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ABSTRACT: 
 
In this paper, the concepts of wavelet analysis and neural networks are applied to the classification of shuttle imaging radar 
experiment C (SIR-C) synthetic aperture radar (SAR) data from a location in northwest China. Initially, the paper presents the visual 
elements of tone, texture and structural features on SAR imagery as important bases for image classification and target recognition. 
The wavelet analysis is used as a method to extract elements of texture and structural features; it involves deriving the energy of 
sub-image blocks through wavelet decomposition. A improved backpropagation neural network was applied to a multiresolution 
representation of six images comprising reflectance SAR data and those obtained by the wavelet transform. A simple scene was 
classified, yielding poplar trees and bushes. Where they were well differentiated the probability of yielding the correct classification 
was found to be 100%. Erroneous classification occurred in transition areas between cover types where the percentage of correct 
classification fell slightly. The results suggest that such an integrated approach to classification is applicable for SAR data that 
involves regular textures and structures with rather strong orientation of land features. 
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1. INTRODUCTION 

Maximum the often quoted advantage of radar, i.e. being 
unaffected by cloud cover, is paramount to its use in certain 
regions of the world. Radar images are however characterized 
by distinctive properties that are in part present due to an image 
formation process that is quite different from that of 
conventional optical images, i.e. SPOT or Landsat TM imagery. 
In principle, many of the conventional algorithms that are 
applied in the analysis of multispectral data can be applied in 
the analysis of Synthetic Aperture Radar (SAR) data (Simard et 
al. 2000). There are no theoretical limitations to the number of 
features (or bands) used by any of these algorithms. On the 
other hand, due to the nature of SAR data, transformation tools 
are often required to provide collateral information to assist in 
the process of image classification.  
 
Each homogeneous region of a SAR image contains certain 
characteristics that are important bases for target recognition 
and image classification. The significance of certain image 
interpretation elements is particularly useful to establish 
coherent information set that permits a robust classification of a 
SAR image. This study utilizes three elements for SAR image 
interpretation - namely tone, texture and pattern (i.e. combining 
elements of structure, orientation or direction).  
 
Tone refers to the relative brightness of the pixel elements and 
represents a qualitative measure of microwave backscatter 
strength. Tone on SAR imagery mainly relies upon the 
backwards scattering character of the terrain object. For natural 
objects, rough surfaces such as mountains and agricultural 
fields produce powerful backscattered returns and in doing so, 
form a variety of textural and structural features. Smooth 
surfaces such as calm water and flat land surfaces act as 

specular reflectors so that most of the energy is reflected away 
from the imaging SAR. Differentiating between such specular 
reflectors will generally depend more upon recognizing pattern. 
 
Texture from a SAR image is spatial information of the image 
tone variety repeated with a certain rule. That is to say it is the 
arrangement of tone and is manifested by an arrangement of 
variation in brightness. This variation in brightness has an 
important intrinsic property as a frequency of tonal change and 
it is this that is particularly useful in the discrimination of 
different areas of SAR illuminated areas.  
 
Pattern presented on a SAR image is the composition formed 
regularly by some spatial characters of target objects in an area. 
Such spatial arrangements of objects on the ground may be 
systematic or random. They may exhibit structure in space, e.g., 
they may lie north – south and be parallel or form more intricate 
patterns. Nevertheless orientation and direction, whether part of 
a systematic pattern or not, can serve to varying degrees as a 
useful basis for the interpretation of SAR images.  
 
The combination of such visual elements as a means to 
classification is by no means straightforward. For example, 
man-made target objects (i.e. urban) generally have regular 
geometrical character. However, the tones and textural features 
in the SAR imagery will vary along with antenna look direction. 
Bryan (Bryan 1979) found that different orientation angles 
formed between cultural targets and antenna look direction 
could produce dramatic differences in image gray tone: streets 
paralleling with radar track direction took on light lines tones, 
because the buildings alongside the streets play a major role in 
determining echo strength. On the other hand, the streets across 
track direction appeared as dark tone lines or had no 
presentation on the SAR image. 
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Wavelet transforms have been suggested as an analysis tool for 
the analysis of SAR images (Barbarossa and Parodi 1995). In 
such a framework the wavelet approach maps high frequency 
features. In this paper, a wavelet approach is proposed that 
detects and describes texture and pattern (hereafter referred to 
as structural features) in a simple SAR image; simple in the 
sense that the land cover classified only contains two types of 
vegetation. A neural network is then used to classify the image 
based upon six components as measured directly from the SAR 
and those derived by wavelet decomposition.  
 
