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ABSTRACT: 
 
Accompanying the successful deployments of the IKONOS and QuickBird high-resolution satellite imagery (HRSI) systems have 
been a number of investigations into the utilisation of HRSI for the extraction of precise 3D metric information.  Among the 
promising ‘alternative’ sensor orientation models investigated has been an approach based on affine projection. This model has 
previously been reported as performing well in experiments with stereo configurations of IKONOS imagery. In situations where 
precise sensor and orbital information is not fully accessible, empirical sensor orientation models requiring only a modest number of 
ground control points become an attractive proposition. This paper briefly summarises the theory and validity of the affine model as 
configured for application to sensor orientation and geopositioning for HRSI. The results of experiments with three HRSI stereo 
scenes are also presented, in which sub-pixel accuracy was achieved from both IKONOS and QuickBird imagery.  
 
 
 

1. INTRODUCTION 

The determination of sensor orientation models to support 
photogrammetric exploitation of satellite imagery has been an 
active research topic for around two decades. As the most 
rigorous approach, collinearity-based mathematical models 
have in the past been proposed and successfully applied for 
medium-resolution imaging systems such as SPOT, MOMS and 
IRS.   These models describe the rigorous geometry of the 
scanner, utilising knowledge of the satellite trajectory and 
sensor calibration data. Therefore, access to the camera model 
and orbit ephemeris data is indispensable for their successful 
application. In circumstances where the policy of the HRSI 
vendor does not permit access to the camera model and orbital 
data, the collinearity-based approach is generally not a viable 
proposition.   
 
As a substitute for rigorous sensor models, a number of 
‘alternative’ or ‘replacement’ models have been proposed. The 
best known and currently most widely utilised of these is the  
rational function model (also termed rational polynomial 
camera model or rational polynomial coefficients, and 
abbreviated to RFM, RPC or RPCs).  A set of polynomial 
coefficients provided by the satellite imagery vendor is 
accurately computed from the rigorous sensor model. RPCs 
have gained popularity as a replacement for the rigorous sensor 
model for HRSI (Fraser & Hanley, 2004; Grodecki & Dial, 
2003). A further alternative sensor orientation model is based 
on affine projection. This was initially applied with success to 
the orientation of SPOT and MOMS-2P imagery (Hattori et al., 
2000; Okamoto et al., 1998; 1999), and it has characteristics 
that indicate suitability for HRSI.   
 
The authors have been involved in a number of investigations 
centred upon assessment of the affine sensor orientation model 
for HRSI (Hanley et al., 2002; Fraser et al., 2002; Fraser & 
Yamakawa, 2004).  The overall results have indicated that the 

affine model achieves sub-pixel to 1-pixel level accuracy for 
Reverse-scanned IKONOS stereo configurations and even for 
IKONOS multi-strip configurations. In spite of these 
encouraging results, there have always been several concerns 
about the applicability of the model. These especially focus 
upon its lack of rigour and its likely shortcomings when the 
satellite imaging system does not perform in a linear manner. 
Justifiable questions therefore remain about how universally 
applicable the affine model is for HRSI sensor orientation. 
 
In this paper we summarize recent experiences with the affine 
model for sensor orientation and geopositioning from IKONOS 
and QuickBird imagery.  The paper is divided into two parts. 
The first part covers important issues involved in sensor 
orientation modelling based on affine projection.  The second 
presents results of experimental application with one IKONOS 
Geo and two QuickBird Basic stereo image pairs.  These will 
highlight both advantages and shortcomings of the affine model 
approach. 
 
 

2. THEORY OF AFFINE PROJECTION 

The standard formulation of the affine model is expressed as a 
linear transformation from 3D object space (X, Y, Z) to 2D 
image space (x, y): 
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where  A1 – A8 = parameters describing rotation (3), translation 

(2) and non-uniform scaling and skew distortion (3) 
 x, y  = coordinates in line and sample direction 
 X, Y, Z = object coordinates  
 



 

Equation 1 can be interpreted in several ways. It can be viewed, 
for instance, as a 3D affine transformation followed by an 
orthogonal projection, as a 3D similarity transformation 
followed by a skew parallel projection, or as a skew parallel 
projection followed by a similarity transformation.  In the 
application of the affine projection model, it is useful to 
consider its connection to the central-perspective model, i.e. a 
departure from collinearity equation.  In fact, the introduction 
of the common scale factor is the key to converting the non-
linear collinearity equation to a form of simple linear 
transformation.  The affine model is a further generalised form, 
which allows affinity (non-uniform scaling and skew distortion) 
in the image to object space transformation. 
 
