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Castelldefels, Spain

KEY WORDS: calibration, orientation, static, dynamic, modelling, estimation, GPS/INS, networks.

ABSTRACT:

Modern photogrammetry and, more generally, the current technology for Earth observation are dependent on various
forms of data processing. After the sensing or acquisition step, the data are available in digital format and all what
has to be done is to calibrate, to orient and to extract georeferenced information. In this context, data processing for
trajectory determination, sensor calibration and sensor orientation follows various patterns, all of them particular cases
of the general time dependent parameter estimation problem defined by the equationf(t, `(t) + v(t), x(t), ẋ(t)) = 0,
wheref is the mathematical functional model,t is the time,`(t) is the time dependent observation vector,v(t) is a
white-noise generalized process vector,x(t) is the parameter vector anḋx(t) the time derivative ofx(t). A number of
different approaches to estimate parametersx(t) from data`(t) has been developed according to the particular form of
the above model equation.` + v = f(x), f(` + v, x) = 0, f(t, `(t) + v(t), x(t)) = 0 andẋ(t) = f(t, `(t) + v(t), x(t))
are examples of model equations leading to network and Kalman filter/smoother solution strategies. Although these
two procedures have proven to be well suited to their respective model equation structure, the paper discusses some
of their limitations and alternatives, particularly for time dependent problems. The proposed family of methods uses
numerical techniques that integrate the rigorous least-squares method and the finite difference methods for the solution
of the Boundary-Value problem of Ordinary Differential Equations. Although we do not claim that this has to substitute
existing, proven techniques, the paper indicates how hybrid static and dynamic data processing can be easily integrated
with this new approach.

1 INTRODUCTION

Nowadays, trajectory determination1 for navigation, geode-
tic positioning and remote sensing orientation is mainly
based on two parameter estimation methodologies: least-
squares network adjustment —the network approach (NA)—
and Kalman filtering and smoothing —the state-space ap-
proach (SSA). It is known that Kalman filtering is a gen-
eral form of sequential least-squares. However, in practice,
there is no much connection between the two approaches
other than some output estimated parameters following the
network approach being used as input observations for a
second estimation step following the state-space approach.
And vice versa. It must be mentioned that the GPS re-
search related community has since long been faced to
the problem of making a decision between classical least-
squares, Kalman filtering and smoothing and some inter-
mediate approaches (Xu, 2003). The dilemma holds for
both the processing of moving object trajectories and for
the processing of stationary or quasi-stationary objects. For
the family of problems just mentioned (static, quasi-static
and kinematic) there are examples of successful applica-
tion of both the state space approach and of the network
approach. To illustrate the statement, we cite two “clas-
sics” that have had and still have a significant impact in ge-
omatics in the past decade. The GLOBK system (Herring,
2003) uses Kalman filtering and has been successfully ap-

1In this paper trajectory determination is understood as the determina-
tion of a time series of positions, velocities and attitudes.

plied to time-dependent precise networks for deformation
monitoring originating from VLBI and GPS. At the oppo-
site end, the GPS aircraft trajectories for Earth observation
applications like aerial triangulation or LIDAR aerial sur-
veys were determined under the network approach (Frieß,
1990).

The goal of the ongoing research behind this paper is not
to devise a “unified” algorithm that package both classi-
cal least-squares and state-space estimation in “one.” The
approach is rather pragmatic —numerical, algorithmic and
software oriented— as the theories of least-squares estima-
tion (Koch, 1995) and state-space estimation (Maybeck,
1979a, Maybeck, 1979b) are well established. The actual
goal is to interpret stochastic dynamic models —i.e., dif-
ferential or difference equations— and their time depen-
dent unknown parameters —i.e., stochastic processes— in
a way that, for the time dependent parameter estimation
problem, both the network approach and the state-space
approach are applicable. We do not claim that both ap-
proaches be fully interchangeable. We do claim that in
some circumstances, it might be advantageous to apply the
network approach to the estimation of time dependent pa-
rameters. As well, we claim that time dependent problems
in geomatics do not necessarily require a SSA treatment.