 

2. SAR DATA AND SITE  DESCRIPTION 

SAR data was obtained from the shuttle imaging radar 
experiment C (SIR-C). This SAR has multi-frequency and 
multi-polarization capabilities. Available frequencies were X 
(3.0 cm), C (5.8 cm) and, L (23.5 cm) and obtainable 
polarization combinations were HH, HV, VV and VH with 17 x 
25m pixel resolution. The SAR image in Figure 1 is taken over 
the settlement of Pishan in Pei Shan county located in the 
southwest of Xin Jiang, northwest China. It is juxtaposed 
between the southern edge of the Takilimakan desert and the 
northern extent of the Kulun mountain range.  
 

 
 
Figure 1.   A community of poplar trees (‘white’ lattice) 

interspersed by bushes (varying colours from cyan 
to turquoise) and surrounding background located in 
Pishan in Pei Shan county in the south-west of Xin 
Jiang, north-west China. 

 
The original image was subset to a smaller one with dimensions 
of 224 by 224 pixels with three layers of polarization 
combinations L-HH, L-HV and C-HV. Figure 1 therefore shows 
the radar image as composed of three microwave wavelength 
data, the colours based on different frequencies and 
polarizations. Image display colour were assigned as follows: 
red is the L-band horizontally transmitted, horizontally received, 
L-HH(R); green is the L-band horizontally transmitted, 
vertically received, L-HV(G); and blue is the C-band 
horizontally transmitted and vertically received, C-HV(B). A 
visual interpretation of the image is indicative of a grid. Indeed 

a grid of poplar trees with bushes in-between supplanted the 
original ground cover on the existing alluvial fans. This pattern 
and alignment was constructed so as to provide windbreaks for 
the settlements downwind. The ground coverage is therefore 
fairly simple and internally homogeneous. 
 
 

3. FEATURE EXTRACTION AND CLASSIFICATION 
METHODOLOGIES 

The 2D Wavelet Transform 
The discussion begins with the definition of the orthonormal 
wavelet (Chui 1992): let L2 (0, 2π) represent the set of all 
measurable functions defined from (0, 2 π ) that satisfy 

( ) ∞<∫ dxxf
2

0

2
π

. It is assumed the functions in L2 (0, 2π) 

are expanded periodically into the real line IR = (- ∞, + ∞), that 
is: ( ) ( )π2xfxf −=  are satisfied at each x. Let Ψ have 
unit length, then 
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Equation 1 is referred to as the orthonormal wavelet. 
Where { }k,jΨ  is the canonical orthonormal basis of L2(IR), that 
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The orthonormal wavelet whose rank is j has a degenerate 
matrix from rank 0 to rank j. This nature in the wavelet ( )xΨ  
has the advantage of an improved ability in edge detection in 
digital images – in this case SAR. At the same time, ( )xΨ  

can also detect the peak signal at multi-resolution. 
 
The orthonormal wavelet whose rank is j has a degenerate 
matrix from rank 0 to rank j. This nature in the wavelet ( )xΨ  
has the advantage of an improved ability in edge detection in 
digital images – in this case SAR. At the same time, ( )xΨ  

can also detect the peak signal at multi-resolution. 
 

There are a number of ways to accomplish wavelet 
decomposition of a 2-dimensional (2D) digital image. For the 
purposes of this research the Stéphanne Mallat pyramid 
algorithm (Mallat 1989) was adopted as follows: let H represent 
the Hn operator (i.e. high pass filter), G represent the Gn 
operator (i.e. low pass filter), subscripts r and c represent row 
and column respectively and j is defined as before, then: 
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2,1j CGHd =+                                                    (4) 
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3,1j CGGd =+                                                     (5) 
 
In practice, in the process of texture and structural feature 
extraction in a digital image, the operator GcHr in equation 3 
smoothes the column vector and finds such differences as exist 

between the objects in the rows. Likewise,  can detect 
the change in the edge of objects in the horizontal direction and, 
the operator in equation 4 can detect the change in the edge of 
objects in the vertical direction, while the operator in equation 5 
can detect any change in the diagonal direction.  