In 3D scene reconstruction, a model formed by a stereo pair of 
affine images can be created from four corresponding 
(conjugate) points, and can be related to the object space by a 
3D affine transformation (twelve degrees of freedom).  On the 
other hand, for the special case of central perspective projection 
where the internal geometry is known, five points are required 
to form a model which is then transformed to object space by a 
similarity transformation (seven degrees of freedom). The 
distinction between these two approaches lies in the inclusion or 
omission of affinity and different scale factors in each axis of 
the model space.  To form a model of correct shape from affine 
images, constraints describing orthogonality and uniform 
scaling have to be imposed among the affine parameters. Also, 
a third image has to be added to the network to resolve 
ambiguity arising from the adoption of a common scale factor 
(Ono & Hattori, 2003). 
 
For satellite line scanner imagery, however, these constraints 
can be neglected because of the geometry of pushbroom 
scanners. With narrow field of view imaging systems, 
uncertainties and perturbations of the sensor and other 
parameters of affine distortion rarely assume significance. This 
also allows constraint-free application of the affine model to 
processed imagery (eg rectified) as well as raw scanner imagery. 
 
 

3. MODEL VALIDITY 

In the previous section, the affine model was presented as a 2D 
camera model.  However, the geometry of a line scanner is 
based on a central-perspective projection.  More precisely, it is 
comprised of a one-dimensional central-perspective projection 
in the scanning direction and an approximately parallel 
projection in the satellite track direction.  Therefore, in the 
application of the affine model to line scanner imagery, we 
have to be aware that two main conditions need to be preserved.  
Those relate to the parallelism of the imaging planes, and to an 
accounting for projective discrepancies between central-
perspective and affine projection.  The following subsections 
briefly address these issues. 
 
3.1 Satellite trajectory and object coordinate system 

The satellite’s trajectory is based on Keplar’s motion and is 
non-linear in a Cartesian frame.  This indicates that the 
direction of the pointing angle of the sensor with respect to the 
directions of the Z-axis (or the height direction) of the object 
coordinate system is time variant.  In other words, the imaging 
planes are not parallel to each other.  Furthermore, in a 
Cartesian system the distance to the curved ground surface is 
not constant, which in turn implies that the scale factor involved 
in Equation 1 cannot be constant for the entire scene. Therefore, 

the affine model could experience accuracy degradation when 
employed in a Cartesian frame. The use of additional 
parameters or the subdividing of an image strip into several 
sections, with the discrepancy level below a given tolerance, 
can offer solutions to this problem (Hattori et al., 2003). 
 
As it happens, the parallelism of image planes is better 
preserved in a map projection system (map grid coordinates and 
ellipsoidal height).  This is because the conformal map 
projection can be viewed as a cylindrical projection. A 
conformal map grid system such as UTM is a flat plane which 
is obtained by unfolding a cylinder wrapped around the 
ellipsoid at the central meridian.  Considering that an orbital 
ellipse for the imaging satellite has a focus at the centre of mass 
of the earth, and has a small eccentricity, the view direction of 
the sensor with respect to the normal to the Earth’s ellipsoid 
does not change drastically.  Hence, the constructed image 
planes retain near-parallelism in a map projection reference 
system. 
 
There are other important concerns relating to the orbital 
trajectory.  Among these are the effects of perturbed motion of 
the sensor during image acquisition.  For instance, if the roll 
angle ω changes continuously, a skew distortion will appear on 
the image.  This type of skew distortion is also caused by earth 
rotation.  Although the combined effects of all possible orbital 
perturbations can be complex, the affine model has shown itself 
capable of absorbing the perturbations of a fixed (non-agile) 
sensor to a considerable extent.  On the other hand, if the sensor 
is steerable (agile), care has to be taken with the application of 
the affine model, which basically has the form of a simple 
linear transformation. This issue will be further discussed in 
Section 3.3.   
 
It also follows that utilization of a geographic coordinate 
system with the affine model is not desirable because of its non-
linear nature. From the standpoint that the affine model can be 
regarded as a special case of the third-order rational function 
model, it may well require higher-order terms when employed 
in a geographic coordinate system.  For a nominal scene of 
HRSI, the author’s experience suggests that accuracy 
degradation will be anticipated in both a geographic reference 
system (latitude, longitude, height) or in a local tangential 
system (X,Y,Z) (Hanley et al., 2002). 
 