In addition to the numerical, algorithmic, software data
modelling and software use potential advantages of a uni-
fied approach, there are a number of estimation problems
that might benefit from it. They include the modelling



of trajectories for airborne and spaceborne imaging lin-
ear arrays, the calibration of inertial instruments (angular
rate sensors and accelerometers) with “cross-over” type
of observation equations and the modelling/estimation of
geodetic networks for monitoring and prediction purposes.
It has to be mentioned that a parallel research effort is be-
ing conducted by A. T́ermens for inertial strapdown kine-
matic airborne gravimetry (T́ermens and Colomina, 2003,
Térmens and Colomina, 2004) for an optimal calibration
of accelerometers.

The key idea behind this investigation is that a stochas-
tic dynamic model (a stochastic differential equation) and
its stochastic processes can be transformed through dis-
cretization into a family of stochastic difference equations
and discrete time processes. Those, in turn, can be seen as
a family of observation equations and parameters that can
be processed under the network approach.

The paper begins by reviewing some definitions and con-
cepts from the theory of stochastic processes and stochas-
tic differential equations. We take this approach because
of the available sound theory that includes continuity the-
orems and numerical solution methods consistent with the
stochastic nature of the problem. Then, the state-space and
the network approaches are defined and compared. Once
this is done, in section 6 we define time dependent net-
works in a way that generalize the traditional least-squares
based networks. Here, the scope of the concept of a dy-
namic or time dependent network is precisely defined. The
algorithmic and software implementation implications of
section 6, should be clear at that point. However, we un-
derline them in section 7 for readers not familiar with the
development of network adjustment systems.

2 STOCHASTIC PROCESSES

A stochastic process is a parametrized collection of ran-
dom variables defined on a probability space(Ω,F , P )
(Law ler, 1995). The parameter spaceT is usually the time
or a time interval. In other words, a stochastic processx is
a set of random variables indexed by time

x := {x(t) | t ∈ T, T ⊂ R}

whereR is the set of real numbers. In this paper, and in
most applications, the parametrizing, indexing or tagging
subsetT is eitherN , the set of natural numbers, orR. If
T = N , x is called a discrete time process and in the other
case,T = R or T = [a, b] ⊂ R, it is called a continu-
ous time process. The set where the random variables take
values, typicallyRn, is called the state space.

From the definition, it is clear that for eacht ∈ T , we have
a random variableω −→ x(t)(ω) := x(t, ω) for ω ∈ Ω.
But the functionx(t, ω), for a given fixedω, can be seen
as a function oft, t −→ x(t, ω) for t ∈ T . This function
is apath. We introduce the concept of a path because it is
close to our intuition in INS and GPS trajectories, satellite
orbits, etc. When we look at a trajectory,ω can be seen as a
point or one of our repetitive experiments and thusx(t, ω)

would represent the position of the point at timet or the
result of the particular experiment.

A fundamental stochastic process is theBrownian motion
(or Wiener processor continuous random walk) named af-
ter a 19th century botanist who observed that pollen grains
on a liquid described an irregular trajectory. Its formal
derivative is called white noise. White noise is formally
considered a stochastic process to facilitate the visualiza-
tion and interpretation of the continuous idealization of
discrete time processes whose random variables are inde-
pendent, normally distributed ones. (Sometimes, in the en-
gineering literature, it is said that the white noise process is
a helpful concept that does not exist in the world of math-
ematics. In fact, this statement is wrong. White noise ex-
ists as a generalized stochastic process (Øksendal, 1993), a
slightly more complex concept than a stochastic process.)

The stochastic analogs ofordinary differential equations
(ODE) are thestochastic differential equations(SDE). The
theory for SDE can be found in (Øksendal, 1993). SDE
arise naturally from real-life ODE whose coefficients are
only approximately known because they are measured by
instruments or deduced from other data subject to random
errors. The initial or boundary conditions may be also
known just randomly. In these situations, we would ex-
pect that the solutionp of the problem be a stochastic pro-
cess. We will callp = p(t, ω) a prediction. Under certain
[non-restrictive] hypothesesp has a number of properties
including that it is t-continuous (Øksendal, 1993, pp. 48-
49).