1,1+jd

 
To extract texture and structural features of ground objects in an 
image with S. ’s pyramid decomposing algorithm, a 
wavelet base is selected along with the number of levels (N) to 
be decomposed. In this particular case, Daubechies's 
orthonormal wavelet (Daubechies 1998) was adopted as the 
wavelet base. The reasons for this were as follows: 

Mallat

(a) Orthonormal, which has direct ratio to the size 
of the support set (2N). 

(b) Continuous degenerate matrix.  
(c) The smoothness and large degenerate matrix 

means that it is better at differentiating 
frequencies. At the same time, similar to a low-
pass filter, it can keep the low frequency 
component of the original image without 
obvious blur effects.  

 
From the point of view of filtering, it is preferable to maximize 
N, but in image decomposing, this will result in more boundary 
effects -- the higher the decomposing level, the greater the 
boundary effects on the image. Moreover, computation time is 
expanded as N2. Through experimentation, N equal to three was 
selected where the results were better. 

 
The application of a two dimensional Discrete Wavelet 
Transform (DWT) expands the image I  into a sum of four 
components at N resolution levels. In essence, the wavelet 
transform operation is separable and consists of two one 
dimensional  operations along the rows and the columns of I : 

i. From the first row to the mth row in I , a 1D 

DWT is performed to generate I rH⊗  and 

. rGI ⊗
ii. From the first column to the mth column in 

rHI ⊗  and  a 1D DWT is performed to 
generate four components 

rGI ⊗

( ) ( ) ({ }crcrcr G,GI,G,HI,H,GI ⊗⊗⊗ )

}

 

and . ( )cr H,HI ⊗
 

The original image is divided into four components after 2D 
DWT. These comprise one low frequency component 

 and three high frequency 
components: 

( ) ( ){ cr0 H,HI1I ⊗=

( ) ( ) ( ) ({ )crcrcr1 G,GI,G,HI,H,GI1I ⊗⊗⊗=
)

} . 

The  component contains horizontal edge 

information, the

( cr H,GI ⊗

( )cr G,HI ⊗ contains vertical edge 

information, and the ( )cr G,GI ⊗  contains diagonal edge 
information. Steps 1 and 2 are repeated with the low frequency 
image ( )01I , to produce four components at each new level. 
So, N level pyramid decomposing will result in 3N+1 
components. 

 
At each level, there is one low frequency component and three 
high frequency components. The three high frequency 
components contain textural and structural information in the 
horizontal, vertical and diagonal directions respectively at each 
level of decomposition. Recognition features were constructed 
from the components as follows: the original digital image was 
decomposed into one low frequency component (E1) and three 
high frequency components denoted as E2, E3 and E4. After 
decomposing the low frequency component at level 1 another 
set of three high frequency components were created at level 2, 
respectively denoted as E5, E6 and E7 along with one low 
frequency component (now E1). Finally, DWT was performed 
to E1 at level 2 generating four components at level 3 (E1, and 
three high frequency components respectively denoted as E8, 
E9 and E10). Making use of the 9 high frequency components, 
recognition features in the diagonal, vertical and horizontal 
were integrated as follows.  
 

( )3E2E4E1 +=λ                                                       (6) 
 

( )6E5E7E2 +=λ                                                       (7) 
 

( )9E8E10E3 +=λ                                                    (8) 
 
where λ1, λ2 and λ3 represent, at each decomposing level, the 
ratio of the energy of the edge of ground objects in the diagonal 
direction to the sum of the energy of the edge of ground objects 
in the horizontal and vertical at that scale. These three 
recognition features are invariable throughout orientations of 
the image through 90, 180, and 270 degrees. 
 
