of-view angle and is constant 
during the real time rendering, ττττ(pixels value) is the pixel 
number of the projected segment of the edge in the screen, and 
is the length of the line, which is parallel to the screen .  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
We can easily get the following formula: 

dtg
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where λ is the number of pixels per world coordinate unit in 
the screen coordinate system.  
According to formula (2) ，ττττ computed is the maximal length 
of projected segment of this line for a given d .To a certain 
edge, the larger the distance d is the, the less the ττττ is. At a 
given error tolerance, when the distance d is far enough, the 
length of its projected segment can be less thanττττ so that the 
line can be ignored.  
General speaking, there are two key factors that closely related 
to the dynamic error: the static error and the  distance between 
the node and the viewpoint. Considering all these factors 
together, the following dynamic error evaluation function is 
given:  
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where L is length of the terrain that the node covered，D is the 
distance between the center of the node and the viewpoint, α  is 
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Fig.1 The principle of projective projection 

Viewpoint 



 

field-of-view ， and k ′  can be used as a parameter to 
dynamically adjust system performance so that a comparatively 
steady rate is sustained . 
 

4. REPARING CRACKS 

4.1 The Cause of Cracks 

Using terrain quadtree to serve the purpose of multi-resolution 
representation, there may exist cracks intrinsically. The cause 
of cracks can be showed in Fig.2.Nodes C1  and  C3  has lower 
resolution than its neighboring node C2 , which cause the cracks 
( terrain region uncovered) exsist. In Fig.2，There is crack lies 
between nodes C1  and  C2, so to C1  and  C3.  
 

 

 

 

 

 

 

 
 
 
4.2 Repairing Cracks 

The most common used method to repair cracks is restricted 
quadtree method [10], which demands that the resolution 
between one node and its neighboring nodes be restricted to at 
most one layer. Zhanping Liu[3] proposed one bucket sorting 
method to repair cracks, but fails to keep the topological 
structure of cracks regions. Cheng Gang[4] adopt one method 
that keeps the right topological structure with the dependency 
of vertexes. There are some still other methods that adding 
additional triangles to cover the cracks, which may cause 
discontinuity. We proposed a new method to repair cracks in 
this section which can be expressed as following: 

For the sake of convenience, some basic concepts are 
presented here. And any node mentioned here belongs to the 
set of the sampling vertexes in the original terrain model.   

Definition 1: the son nodes of each none-leaf node in 
DEM quadtree are named as Fig.6，and the upper, the lower, 
the left, the right are defined as the regions covered by nodes 
[3，2]、[0，1]、[3，0]、[1，2] separately. 

Definition 2: As to each node select into the node set, its 
diagonal triangulation refers to line from one corner to the 
center of its parent node, as shown in Fig.3. 

Definition 3: The triangulation of quadtree consists of two 
patterns: directly diagonal triangulation (in Fig.4 (a)) and 
center-holding triangulation (in Fig.4 (b)). 
 
 
 
 
 
 
 
 
 
 
    

    

    

    

    
The following is the method to repair cracks : 
1) If the nodes selected have higher resolution than its 
neighboring nodes or with the same , the directly diagonal 
triangulation is executed. 
2)If the nodes selected have lower resolution than its 
neighboring nodes ,at first, we executes the diagonal 
triangulation, and then judge whether the son nodes satisfy 
1)， this process only involves those son nodes near their 
higher resolution neighboring nodes. If not, the iterate process 
will continue until 1) is satisfied. 

 
 
 
 
 
 
 
 
 
 

 
For example, as Fig.5，left node（pTreeNode1）has lower 
resolution than the right neighboring node（pTreeNode2）， 
the dashed is the lines should be added.  
The follwing is the iterative process: 
 
BEGIN：：：： 
SeamErase（（（（pTreeNode1，，，，pTreeNode2）｛）｛）｛）｛ 
pTreeNode1－－－－>bRight EQ TRUE 
IF  pTreeNode1 lies in the 1 region of parent node  

pTreeNode1－－－－>pParent->bTop=TRUE; 
ELSE  IF  pTreeNode1lies in the 2 region of parent node 

pTreeNode1－－－－>pParent->bBottom=TRUE; 
SeamErase （（（（ pTreeNode1->pSon[1], pTreeNode2-> 
pSon[0]）））） 
SeamErase （（（（ pTreeNode1->pSon[3], pTreeNode2-> 
pSon[2]）））） 
} 
END 
 
The other relationship between one node and his neighborings 
can be delt with just as the same. 
 

5.  REAL-TIME TERRAIN RENDERING 

Dynamic nodes selection is the process to choose an 
appropriate node set S as a representation from the terrain 
quadtree so that all the nodes in set S  should not only cover 
the whole terrain but satisfy the given error threshold, 
furthermore, any two nodes in set S should not intersect. 
In real-time rendering, the key problem is to maintain a 
relatively steady browsing rate. Thus it’s necessary to use the 
culling to view frustum, which is a dynamic process of 
choosing only those tree nodes visible to be rendered with the 
changes of viewpoint and moving directions. This may reduce 
the triangles to be rendered further. 
Fig.7 illustrates the changing regions applied to the active 
mesh as a user moves forward and to the left through a model. 
Regions of the model entering the view frustum (on the left an 
upper) are instantaneously choosed to be rendered, while 
regions leaving the view frustum (on the right and near the 
viewer) are instantaneously out of rendering. Fig.8 shows the 
culling to view frustum, the regions involved in the two blue 

Fig.2  the cause of cracks 

C1 
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a)directly 
triangulation 

b)center-holding triangulation 

Fig.4  quadtree triangulation 
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Fig.3 diagonal triangulation 
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Fig.5  repairing cracks between 
the left and the right  

Fig.6 the index of son nodes  



 

lines are visible in the frustum, and the details of regions far 
from the viewpoint are instantaneous coarsening. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

In real-time browsing, this is an iterative process and the nodes 
are adapted dynamically with the changes of error threshold, 
viewpoint and view direction. 
 