Assume now that we have managed to predict the stochas-
tic processp —the system— over a time interval[t0, tf ].
In our application, determiningp reduces to determine an
estimate of the pathE(p(t)) and estimates of the process
auto-covariance functions

C(t1, t2) := E
(
(p(t1)− E(p(t1)))(p(t2)− E(p(t2)))T

)
.

Assume further that we are able to relatep through some
linear model —the observation equations— to another pro-
cessz —the observations— so we have additional infor-
mation ofp. A natural question arises: can we improve
our estimates ofp with the additional informationz?. The
answer, in general, is yes, and the tool is the well known
filtering and smoothing. Filtering at times refers to find-
ing a best estimate for the system̂p(s), t0 < s < tf given
the observationsz in the interval[t0, s]. Smoothing, refers
to finding the best estimate for̂p(s) at any time by using
the information ofz all over [t0, tf ]. Saying that̂p(s) is
best means thatE

(
‖p− p̂‖2

)
is minimal over all solutions

of the system SDE that verify the observation equations
(see (Øksendal, 1993, pp. 58-59) for a detailed description
of the probability function associated to the SDE and to the
observations white noise processes).

3 THE STATE-SPACE APPROACH

We will call state-space approach(SSA), the methodology
and principles of solving the above problem of prediction,



filtering and smoothing for time discrete processes (sec-
tion 2).

The SSA is the well known Kalman filtering and smooth-
ing published by R.E.Kalman in 1960 (Kalman, 1960) and
discussed in numerous textbooks from different points of
view (Maybeck, 1979a, Øksendal, 1993). Equivalent later
formulations in terms of sequential least-squares can be
found in (Teunissen, 2001). The SSA has been success-
fully applied to precise navigation for surveying applica-
tions (Scherzinger, 1997).

We borrow the state-space name from the state-space rep-
resentation of a dynamical system. A state vector is a min-
imal set of variables whose values are able to describe a
system. The optimal solution to the prediction-filtering-
smoothing (section 2) is obtained through one of the recur-
sive algorithms of the Kalman filter type.

In the prediction-filter cycle, the most important entity is
the state vector. All the rest are subordinated parameters.
In a way, the state vector dominates the scene which, in
some situations, may represent a problem. One example
is the difficulty in the feedback of the results of adaptive
Kalman filter steps to a correct scaling of the inertial obser-
vations (angular rates and linear accelerations) in the iner-
tial navigation equations. (In thenetwork approach(NA),
this reduces to a classical estimation of variance compo-
nents). Another example of the weaknesses of the SSA
is the estimation of gravity error states in the inertial nav-
igation equations. We may estimate the gravity error of
our gravity model in better or worse ways, depending on
a number of instrumental, modelling and mission related
factors. But we cannot impose that the gravity error esti-
mated at timet1 at pointx1 is the same as the gravity error
estimated at a later timet2 at pointx2 if x2 = x1 —the so-
called cross-over points— as discussed in (Térmens and
Colomina, 2003, T́ermens and Colomina, 2004).

4 THE NETWORK APPROACH

In geomatics, a network is a set of instruments, observa-
tions and parameters that are inter-related through mathe-
matical models. The mathematical models are the obser-
vation equations. Tosolve the networkis to perform an
optimal estimation of its parameters in the sense of least-
squares; i.e., the expectation of the parameters and their
covariance is known. Moreover, their covariance is mini-
mal (Koch, 1995). The network approach exhibits superior
performance when the connectivity that observations cre-
ate between the unknown parameters is high.

In the network approach, our network will be solved in a
grand, single adjustment step where all parameters, time
dependent and independent, will be simultaneously esti-
mated. This is giving us some hint on how to implement
the network approach for time dependent networks in a
computer programme. We discuss this in sections 6 and 7.

An [unknown] random variable —a time independent par-
ameter— is to the classical network approach what an [un-

known] stochastic process —a time dependent parameter—
is to the state-space approach. In the following, the names
“time dependent parameter” and “stochastic process” will
be used indistinctly.

