
A DYNAMIC MULTI-RESOLUTION MODEL AND IT’S APPLICATION
 TO TERRAIN RENDERING

 Xu Qing Zhang Baoming Tan Bing Ma Dongyang

Institute of Surveying and Mapping, Information Engineering University
 ZhengZhou 450052, P.R.China

xq64@371.net

Commission IV, WG IV/6

KEY WORDS: DEM, Level of Detail, Multi-resolution Model, View Dependent，Terrain Rendering, Texture Mapping

ABSTRACT:

In the field of terrain visualization, the most efficient tool for real time rendering of complex landscape is level of detail (LOD)
technique. In this paper, an optimization quadtree-based algorithm for dynamic generation continuous levels of a given complex
landscape in real time is developed. In this algorithm, the conception of view-dependent is introduced, the fast searching algorithm
for quadtree nodes is realized and the algorithm for repairing the cracks intrinsically caused by quadtree data structure is improved.
The experimental results shows that the algorithm proposed can dynamically generate multi-resolution terrain model and real time
terrain rendering can be attained. Furthermore, an all-in-one terrain visualization system which integrates adaptive triangulation,
dynamic scene paging and spatial data updating is realized, thus large-scale terrain visualization at interactive frame rate can be
achieved.

1. INTRODUCTION

In recent years, with the rapid development of technology
and the progress made in the fields of Computer Vision,
Science Visualization, Photogrammetry, Remote Sensing and
Computer Graphics, it’s common to generate high detailed
terrain model with the data gained by photogrammetry. These
complex terrain models consist of millions of triangles or more
satisfied people’s demand for high sense of realism, however,
the rendering performance of these data is seldom considered,
which challenges the ability of rendering efficiency and
computation capability of computers greatly. The most
common approach is to exploit the traditional 3D graphics
pipeline, which is optimized to transform and texture-map
triangles and can provide high performance of geometry
acceleration. But it’s still far to meet the practical demand even
with the most advanced graphics pipeline available. With
Digital Earth project presented and the demand for large-scale
terrain simulation, the visualization of large-scale Digital
Terrain Model (DTM) proves to be the bottleneck.

General speaking, a complete system to display views of
large datasets at high frame rates consists of components to
manage disk paging of geometry and texture, LOD selection for
texture blocks, LOD for triangle geometry, culling to the view
frustum and triangle stripping. Thus, terrain simplification,
multi-resolution representation and real-time dynamic
rendering have become the focuses of large-scale terrain
visualization. As to these topics, three kinds of effective
methods were developed, i.e. the visibility preprocessing[1,2],
the image-based rendering[3,4] and LOD(level of detail)
algorithm[5-17]. Considering the efficiency and performance of
terrain rendering, the most common used is LOD model, also
called multi-resolution model, which is used to represent
terrain models at multiple levels of detail. In this way, the

complexity of the scene can be reduced and real-time smooth
browse can be achieved.

2. RELATED WORK

Although the model representations achieved are not always
the same, they can always fall into two types: the triangle-based
multi-resolution terrain model[5-9] and tree-based multi-
resolution terrain model [10-17].

Several methods use Delaunay triangulation to develop
multi-resolution hierarchies [5, 6]. In particular, Cohen-Or and
Lev-anoni [6] support on-line view-dependent LOD with
temporal coherence, but must resort to “two-stage” geomorphs.
Klein et.al [7] proposed one algorithm with precise error
control mechanism, TINS are reconstructed by Delaunay
triangulation when the viewpoint changed, so that any local
simplification may leads to global triangulation and restrict the
rendering efficiency. And now, the main idea is to save the
information of vertex split and vertex collapse at the pre-
triangulation stage, in the process of real-time rendering, only
use the information saved to avoid the time-consuming work of
triangulation. Such as the Progressive Meshes algorithm
proposed by Hoppe[8]. This algorithm defines a continuous
sequence of meshes for increasing accuracy and store an
arbitrary mesh as a much coarser base mesh together with a
sequence of n detail records, from which approximations of any
desired complexity can be efficiently retrieved. Jie Li[9]
introduced an algorithm called Sorted Decremental Triangular
Mesh (SDTM) ,which is based on three transformations: Edge
Collapsing, Surface Flattening and Line Straightening, through
each transform can remove a vertex without holes and thus re-
triangulation process can be avoid .