The Improved Backpropagation Neural Network Classifier 

 
An Artificial Neural Network (ANN), also referred to as a 
Neural Network is ‘an interconnected assembly of simple 
processing elements, units or nodes, whose functionality is 
loosely based on the animal neuron. The processing ability of 
the network is stored in the inter-unit connection strengths, or 
weights, obtained by a process of adaptation to, or learning 
from, a set of training patterns’ (Gurney 1997). Neural 
Networks are often used for cluster analysis and image 
classification.   
 
ANN models include Back Propagation, Counter Propagation, 
Hopfield Nets, Adaptive Resonance Theory (ART) nets, 
Kohonen Self-Organization Feature Maps (SOFM) etc. In this 
study, the Feedforward multi-layer network based Back 
Propagation model (BP) was adopted. The BP model is 
applicable to a wide class of problems (Paola and Schowengerdt 
1995). In the BP model, the training algorithm to be developed 
is based on Back Propagation (Rumelhart et al. 1986) in which 
the signaling errors go backwards from output to input nodes 
through nets. In the training process each iteration is divided 
into two stages after the image data are input to the input layer. 
The outline of the BP algorithm consists of the following steps: 



 

(a) Initiate BP Nets. The weight matrixes (Wji,Wkj) and the 
threshold values (　,　) are initialized as randomized real 
numbers within the range -1.0 to +1.0 where i represents 
ith node of input layer, j represents jth node of hidden layer, 
and k indicates kth node of output. Wji is the weight matrix 
between input layer and hidden layer, Wkj is the weight 
matrix between hidden layer and output layer. 

 
(b) Input the values of the training pixels (samples) and the 

target value for correct output. 
 
(c) Calculate the value at each network neurons using 

equation 9: 
 

∑= ijij OWnet                                                        (9) 

 
where  is the input value of jjnet th hidden neuron, and Oi is 

the input value of ith input neuron. Wji indicates the weight 
between the ith neuron of the input layer and the jth neuron of 
the hidden layer. The output value of the hidden neuron is 
evaluated as: 
 

( )jj netfO =                                                          (10) 

 
where Oi is the output value of the jth hidden neuron and is 
the Sigmoid activation function. The following function 
specifies f : 

f
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                             (11) 

 
where µ  is a threshold vector and 0µ  is used to adjust the 
shape of the Sigmoid activation function. 

 
(d) Calculate the value of output neuron: 
 

( )jkjk OWfnet =                                                     (12) 

 
where  is the input value of the kknet th output neuron, and Oi 
is the input value of the jth hidden neuron. Wkj indicates the 
weight between the jth neuron of hidden layer and the kth neuron 
of output layer. The corresponding output value is: 
 

( kk netfO = )

)

                                                          (13) 
where f is Sigmoid activation function as specified earlier. 

 
(e) Calculate the output layer error and the hidden layer error. 
 

( )( kkkkk tOO1Od −−=                                           (14) 
 

( )∑−=
k

kkjjjj dWO1Oe                                            (15) 

In the equation 14,  is the reference error of the kkd th neuron 
in the output layer, tk is the target output, and in the equation 15 
ej is the reference error of jth neuron in the hidden layer. 
 

(f) Calculate the output layer error using the error function E. 
 

(∑∑
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N
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P
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where, Opk is the observed output value and tpk is the arget value. 
P is the number of output neurons and N is the number of 
samples. 
 
(g) Adjust the connection weight matrix and thresholds.  
The adjustment of weight matrix Wkj and threshold γkj between 
output layer and hidden layer follows according to: 
 

( ) ( ) ( )mWdOmW1mW kjkjkjkj ∆ηα ++=+      (17) 

 
( ) kkjkj d)m(1m αγγ +=+                                        (18) 

 
where m is the number of iterations, α is the learning rate, ∆Wkj 
is a matrix representing the change in the matrix Wkj and, η is a 
momentum factor; it is used to allow the previous weight 
change to influence the weight change in the present model 
iteration.  
The adjustment of the weight matrix Wkj and the threshold θji 
between the hidden layer and the input layer: 
 

( ) ( ) ( )mWeOmW1mW jijjijijji ∆ηβ ++=+     (19) 

 
( ) jjikj e)m(1m βθθ +=+                                        (20) 

 
where β is the learning rate, ∆Wji is a matrix representing the 
change in matrix Wji. 
 