Note that the state-space approach can be used, as well, for
the estimation of time independent parameters as they can
be modeled as stochastic constant processes. A stochastic
constant takes the same valuec over time. c may or may
not be known before the estimation process; but once it
is estimated it will not change over the time period where
the stochastic process is defined. An example of a random
constant is a GPS ambiguity —integer or real— in a phase
observation equation.

Note, as well, that a stochastic dynamic model (stochastic
differential equation) can be transformed into a set of sto-
chastic difference equations. Then, the family of stochas-
tic difference equations can be seen as a set of observation
equations and the network approach can be used. To dis-
cretize a stochastic dynamic model, we propose the differ-
ence methods (it is the “natural” way to do it). We are
aware of limitations and/or inferior performances of the
numerical difference methods for the solution of ODEs.
However, the comparative analysis between difference met-
hods and other more sophisticated numerical methods (vari-
ational methods, multiple shooting, ...) is usually done
in the context of deterministic ODE (Stoer and Bulirsh,
1992). But, while the extension or generalization of the
difference methods for deterministic ODE to the SDE is
straightforward, the extension of the other mentioned meth-
ods is less obvious. In future investigations we will explore
these numerical issues. Further, we refer the reader to the
specific literature on the numerical solution of SDE (Kloe-
den and Platen, 1999).

5 COMPARATIVE ANALYSIS

In the previous sections we have looked at the SSA and the
NA as different approaches to, essentially, solve the same
problem. Before we introduce and discuss time dependent
networks we summarize their main advantages and disad-
vantages from a geomatic perspective.

NETWORK APPROACH

• Advantages:

1. Support for connectivity of parameters regard-
less of time.

2. Support for both traditional networks and for SDE.

3. Possibility to compute the covariance of a lim-
ited number of selected parameters.

4. Variance component estimation.

• Disadvantages:

1. Large system of linear equations.2

2The matrices are essentially of the band-bordered type and we can
apply sparse matrix techniques, fill-in reduction techniques and memory
paging to solve the system of linear equations.



2. Real-Time parameter estimation not feasible in
general.

STATE-SPACE APPROACH

• Advantages:

1. Real-Time parameter estimation capability.

2. The state vector dominates the scene.3 That is,
there is a clear definition of what the system is.

• Disadvantages:

1. Connectivity of parameters through static obser-
vation equations is not supported.

2. Filter divergence.

3. Computation of covariance matrices for all the
state vectors cannot be avoided.

The above list is by no means comprehensive but, in our
opinion, the only situation where the SSA is clearly su-
perior is real-time parameter estimation. This statement
should not be taken as a recommendation. In real life
problems, other factors may be taken into account. For in-
stance, in INS/GPS trajectory determination, a SSA based
software engine can be applied to both real-time and post-
processing computation modes. This aspect may be funda-
mental before making implementation decisions.

6 TIME DEPENDENT NETWORKS

A time dependent networkis a network such that some of
its parameters are time dependent; i.e., that some of its pa-
rameters are stochastic processes. Analogously, we define
that to solve a time dependent networkis to perform an
optimal estimation of its parameters which include some
stochastic processes. (However, this is easier said than un-
derstood and done. In this section we clarify the meaning
of the above statement and in section 7 we suggest some
implementation mechanisms.) We recall that optimality in
estimating a stochastic process means to estimate the best
expectation function patĥx(t) in the sense of having min-
imal E

(
‖x− x̂‖2

)
as mentioned in section 2.

Note that we are asked to solve for more information in
time dependent networks that in time independent ones.
Accordingly, as it was to be expected, we will be given
more information before the estimation process. This new
information is the dynamic observation model for the ran-
dom process. If we now rename our traditional observa-
tion equations as the static observation model(s), then the
global picture of time dependent networks becomes clear
and clean.