3.2 Projective discrepancies 

For affine theory to be rigorously applicable to the orientation 
of line scanner imagery, it is mandatory that the projection 
discrepancy between a central-perspective and an affine 
projection be compensated (Okamoto et al., 1992). The 
relationship between a central perspective and an affine 
coordinate is illustrated for the scan line direction in Figure 1, 
where the projective relationship between a ground point and a 
line scanner image is shown at unit scale.  The ground point P is 
projected onto the image point p by a central perspective 
projection and the image point pa by an affine projection.   
 
The central perspective image coordinate y can be converted to 
the affine image coordinate ya by the following (Okamoto et al., 
1992; Hattori et al., 2000; Fraser & Yamakawa, 2004): 
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where  y = central-perspective coordinate 
 ya, ya = affine coordinate without/with height correction 
 f = focal length 
 ω = roll angle of the sensor 
 ∆Z = height from the average height of terrain 
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Figure 1. Conversion from central-perspective to affine imagery 
 
Equations 2 and 3 are required for the central-perspective to 
affine image conversion.  It can be seen that the correction 
becomes more important when either the roll angle or field of 
view of the sensor are large (Equation 2) or the terrain is 
mountainous (Equation 3).  In other words, for a high-resolution 
sensor with a near-nadir view direction over low relief terrain, 
the perspective-to-affine image correction becomes negligible 
and conversion is not warranted. Of importance in an evaluation 
of the impact of the conversion is the invariance of the 
coefficients in Equations 2 and 3 (Fraser & Yamakawa, 2004). 
 
If the image is georectified to a reference plane, which is the 
case for IKONOS Geo and QuickBird Standard imagery, the 
georectified point pgeo

0  is observed instead of p.  Note that there 
is a linear relationship between the y-coordinate (sample 
coordinate) of pgeo

0 and pa
0 (ya = ygeocosω). This means that the 

correction of Equation 2 is implicit in the generation of 
georectified imagery. An image conversion for georectified 
imagery is therefore not required for moderately flat terrain. 
This is consistent with findings of practical applications 
employing IKONOS imagery (Fraser et al., 2002). However, 
for mountainous terrain, the image conversion may well have 
an impact upon geopositioning accuracy, as will be shown later. 
   
A ‘rigorous’ theory for satellite sensor orientation based on 
affine projection has also been proposed by Zhang & Zhang 
(2002). As it happens, the conversion coefficient in their model 
is of the same form as that in Equations 2 and 3 (Fraser & 
Yamakawa, 2004). 
 
3.3 Sensor dynamics 

Agile HRSI satellites can dynamically rotate and swing so that 
the sensor is tilted to 20-40 degrees off nadir.  This has 
advantages of shortening the revisit period and offering flexible 
imaging configurations, including along-track stereo recording.  
The ability to view obliquely is quite common for earth 
observation satellites and is, needless to say, required for 
across-track stereo coverage. A concern arising here in the 
context of the affine model is the possible introduction of non-
linear perturbations as a result of dynamically re-orienting the 
satellite during image recording.   IKONOS offers two imaging 
modes: ‘Forward mode’ and ‘Reverse mode’.  In the Forward 

mode, the sensor pointing direction is moving backwards, 
opposite to the satellite motion and changing at around one 
degree per second. In ‘Reverse mode’ the sensor is close to 
steady, maintaining a near constant view direction.   
 
In terms of geometrical characteristics, dynamic variation in 
pitch angle requires special attention because it could cause 
non-uniform resampling.  Although imagery products are 
georectified by utilising a very rigorous sensor geometry model, 
high frequency accelerations or perturbations of the sensor 
might not always be perfectly recovered and completely 
corrected for in the imagery.  This concern is more pronounced 
with QuickBird, simply because of its continuous re-orientation 
during image capture.  
 