 Miller[10] uses a quadtree to preprocess a height field
defined on a uniform grid. For each frame at run time, a
priority queue drives quadtree refinement top-down from the

�����
����

���
���

���
	���

���������	�
��
��
�����������������

���������
��
�
�������������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

mailto:xq64@371.net

root, thus allowing specified triangle counts to be achieved
directly. Taylor and Barrett [11] extract mesh approximations
from rectangular quadtree hierarchies. Liu[12] presented the
VDDMTM (view-dependent dynamic multi-resolution terrain
model), the dynamic terrain simplification and the evaluation
function are discussed and the bucket sorting method is
adopted to repair cracks, but lacking of continuity constraints.
Both Lindstrom et al. [13] and Duchaineau et al. [14] define
bintree hierarchies, based on binary subdivision of right
isosceles triangles, and demonstrate real-time view-dependent
LOD. Because these representations are based on regular
subdivision, they offer concise storage. Duchaineau et al. are
able to create optimal approximating meshes through
incremental changes at each frame. However, the meshes are
only optimal within a restricted space of meshes, since the
regular subdivision structure constrains both vertex locations
and face connectivities. As a result, the approximations may be
far from optimal when one considers the space of all possible
triangulations of the domain. Chen Gang[15] concerns both
quadtree-based and bintree-based algorithm .[17] depicted a
visualization system integrated some key problems of terrain
visulization.
Focusing on the LOD control and culling to the view frustum
and dealing with in-memory geometry and texture management,
Our algorithm, a quadtree-based view-dependent algorithm
applying to continuous multi-resolution terrain rendering is
proposed , which can maintain the original topological
structure without adding additional vertexes and the properties
of original vertexes can all be used directly.

3. MESH REPRESENTATION

3.1 Terrain Quadtree

When using quadtree to represent the terrain model, each node
in the quadtree covers a rectangular region of the terrain. The
root node which covers the whole terrain is the coarsest
representation of the terrain, the lower nodes only cover a
quarter of their father nodes. For two neighboring layers in the
terrain quadtree, the top nodes have lower resolution than the
bottom nods and hence the former induce more sampling errors
than the later, thus less rendering quality, however, with fewer
nodes to be rendered, the efficiency of the former is much
higher than the later, which is key point in interactively
browsing a terrain. Thus to gain a good balance between the
efficiency and quality of terrain rendering, the key problem of
quadtree-based terrain rendering is to decide a node set as a
representation for the terrain quadtree considering both the
static error (view-independent) and dynamic error (view-
dependent).
In general, the original DEM data for terrain visualization can
be expressed as a 2D matrix
fpDEM[nMaxRow][nmaxCol].where mMaxRow and nMaxCol
are the sampling points in the longitude and in latitude
separately. When the DEM data are expressed as a terrain
quadtree, each layer of the quadtree consists of the nodes
gained by equidistantly resampling with a certain distance. For
two neighboring layers, the top layer has half the resolution of
the bottom layer. And any none-leaf node in DEM quadtree has
four son nodes and each son node cover a quarter region of its
father nodes.

3.2 Static Errors Evaluation

As the errors of terrain nodes can be defined accordingly to the
terrain fluctuation, we give a static error evaluation function as

following:
Suppose that),(yxh is the elevation function and A(Star(P))
the average error plane. Node static error can be expressed as
formula (1):

dxdyPStarAyxh
icd∫ −=))((),()(ε （1）

Where average error plane is a plane with least-squares fit from
all the sampling points .Node static errors are often be
computed in the stage of preprocessing and be saved in the
fError field.

3.3 Dynamic Error Evaluation

In order to establish the direct relation between the viewpoint
and the chosen resolution level, thus the farer the distance
between the model and the viewpoint, the coarser the
representation is used, the nearer, the more complex, we try to
represent the importance by distance between the model and
the viewpoint. Just as shown in Fig.1 , suppose the distance
between the edge and the viewpoint is d, the length of the
project plane is L,αααα is the field-of-view angle and is constant
during the real time rendering, ττττ(pixels value) is the pixel
number of the projected segment of the edge in the screen, and
is the length of the line, which is parallel to the screen .