An static observation model is an equation of the type

f(t, ` + v, x(t)) = 0 (1)

3For some models this advantage could be a disadvantage. See sec-
tion 3 for a related discussion.

wherev is a normally distributed variable of null expecta-
tion. A dynamic observation model —or a stochastic dy-
namic model— is an equation of the type

f(t, `(t) + v(t), x(t), ẋ(t)) = 0 (2)

wherev(t) is a white noise process. In more global terms,
we will refer to the family of static observation equations
as the network static model. And to the family of dynamic
observation equations4 as the network dynamic model. Typ-
ically, a particular dynamic model (2) will be given for
t ∈ S′ whereS′ ⊂ S. Note that a dynamic observa-
tion equation may include time independent parameters
and that a static observation equation may include time de-
pendent parameters but not its derivatives. Note, as well,
that the static model may be of the form (1). This is not
only consistent with the concept of an static observation
equation but necessary when it contains a time dependent
parameter.

The dynamic model is a key component of a time depen-
dent network. Indeed, all what we know aboutx(t) before
solving the network is thatx(t) is a stochastic process. In-
deed, the static model contributes to the determination of
x(t). However, without the dynamic model there is no “dy-
namics” in the process; i.e., we cannot guarantee that the
set{x̂(t)|t ∈ S′} is a continuous path. In principle, strictly
speaking, mathematical continuity does not tell us much
about the roughness or smoothness of the solution path but
practical experience proves its effectiveness. (The lack of
dynamic modelling results, in practice, in somewhat rough
solutions forx̂(t). A typical example of this is found in
the determination of GPS trajectories under the network
approach when compared with the same trajectory deter-
mined under the state-space approach which are, usually,
smoother.)

Note, last, that in practice, we do not have to compute the
auto-covariance function; we just have to provide a mech-
anism to compute it if requested.

We illustrate the above simple definition with two exam-
ples: a geodetic monitoring network and an airborne imag-
ing network (block) with INS/GPS aerial control. These
two examples are time dependent networks as they include
dynamic observation models and time dependent param-
eters. Note, for instance, that the orientation parameters
of a block can be seen as a set of time independent, unre-
lated parameters{pi|i = 1, . . . , n} or as a time dependent
parameter{p(t)|t ∈ [a, b], a, b ∈ R}.

The airborne network (block) with INS/GPS aerial con-
trol is a time dependent network because its unknown ori-
entation parameters position, velocity and attitude depend
on the time. The “flight” is a stochastic process. This
one is a stochastic process over[t0, tf ], wheret0 and tf
are the initial and the final time of the flight respectively.
The stochastic process is just defined over a finite time pe-
riod and we cannot predict the system beyondtf because

4In this paper no distinction is made between “equations” and “mod-
els” (both terms including the stochastic and functional components). We
will use both terms as appropriate to highlight the parallelism between
the dynamic and static aspects of the problem.



INS/GPS observations are required for the dynamic ob-
servation equations. The general network model is made
up of the dynamic observation model —INS observation
equations— and the static observation model —GPS ob-
servation equations, ground control points and the pho-
togrammetric collinearity equations.

The geodetic monitoring network is a time dependent net-
work in that it is a network of observed and measured
points at given epochs and we want to know the situation
of the network points within the time observation epochs
and in future time epochs. We have the measured points at
epochs[t0, t1, · · · , tf ] and we want to determine the po-
sition of the network points at epochtf + ∆t. This is, in
principle, a stochastic process over[t0, +∞). This model
is made up of the static observation model —GPS static ob-
servation equations, known control point equations, known
constant 3D coordinate differences for points in a same tec-
tonic plates, etc.— and the dynamic observation model —
known variable coordinate differences according to some
geophysical deformation model.

7 A UNIFIED APPROACH

The implications of the definition of time dependent net-
works of the preceding section are obvious. However, for
the sake of clarity we underline them under the theoretical,
algorithmic, software and production viewpoints.

7.1 A unified theoretical approach

The classical network is a set of instruments, observations
and parameters. They are related through static observa-
tion models. The network approach is a procedure to es-
timate the parameters. The inputs are the values of ob-
servations and, if needed, the initial approximations of the
parameters. The outputs are the estimated values of the pa-
rameters. On demand, the network approach can generate
the covariance of the parameters and/or the auto-covariance
function.