The standard formulation of the affine model treats the 
orientation parameters as time-invariant.  However, as an 
approach to accounting for the presence of non-linear image 
perturbations, time-variant coefficients can be considered: 
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For geometrical interpretation, Equation 4 can be rearranged to: 
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where Π1 = a0

1X+ a0
2Y+ a0

3Z+ a0
4 = 0 relates to the image 

plane in line direction at x = 0 
           Π2 = a0

5X+ a0
6Y+ a0

7Z+ a0
8 – y = 0 relates to the image 

plane(s) in sample direction at x = 0  
 
As illustrated in Figure 2, in the line (across-track) direction the 
imaging plane Π1’(a0

1X+ a0
2Y+ a0

3Z+ a0
4-x=0), which is 

parallel to Π1, rotates around an axis defined as an intersection 
of planes Π1’ and Π3 (b1

1X+ b1
2Y+ b1

3Z+ b1
4=0), as time goes 

on.  Similarly, in the sample direction the imaging plane Π2  
rotates around an axis defined as an intersection of planes Π2 
and Π4 (b1

5X+ b1
6Y+ b1

7Z+ b1
8=0). 

 
 

 
 
Figure 2. Geometrical interpretation of time-variant affine 

parameters. 
 
The affine model with time-variant parameters requires eight 
GCPs instead of the usual four. The significant rise in the 
number of unknown parameters is not too desirable in terms of 
the numerical stability of the computation. Equation 4, therefore, 

Π1 
Π1’ 

Π3 



 

should be viewed as a generalised form of the extended affine 
model. In some circumstances, constraints may need to be 
imposed on certain parameters to enhance model stability.  For 
instance, if the object space system is locally shifted to the 
scene centre, the constant terms of the planes Π3  and Π4  could 
become close to zero meaning that the parameters A4 and A8 
may then need to be constrained as time-invariant. 
 
Equation 4 can be supplemented with additional parameters to 
describe quadratic or possibly higher-order error effects. These 
can be cast as functions of either image or object space 
coordinates.  The choice of additional parameters depends upon 
the type of sensor.  However, the first priority for the affine 
model would be four quadratic terms.  In this case, the extended 
formulation is expressed as follows: 
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where  Ai, Bi = time-variant/invariant parameters 
 l, s = line, sample coordinates  
 X,Y,Z = object space coordinates  
 
Geometrically, the adoption of the additional parameters allows 
the image planes Π1’ and Π2 to be curved. Further investigation 
will provide more insight into the connection between the affine 
and higher-order rational polynomial models. 
 
 

4. EXPERIMENTS 

4.1 Overview 

To verify the applicability of the affine model to HRSI, three 
sets of testfield HRSI data have been investigated. The aims of 
the experiments were, first, to ascertain the degree of accuracy 
degradation, if any, of the affine model when employed in 
mountainous terrain; and, second, to evaluate the extended form 
of the affine model (Equation 7) for QuickBird Basic imagery.  
Table 1 summarises the testfield data involved in the 
experiments.  Further details of the  testfields can be found in 
Fraser et al. (2002), Noguchi et al. (2004) and Fraser & 
Yamakawa (2004). 
 
 

 
 Hobart Melbourne Yokosuka 

Area 
120 km2 
(11 x 11) 

300 km2 
(17.5x17.5) 

300 km2 
(17.5x17.5) 

Elevation  1280 m 50 m 170 m 
No. of 
 GCP/CPs 

110 points 
by GPS 

81 points 
by GPS 

61 points 
by GPS 

Types of 
feature 
point 

Mainly road 
roundabouts 

Mainly road 
roundabouts 

Mostly corner 
features 

Image 
coverage 

  IKONOS Geo 
stereo pair 

  B/H = 0.8 

QB basic 
stereo pair 

B/H = 1.0 

QB basic 
stereo pair 

B/H = 1.0 
Image  
Meas. 

Digital mono comparator 
(estimated accuracy of 0.2 pixel) 

 

Table 1. Summary of the Hobart, Melbourne and Yokosuka 
testfields. 

4.2 Results with IKONOS   

The results of affine bundle adjustments of the IKONOS Geo 
stereo pair imagery covering Hobart (captured in Reverse 
mode) are listed in Table 2.  Because of the mountainous nature 
of the terrain, the standard affine formulation coupled with the 
iterative height correction approach (Subsection 3.2) was 
employed.  To assess the effect of the projection discrepancies 
due to the influence of terrain, the standard formulation without 
the height correction was also applied (numbers in brackets in 
Table 2).  It should be noted that several GCP configurations 
were tested for each GCP set (same number of control points), 
except for the case of all GCPs. The RMS discrepancies and 
standard errors shown in each row of Tables 2 and 4 are 
representative values for each GCP set and they are calculated 
from independent checkpoints only.  The term “RMSxy” in 
Tables 2 and 4 denotes the RMS value of image coordinate 
residuals from the bundle adjustment. 
 