We can easily get the following formula:

dtg

Ll

××

××=

2
2 α

λτ （2）

where λ is the number of pixels per world coordinate unit in
the screen coordinate system.
According to formula (2) ，ττττ computed is the maximal length
of projected segment of this line for a given d .To a certain
edge, the larger the distance d is the, the less the ττττ is. At a
given error tolerance, when the distance d is far enough, the
length of its projected segment can be less thanττττ so that the
line can be ignored.
General speaking, there are two key factors that closely related
to the dynamic error: the static error and the distance between
the node and the viewpoint. Considering all these factors
together, the following dynamic error evaluation function is
given:

D
LkCie

•
•′

≈
α

)(（3）

where L is length of the terrain that the node covered，D is the
distance between the center of the node and the viewpoint, α is

L l

τ

d

Project Plane

α

Fig.1 The principle of projective projection

Viewpoint

field-of-view ， and k ′ can be used as a parameter to
dynamically adjust system performance so that a comparatively
steady rate is sustained .

4. REPARING CRACKS

4.1 The Cause of Cracks

Using terrain quadtree to serve the purpose of multi-resolution
representation, there may exist cracks intrinsically. The cause
of cracks can be showed in Fig.2.Nodes C1 and C3 has lower
resolution than its neighboring node C2 , which cause the cracks
(terrain region uncovered) exsist. In Fig.2，There is crack lies
between nodes C1 and C2, so to C1 and C3.

4.2 Repairing Cracks

The most common used method to repair cracks is restricted
quadtree method [10], which demands that the resolution
between one node and its neighboring nodes be restricted to at
most one layer. Zhanping Liu[3] proposed one bucket sorting
method to repair cracks, but fails to keep the topological
structure of cracks regions. Cheng Gang[4] adopt one method
that keeps the right topological structure with the dependency
of vertexes. There are some still other methods that adding
additional triangles to cover the cracks, which may cause
discontinuity. We proposed a new method to repair cracks in
this section which can be expressed as following:

For the sake of convenience, some basic concepts are
presented here. And any node mentioned here belongs to the
set of the sampling vertexes in the original terrain model.

Definition 1: the son nodes of each none-leaf node in
DEM quadtree are named as Fig.6，and the upper, the lower,
the left, the right are defined as the regions covered by nodes
[3，2]、[0，1]、[3，0]、[1，2] separately.

Definition 2: As to each node select into the node set, its
diagonal triangulation refers to line from one corner to the
center of its parent node, as shown in Fig.3.

Definition 3: The triangulation of quadtree consists of two
patterns: directly diagonal triangulation (in Fig.4 (a)) and
center-holding triangulation (in Fig.4 (b)).

The following is the method to repair cracks :
1) If the nodes selected have higher resolution than its
neighboring nodes or with the same , the directly diagonal
triangulation is executed.
2)If the nodes selected have lower resolution than its
neighboring nodes ,at first, we executes the diagonal
triangulation, and then judge whether the son nodes satisfy
1)， this process only involves those son nodes near their
higher resolution neighboring nodes. If not, the iterate process
will continue until 1) is satisfied.

For example, as Fig.5，left node（pTreeNode1）has lower
resolution than the right neighboring node（pTreeNode2），
the dashed is the lines should be added.
The follwing is the iterative process:

BEGIN：：：：
SeamErase（（（（pTreeNode1，，，，pTreeNode2）｛）｛）｛）｛
pTreeNode1－－－－>bRight EQ TRUE
IF pTreeNode1 lies in the 1 region of parent node

pTreeNode1－－－－>pParent->bTop=TRUE;
ELSE IF pTreeNode1lies in the 2 region of parent node

pTreeNode1－－－－>pParent->bBottom=TRUE;
SeamErase （（（（ pTreeNode1->pSon[1], pTreeNode2->
pSon[0]））））
SeamErase （（（（ pTreeNode1->pSon[3], pTreeNode2->
pSon[2]））））
}
END

The other relationship between one node and his neighborings
can be delt with just as the same.

5. REAL-TIME TERRAIN RENDERING

Dynamic nodes selection is the process to choose an
appropriate node set S as a representation from the terrain
quadtree so that all the nodes in set S should not only cover
the whole terrain but satisfy the given error threshold,
furthermore, any two nodes in set S should not intersect.
In real-time rendering, the key problem is to maintain a
relatively steady browsing rate. Thus it’s necessary to use the
culling to view frustum, which is a dynamic process of
choosing only those tree nodes visible to be rendered with the
changes of viewpoint and moving directions. This may reduce
the triangles to be rendered further.
Fig.7 illustrates the changing regions applied to the active
mesh as a user moves forward and to the left through a model.
Regions of the model entering the view frustum (on the left an
upper) are instantaneously choosed to be rendered, while
regions leaving the view frustum (on the right and near the
viewer) are instantaneously out of rendering. Fig.8 shows the
culling to view frustum, the regions involved in the two blue

Fig.2 the cause of cracks

C1
C2

C3

a)directly
triangulation

b)center-holding triangulation

Fig.4 quadtree triangulation

left top bottom right

Fig.3 diagonal triangulation

0 1

2 3

Fig.5 repairing cracks between
the left and the right

Fig.6 the index of son nodes

lines are visible in the frustum, and the details of regions far
from the viewpoint are instantaneous coarsening.