The time dependent network concept that we propose in
this paper is a set of instruments, observations and time
dependent and independent parameters. They are related
through static and dynamic observation models. A time de-
pendent parameter generates a set of equations, one equa-
tion for every time epoch. Now, the network approach is a
procedure to estimate both time dependent and time inde-
pendent parameters. The inputs are the values of the obser-
vations and, if needed, initial approximations of the param-
eters (note that, in this case, initial approximations are for
time dependent and independent parameters). The outputs
are the estimated values of the parameters including the
stochastic processes. On demand, the network approach
can generate the covariance of the parameters and/or the
auto-covariance function. We insist on the parallelism of
the time dependent and time independent network con-
cepts.

We claim that the time dependent network concept pro-
posed provides a unified theoretical framework that cov-

ers the estimation of time dependent and time indepen-
dent parameters. The time dependent network is based on
static and dynamic observation models. The time indepen-
dent network is (solely) based on static observation mod-
els. Thus, the classical network can be seen as a particular
case of the new time dependent networks.

This unified approach is the basis for the reasonable de-
velopment of time dependent network determination soft-
ware, which is at the same time rigorous and simple. We
discuss this aspect in the next section.

7.2 A unified algorithmic and software approach

A modern well designed software system of the class we
are discussing here is based in the object-oriented paradigm.
Combining object-oriented design and the previous theory,
a simple and powerful time dependent network determi-
nation software can be generated. This software system
shall include these fundamental entity classes: observa-
tion, instrument, parameter and model. See (Colomina et
al., 1992) for a related discussion and modelling in time
independent networks.

The observations may have an associated time (time epoch
of the observation). We call them time-tagged observa-
tions. However, we emphasize that our observations, al-
though time dependent, are stochastically independent as
they are only subject to a white noise process. In principle,
it should not come as a surprise that for a time dependent
networks, all what we have to do is to generalize time de-
pendent parameters and dynamic observation models from
time independent parameters and static observation mod-
els, respectively.

common math and modelling base

NA SSA

Figure 1: Unified SW approach

Interestingly enough, in our unified software approach, the
mathematical foundation libraries are not much different
from the classical approach. This applies both to internal
software aspects and to interface aspects. Moreover, with
minor changes, most of the organizational parts and dis-
crete mathematical components of existing [well designed]
network adjustment packages can be kept. Even more in-
teresting is the fact that the NA and SSA computational
engines can share the same model libraries, as the estima-
tion engines work with the same models, their software im-
plementation and their external interfaces. In other words,
the parallel development and maintenance of an NA and an
SSA engine within the frame of a general system is possi-
ble.



7.3 A unified exploitation approach

Unified theoretic frameworks lead to simple and efficient
algorithms and software. Unified software approaches lead
to simple and efficient exploitation procedures. In partic-
ular, an eventual software implementation of the concepts
presented, would lead to common shareable input/output
formats for a number of estimation engines.

A benefit of a unified approach is that we can follow dif-
ferent strategies and that we can combine them. In some
situations, one approach should be preferred. In other situ-
ations we can combine them. For a family of problems, one
approach may be preferred for calibration tasks whereas
the other may be preferred for orientation tasks.

Note, as mentioned in section 1, that the output estimated
parameters of a static network may be used as input obser-
vations for a time dependent network. Similarly, an SSA
engine can be used to generate initial approximations for a
NA engine. In all the cases, it is clear that interoperability
is easier to achieve with a unified approach.

8 CONCLUSION, ONGOING WORK AND
FURTHER RESEARCH

In this paper we have defined in a precise way the con-
cept of time dependent networks. The proposed concept
extends the classical unified (from geodesy, photogramme-
try and remote sensing) geomatic concept of network. In
short, a time dependent network is a classical network that
incorporates stochastic processes —that we call time de-
pendent parameters— and dynamic models —that we call
dynamic observation models. We have related time depen-
dent networks and their solution approaches to the exist-
ing Kalman filtering/smoothing and network methodolo-
gies —what we call the SSA and the NA solution appro-
aches— and have discussed their advantages and disadvan-
tages. Last, we have given some hints on how this unified
approach can be exploited at the software development and
data processing levels.

We are currently developing an experimental software pro-
totype that implements the concepts presented in this pa-
per. Further research will be related to the numerical so-
lution of SDEs for geomatic applications and to their op-
timization in terms of speed and memory/disk storage re-
quirements.
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