6. SCENE MANAGEMENT AND UPDATING 

6.1 Storage and Retrieval 

However, the  triangulation model described above can’t satisfy 
the demand for  large-scale  terrain  visualization. As to very 
large terrain database,   The input terrain data and texture data 
are partitioned into blocks of (2k+1) × (2k+1) grid points 
respectively. This partitioning provides efficient spatial 
selectivity and physical clustering on external storage. To 
accelerate the process of data initialization, the errors of each 
terrain nodes and the normals of each grid points are pre-
processed. When stored, all blocks are stored in its 
corresponding files and data in each file are stored as a 
quadtree node, furthermore, its child nodes may be set to null 
for some less fluctuant area. In this way, the terrain data in 
node can be easily retrieved and the coordinates, normal vector 
and texture coordinates of  grid points can all be used directly, 
which deserve the demand for some more space for storage. 
 
6.2 Dynamic Scene Updating 

To solve the problem of visualizing very large terrain database, 
a window paging concept as shown in Figure 11 is introduced 
because we can’t load  the whole terrain data  in main memory 
and only some blocks of the whole terrain data is necessary to a 
certain frame. As shown is Figure 9, our visible scenes always 
represents a window onto the real world in accordance with the 

current viewpoint and view parameters. Assume that the whole 
blocks we considered is n × n and the page of each frame 
m× m(m<<n), and the viewpoint is always at the center of the 
window page. As depicted in Figure 11, with  the viewpoint 
moving, only a few patches need to be updated.  Furthermore, 
the window page is not updated for every small variation of 
view position and view frustum parameters, an update only 
occurs when the variation exceeds a specific threshold. This 
help to reduce the data management costs significantly severe 
loss of display quality. The process of updating can be achieved 
with two work threads, one thread for scene updating and the 
other for displaying, especially for multi-processor computer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. EXPERIMENTS 

With the above algorithm proposed, the browsing of large-scale 
terrain with high rate is achieved. Fig 10 illustrates the effect of 
texture terrain visualization, (a) is the textured full-resolution 
terrain model, (b) is the simplified multi-resolution model and 
(c) the simplified model with texture mapping. Compared with 
(a), even with error threshold of 5 meters, the sense of realism 
and significant visual details are retained. Thus texturing may  
improve the visual impression of the terrain and allow higher 
error tolerance. Fig.11 illustrates the multi-resolution 
representations with different error threshold (10,5,2 and 1 
meter), with the error threshold decreasing, the terrain are 
rendered with more and more details. Fig.12 illustrates the 
effects of view-dependent LOD control, where the center of the 
picture is the current view position, the view direction is 
directly to the north and the viewer motion path is from left to 
right, the rendering regions with the highest resolution are 
always at the view position.  
We also performed some rendering and scene updating tests 
based the platform of Windows 2000, the hardware is PII400 
with Oxygen GVX1 card. Our whole test scene was a 
mountainous terrain consising of 48 × 87 patchs, each 
6.5km× 6.5km large and the always in-memory blocks is 9*9. 
Fig 13 shows the scene map.  Table 1 shows the performance 
of flying through the terrain. Fig 14 is one frame at interactive 
frame rate. 
  
 
 
TABLE 1  Frame rates comparision 
 
nuber of triangles     5274   10275   15783  20487  43784 
frames per second       86          45.1         35.7        22.1      14.1 
 

8. CONCLUSION 

The real-time rendering of large-scale surface is one of the 
most challenging problem in terrain visualization. We have 
proposed an optimization quadtree-based algorithm for 

new patchs 

retained patchs 

discarded patchs 

out of memory data 
movement 

Fig.9 dynamic scene update 

 Fig.8 the example of culling to view frustum 

Instantaneous  
coarsening 

Fig.7 The changes of viewpoint
     

new view frustum 

old view frustum viewed from above 

leaving regions entering regions 

 

viewer motion path 



 

dynamic generation continuous levels of a given complex 
landscape in real time. The experimental results shows that if  
the rendered triangulation can be  constricted to 1000~2000 
and the using of texture mapping, the algorithm can provided a 
high frame rates maintaining high image quality. Even under 
the ordinary circumstance, real-time dynamic browsing can be 
attained. 
Our future work will focus on the  management of geometry 
and texture data and the dynamic data-loading from disk 
interactively. Adapting our algorithm to very large terrain 
simulation, such as global terrain data is still a challenging 
problem. 
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a) 10 meter max. error  13%         b) 5 meter max. error  27%              c) 2 meter max. error  47%               d) 1 meter max. error  86% 
                                                            Fig 11   triangulated surface with different  error threshold 

                                                            Fig 12   moving of view position (from left to right) 

           a)  full-resolution model (textured)                         b) multi -resolution  model (grid)                    c) multi-resolution model (textured)    
Fig 10  textured terrain visualization 

Fig 13   scene map                                                     Fig 14  one frame of flying through (num:15783 FPS:35.7) 
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