In real-time browsing, this is an iterative process and the nodes
are adapted dynamically with the changes of error threshold,
viewpoint and view direction.

6. SCENE MANAGEMENT AND UPDATING

6.1 Storage and Retrieval

However, the triangulation model described above can’t satisfy
the demand for large-scale terrain visualization. As to very
large terrain database, The input terrain data and texture data
are partitioned into blocks of (2k+1) × (2k+1) grid points
respectively. This partitioning provides efficient spatial
selectivity and physical clustering on external storage. To
accelerate the process of data initialization, the errors of each
terrain nodes and the normals of each grid points are pre-
processed. When stored, all blocks are stored in its
corresponding files and data in each file are stored as a
quadtree node, furthermore, its child nodes may be set to null
for some less fluctuant area. In this way, the terrain data in
node can be easily retrieved and the coordinates, normal vector
and texture coordinates of grid points can all be used directly,
which deserve the demand for some more space for storage.

6.2 Dynamic Scene Updating

To solve the problem of visualizing very large terrain database,
a window paging concept as shown in Figure 11 is introduced
because we can’t load the whole terrain data in main memory
and only some blocks of the whole terrain data is necessary to a
certain frame. As shown is Figure 9, our visible scenes always
represents a window onto the real world in accordance with the

current viewpoint and view parameters. Assume that the whole
blocks we considered is n × n and the page of each frame
m× m(m<<n), and the viewpoint is always at the center of the
window page. As depicted in Figure 11, with the viewpoint
moving, only a few patches need to be updated. Furthermore,
the window page is not updated for every small variation of
view position and view frustum parameters, an update only
occurs when the variation exceeds a specific threshold. This
help to reduce the data management costs significantly severe
loss of display quality. The process of updating can be achieved
with two work threads, one thread for scene updating and the
other for displaying, especially for multi-processor computer.

7. EXPERIMENTS

With the above algorithm proposed, the browsing of large-scale
terrain with high rate is achieved. Fig 10 illustrates the effect of
texture terrain visualization, (a) is the textured full-resolution
terrain model, (b) is the simplified multi-resolution model and
(c) the simplified model with texture mapping. Compared with
(a), even with error threshold of 5 meters, the sense of realism
and significant visual details are retained. Thus texturing may
improve the visual impression of the terrain and allow higher
error tolerance. Fig.11 illustrates the multi-resolution
representations with different error threshold (10,5,2 and 1
meter), with the error threshold decreasing, the terrain are
rendered with more and more details. Fig.12 illustrates the
effects of view-dependent LOD control, where the center of the
picture is the current view position, the view direction is
directly to the north and the viewer motion path is from left to
right, the rendering regions with the highest resolution are
always at the view position.
We also performed some rendering and scene updating tests
based the platform of Windows 2000, the hardware is PII400
with Oxygen GVX1 card. Our whole test scene was a
mountainous terrain consising of 48 × 87 patchs, each
6.5km× 6.5km large and the always in-memory blocks is 9*9.
Fig 13 shows the scene map. Table 1 shows the performance
of flying through the terrain. Fig 14 is one frame at interactive
frame rate.

TABLE 1 Frame rates comparision

nuber of triangles 5274 10275 15783 20487 43784
frames per second 86 45.1 35.7 22.1 14.1

8. CONCLUSION

The real-time rendering of large-scale surface is one of the
most challenging problem in terrain visualization. We have
proposed an optimization quadtree-based algorithm for

new patchs

retained patchs

discarded patchs

out of memory data
movement

Fig.9 dynamic scene update

 Fig.8 the example of culling to view frustum

Instantaneous
coarsening

Fig.7 The changes of viewpoint

new view frustum

old view frustum viewed from above

leaving regions entering regions

viewer motion path

dynamic generation continuous levels of a given complex
landscape in real time. The experimental results shows that if
the rendered triangulation can be constricted to 1000~2000
and the using of texture mapping, the algorithm can provided a
high frame rates maintaining high image quality. Even under
the ordinary circumstance, real-time dynamic browsing can be
attained.
Our future work will focus on the management of geometry
and texture data and the dynamic data-loading from disk
interactively. Adapting our algorithm to very large terrain
simulation, such as global terrain data is still a challenging
problem.