 

Std. errors at 
checkpoints (m) 

RMS discrepancies at 
checkpoints (m) GCP 

(CP) 
RMSxy 
pixels 

σE / σN / σH SE / SN  / SH 

All (-)*1) 0.13 - / - / - 0.54 (0.76) / 0.34 / 0.56 

9 (101) 0.13 0.49 / 0.46 / 0.85 0.62 (0.83) / 0.43 / 0.73 

6 (104) 0.13 0.56 / 0.50 / 0.86 0.62 (0.84) / 0.41 / 0.72 

4 (106) 0.13 0.77 / 0.75 / 1.19 0.62 (0.90) / 0.42 / 0.77 

9 GCPs, none on Mt Wellington (101 checkpoints)  
9 (101) 0.13 0.70 / 0.65 / 1.06 0.70 (0.83) / 0.46 / 1.10 

*1) All GCPs loosely weighted (σ = 3 m) 

Table 2.  Results of affine bundle adjustments for IKONOS Geo 
stereo image pair covering the Hobart testfield. 

 
Overall, sub-pixel accuracy was achieved for all GCP sets, 
except for the case of 9 GCPs where none of the control points 
were selected from the Mt. Wellington area.  The height 
correction produced an accuracy improvement in RMS 
geopositioning of about 0.2m in the Easting direction.  This is 
because the image conversion for the height correction directly 
affects the sample coordinates, which correspond to the Easting 
direction in this case.  To illustrate the effect of the height 
correction, the planimetric RMS discrepancy vectors from the 
all-GCPs bundle adjustment (the 1st row of Table 2) are plotted 
in Figure 3 for the cases of with and without height correction.  
 
 

 
      a) Without height correction    b) With height correction 

Figure 3. Plots of planimetric discrepancy vectors for the all-
GCP bundle adjustment, Hobart IKONOS image. 

 

1m 

Mt. Wellington 

1m 

Mt. Wellington 



 

Figure 3a illustrates that a systematic trend is evident in the 
residual vectors in the Easting (across-track) direction, 
especially in the surroundings of 1300m high Mt. Wellington, 
whereas this error signal is substantially reduced when the 
height correction is undertaken (Figure 3b).  This supports the 
view that projection discrepancies caused by the height 
undulation are largely removed by the image conversion.  
However, even with the height-correction the RMS values are 
still marginally higher in Easting than in Northing. One of the 
reasons for this is attributed to errors in the image conversion 
arising from uncertainty in the value of the roll angle of the 
sensor utilised for the computation of the height-corrected y-
coordinate.  However, the accuracy achieved is still considered 
to be impressive from a practical point of view.  In fact, it is 
noteworthy that sub-pixel accuracy was attained with the 
standard formulation, Equation 1 (ie. without the height 
correction). 
 
4.3 QuickBird results 

As mentioned in Section 3.3, it is expected that QuickBird 
imagery will be more prone to adverse effects from 
dynamically changing sensor orientation. To first verify the 
presence of an error signal from the sensor dynamics, and to 
quantify its magnitude in the imagery, spatial resections were 
computed for three formulations of the affine model: 1) the 
standard 8-parameter affine, 2) the extended affine with time-
variant parameters, and 3) the extended model with additional 
parameters. The resulting RMS values of image coordinate 
residuals are listed in Table 3.   
 
It is apparent from the results in Table 3 that non-linear error 
influences are present and that these cannot be fully 
compensated via a standard affine formulation, Equation 1.  In 
fact, the implementation with time-variant affine parameters 
and additional parameters is required to yield satisfactory 
results.  It can also be seen that the magnitude of the non-
linearity induced image coordinate errors is case-dependent, 
ranging here from roughly 5 to 16 pixels. 
 
 

RMS of image 
residuals (pixels) Formulation 
Left Right 

QuickBird Melbourne 
Standard 15.26 5.38 
Time-variant parameters 7.99 2.48 
Time-variant parameters plus AP 0.37 0.22 

QuickBird Yokosuka 
Standard 10.40 15.95 
Time-variant parameters 1.63 8.27 
Time-variant parameters plus AP 0.46 0.60 

 

Table 3.  Resection residuals from the affine model. 
 