The learning process is implemented by a change of the 
connection weight matrix and thresholds, in which the error 
function E gives the greatest gradient descent direction to 
change the connective weight, the weights connected with 
different neurons are updated by equations (17) and (19). It 
results in gaining the best weight coefficient sets. 
 
(h) Iteration (a) through (f) continues until the value of the 

error is less than a desired threshold or the iterations times 
exceed a specified time. This means ‘training process’ is 
complete. The learning of BP nets by least error function 
rule completes its non-linear mapping from input to output.  

 
(i) Input the digital image to be classified to the BP network 

that has completed the learning process, you can then 
generate a complete image classification. 

 
In practice, because BP algorithm adopts the simple gradient 
descent, the rate of  convergence is very slow, and the local 
minima often occurs. Thus iterative process cannot converge to 
global optimum solution, and especially big trainings and lots 
of input parameters will remarkably hamper the learning effect. 
So Simulated Annealing algorithm is introduced to globally 
optimize in the networks learning. 
 
Simulated Annealing algorithm(SA) was put forward by S. 
Kirkpatrick(1983). Its postulate was contrasting the solution of 
some kind of optimizing with the heat balance of energetics 



 

statistics,and try to simulate the heat object annealing so that we 
can find the global optimum solution. 
 
Suppose S={S1,S2,…,Sn } is the set of all the possible 
combinations(or states).C:S → R is the non-minus objective 
function ,and so C(S)≥0 means the cost of the solution is Si. It 
is clear that the optimizing combination can be described 

formly with finding , so that *S S∈
  *( ) min ( ),i iC S C S S S= ∈
.Simulated Annealing processes mostly as follows: 

 
Procedure          /*  is initial state，  is the 

initial value of control parameter， */ 

0 0( , )SA i T 0i 0T
( )i iC C S=

⑴                    /*S is current state*/ 
0

: ; 0iS S k= = ;

);

⑵ Repeat 
⑶ Repeat   
⑷  : (jS Generate S=

⑸  If   Then  *
jC C≤ : jS S= ; 

⑹  Else If     Then  ( , )Accept j S :s jS S= ; 

⑺ Until ‘inner-loop stop criterion' /* “Inner-loop stop 
criterion” means the number of iterations of the SA in the 
temperature T */  

⑻   /* Tthe velocity 
of temperature’s decline at a time with function update(T

1 ( ); 1;k kT Update T k k+ = ← +
k) */ 

⑼ Until  ‘final stop criterion'  /* the finish of SA */ 
 

In Above algorithm, Generate(S) in the step(4) means generate 

the next state Sj at random from N. If ,then accept j 

as the new current state,otherwise only accept j as the new 
current state with some probability .All that is the function of 
Accept(j,S). 

*
jC C≤

 
Usually function Accept processes as follows. 
   
Procedure    /*in the step(6),only 

when ,call Accept */ 

( , )Accept j S
*

jC C>

(1) If { }*( )exp / (0,1)jC C
k kT random−− >  

(2) Then Accept:=True 
         Else Accept:=False 
 

The aim of using Simulated Annealing algorithm is to get 
globally optimize. In the errors are reducing process, 
disturbance at random in some degree can get over the 
restriction of the local minima, and ensure the system keep 
away form disturbing when it converges to global optimum 
solution.This is just the problem which Simulated Annealing 
algorithm has settled.  
For aim of globally optimize, the following function specifies 
the random disturbing: 
 

11
_ij ijW W Random

loop time
⎡

= × + − +⎢
⎣

( 1, 1)⎤
⎥
⎦

   (21) 

 

Where Loop_time is the number of iterations, Random(-1,+1) 
initialized as randomized real numbers within the range –1 to 
+1 .From the above state we can see the Simulated Annealing 
algorithm as the gradient descent with noises , and when the 
temperature which identify the noise intensity is 0(the number 
of iterations is infinity),it is just the gradient descent. 
 