REFERENCES
[1]Teller,S.,Manocha,D.,Hudson.T. et al., Visibility culling
using hierarchical occlusion maps Computer Graphics
1997,31(3):77
[2]Wang,Y.G.,Bao,H.J.,Peng,Q.S., Accelerated
walkthroughs of virtual environments based on
visibility preprocessing and simplification. Computer
Graphics Forum,1998,17(3):187
[3] Sun Hongmei, Ren Jicheng. et.al. Implementing interaction
in image-based rendering. The sixth International Conference
on Computer Aided Design and Computer Graphics, December
1-3,1999,Shanghai, China.
[4]Chen,S..E,QuickTime VR: an imaged-based approach to
virtual environment navigation.Computer
Graphics,1995,29(4):29
[5]Cignoni, P..Puppo,E.. et.al. Representation and visualization
of terrain surfaces at variable resolution. The Visual Computer
13 (1997),pp.199-217.
[6]Cohen-Or,D.. and Levanoni,Y. Temporal continuity of
levels of detail in Delaunay triangulated terrain. In
Visualization’96 Proceedings(1996),IEEE,pp.37-42.
[7] Reinhard Klein, Gunther Liebich, and W.Straser. Mesh
reduction with error control. In Proceedings of
Visualization’96(1996),pp.311-318.
[8] Hoppe H. Progressive mesh. Computer
Graphics .SIGGRAPH’96 Processing.
[9] Li Jie, Tang Zesheng. Real-time,continuous level of detail
rendering for 3D comples models. In Proceedings of CAD &
Graphics’97. Fifth international conference on CAD &CG
December 2-5,1997,Shenzhen,China.
[10]Mark C. Miller. Multiscale compression of digital terrain
data to meet real time rendering rate constraints. PhD thesis,
University of California, Davis,1995.
[11] Taylor,D.C and Barrett,W.A. An algorithm for continuous
resolution polygonalizations of a discrete surface. In
Proceedings of Graphics Interface’94(1994),pp.33-42.
[12] Liu Zhanping, Wang Hongwu, et.al. VDDMTM: a view-
dependent dynamic multi-resolution terrain model. The sixth
international conference on Computer Aided Design and
Computer Graphics, December 1-3,1999,Shanghai,China.
[13] P.Lindstrom, D.Koller,
W.Ribarsky,L.F.Hodges,N.Faust,and G.A.Turner. Real-
time,continuous level of detail rendering of height fields.In
Proceeding SIGGRAPH 96,P:108-118.ACM SIGGRAPH.

[14] Mark Duchaineau, Murray Wolinsky et al, ROAM
Terrain:Real-Time Optimally Adapting Meshes. In
Visualization’97 Proceedings(1997),IEEE,pp.81-88.
[15] Chen Gang. A Research on Multi-resolution Surface
Description and Real-time Rendering for Virtual Terrain
Environment. PhD thesis, Institute of Surveying and Mapping,
2000, Zhengzhou,China.
[16]Hoppe H. Smooth view_dependent level_of_detail control
and its application to terrain rendering.
http://research.microsoft.com/～hoppe.
[17] Renato Pajarola, ETH Zurich. Large scale terrain
visualization using the restricted quadtree triangulation.
http://www.vterrain.org (accessed 18 Mar. 2001)

a) 10 meter max. error 13% b) 5 meter max. error 27% c) 2 meter max. error 47% d) 1 meter max. error 86%
 Fig 11 triangulated surface with different error threshold

 Fig 12 moving of view position (from left to right)

 a) full-resolution model (textured) b) multi -resolution model (grid) c) multi-resolution model (textured)
Fig 10 textured terrain visualization

Fig 13 scene map Fig 14 one frame of flying through (num:15783 FPS:35.7)

	INTRODUCTION
	RELATED WORK
	MESH REPRESENTATION
	Terrain Quadtree
	Static Errors Evaluation
	Dynamic Error Evaluation

	REPARING CRACKS
	The Cause of Cracks
	Repairing Cracks

	REAL-TIME TERRAIN RENDERING
	SCENE MANAGEMENT AND UPDATING
	Storage and Retrieval
	Dynamic Scene Updating

	EXPERIMENTS
	CONCLUSION
	REFERENCES