In light of the results in Table 3, the extended formulation of 
the affine model with additional parameters was adopted for the 
bundle adjustments of the QuickBird Basic stereo pairs. The 
results of these adjustments are listed in Table 4.  Figure 4 
shows plots of the residual image coordinate error vectors from 
the bundle adjustment for the all-GCPs case (the 1st row of 
results in each testfield). The systematic trends exhibited in the 
plots of residuals, which show approximate alignment with the 
satellite track direction, suggest the existence of higher-order 
sensor perturbations, which cannot be modelled by the extended 

affine model, Equation 7.  Similar, though much smaller 
systematic error trends have also been seen in RPC bundle 
adjustments of QuickBird stereo imagery (Fraser & Hanley, 
2004). 
 
 

Std. errors at 
checkpoints (m) 

RMS discrepancies 
at checkpoints (m) 

Number 
of GCPs 

(CP) 

RMSxy 
(pixels) 

σE / σN / σH SE / SN / SH 

QuickBird Melbourne stereo 

All (-)*1) 0.13 - / - / - 0.22 / 0.24 / 0.37 

15 (66) 0.16 0.16 / 0.15 / 0.24 0.26 / 0.29 / 0.42 

12 (69) 0.16 0.17 / 0.15 / 0.26 0.25 / 0.32 / 0.41 

10 (71) 0.16 0.18 / 0.15 / 0.26 0.32 / 0.36 / 0.43 

QuickBird Yokosuka stereo 

All (-)*1) 0.17 - / - / - 0.37 / 0.40 / 0.48 

15 (46) 0.20 0.17 / 0.21 / 0.36 0.50 / 0.48 / 0.60 

12 (49) 0.19 0.19 / 0.23 / 0.39 0.49 / 0.47 / 0.56 

10 (51) 0.19 0.21 / 0.26 / 0.43 0.49 / 0.48 / 0.54 

*1). All GCPs loosely weighted (σ = 2 m) 

Table 4.  Results of affine bundle adjustments of QuickBird 
Basic imagery of Melbourne and Yokosuka testfields. 

 
 
 

 
                 Left stereo                  Right stereo 

a) Melbourne 
 

 
                 Left stereo                  Right stereo 

b) Yokosuka 

Figure 4.  Plots of image coordinate residuals from affine 
bundle adjustment for QuickBird (case of all GCPs). 

 
 

5. CONCLUSION 

This paper has discussed three formulations of the affine model 
for HRSI sensor orientation, and summarized results obtained 
with this empirical approach for geopositioning. In the context 

0.5 pixel 0.5 pixel 

0.5 pixel 0.5 pixel 



 

of ongoing developments involving the affine model, two 
principal issues have been dealt with. The first concerns the 
impact of a height correction for image coordinates, which 
arises from the discrepancy between an affine and central-
perspective projection. The second relates to the potentially 
adverse effects on the standard affine model of dynamic re-
orientation of the satellite during image recording. These effects 
can, however, be modelled to reasonable accuracy via time-
variant affine parameters, along with four quadratic additional 
parameters and the recommendation that the object space 
coordinates be in a projection system such as UTM. 
 
Finally, experimental application of affine bundle adjustments 
to one IKONOS and two QuickBird stereo image pairs have 
illustrated both the advantages and potential shortcomings of 
the affine model, in both its standard and extended forms. The 
results from the IKONOS Hobart testfield have shown that the 
affine model does not cause significant accuracy degradation, 
even over terrain with an elevation range of 1300m.  Moreover, 
while the perspective-to-affine image correction procedure 
leads to accuracy improvements, these amounted in Hobart to 
only about 0.2 pixels in the across-track direction.  
 
On the other hand, it was found for QuickBird Basic imagery 
that the extended formulation of the affine model with four 
additional parameters, Equation 7, was needed to produce sub-
pixel accuracy. This also required 10 to 15 GCPs.  The 
accuracy achieved from the experiments overall is essentially 
equivalent to that obtained with the more rigorous RPC model 
(eg Fraser & Hanley, 2004; Noguchi et al., 2004).  These 
encouraging results lend weight to the view that the affine 
model is a practical sensor orientation model that should, 
however, be used with some caution for QuickBird Basic and 
IKONOS Forward scanned imagery. 
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