 

4. APPLICATION TO SAR IMAGE 

Image classification belongs to the division of patterns in eigen 
space. If it is supposed that existing samples x1, x2, x3, x4, … , 
xn, in an image belong to certain categories C1, C2, C3, 
C4, ….,Cm , (m<n), it is possible to select n samples to extract 
feature of each ground targets. The goal then of establishing 
supervised samples is to make use of multispectral features and 
couple them with those of texture and structural features and 
use them for training the BP nets. In preparation for the 
classification of the entire 224 by 224 scene, six input fields 
were used which comprised the training pixels – the three 
original channels (polarization combinations L-HH, L-HV and 
C-HV) and the three energy components ( 1, 2 and 3) as 　 　 　
derived from the wavelet decomposition. These are referred to 
as the target samples. Thus, the BP nets have six nodes in the 
input layer and three nodes comprised the output layer based 
upon the desired classification (poplar, bushes and background). 
Broadly speaking, the number of nodes in the hidden layer is 
arbitrary although general guidelines exist e.g. (Lippmann, 
1987). In general, the more nodes in the hidden layer, the better 
the result of image classification but it takes a longer time for 
the network to learn the necessary knowledge for the 
classification and often results in a reduction of the network’s 
ability to generalize. The problem is therefore achieving a 
balance between accuracy and the time required for training. 
Through experimentation, four nodes were defined for the 
hidden layer since this was found to generate an optimal 
classification. In order to train the BP nets with the target 
samples, the input data was rescaled to comply within the limits 
of the Sigmoid activation function and set to 0.9 and 0.1 
respectively. Table 1 shows the possible responses of the output 
layer processing element. Data for training the network was 
accomplished by defining a 10   10 pixel window (100 samples 
of input data of each type) from the first three channels 
(polarization combinations L-HH, L-HV and C-HV). For the 
second three channels, the decomposed elements (1, 2 and 3) 
the window must contain sufficient resolution to preserve the 
essential information: considering the characteristic of texture 
and structure in high-resolution SAR images and the 
requirement of three level DWT, a window size of 32  32 pixels 
was adopted.  
 

Class Target Output 
 O1 O2 O3

Poplar Trees 0.9 0.1 0.1 
Bushes 0.1 0.9 0.1 
Background 0.1 0.1 0.9 

 
Table 1.  Response of the output layer processing element 

 
In the training process, an iteration is divided into two stages 
after the data are input into the input layer. First, the vector of 
the hidden-layer neuron is computed by the Sigmoid activation 
function; then the vector of the output-layer neuron is computed 
by the Sigmoid activation function. Second, the error between 
the observed output and the desired output is calculated at the 



 

output neurons. If the observed error exceeds the desired error, 
the output signals are fed forward to the hidden layer. In the 
same way, the signals in the hidden layer are fed forward to the 
input layer, in which it is also calculated to the hidden-layer 
error. Finally, the weights between the hidden layer and the 
output layer, and the weights between the input layer and 
hidden layer are adjusted. The iterative procedure involving the 
previous two stages continues until the output layer error is 
within the specified threshold. 
 
Upon completion of the iterative training procedure the entire 
224 by 224 SAR scene was classified. The result of the 
classification of the SAR image is shown in figure 2. In figure 2 
the blue, turquoise and yellow colours are associated 
respectively to poplar, bushes and background. For the two-
element vegetation classification into poplar and bushes in well 
differentiated regions the probability of yielding poplar and 
bushes classification was found to be 100%. When the scene 
includes transition regions, i.e. boundaries between trees and 
bushes, the resulting probability of correct classification is 
reduced marginally. The same is observed in the boundaries 
between the trees and the background. It is worthwhile stating 
at this point that cultivated areas like those exhibited in figure 1 
often exhibit significantly different intensity (digital number) 
values; this is evident from a cursory inspection of figure 1. 
This will lead to confusion in decision boundaries and so, result 
in erroneous classification when conventional classification 
schemes are applied. The addition of wavelet decomposition 
fields reduces the confusion that might arise from consideration 
of the reflectance fields alone as areas of poplar and bushes 
exhibit a similar high energy content – i.e. 1, 2 and 3.  
 

 
 

Figure 2.  The result of  classification of the SAR image. 
 

5. CONCLUSIONS 

This paper demonstrates the integration of multispectral SAR 
data coupled to representations of the image by wavelets. The 
resulting nonlinear nature of the data forms a complex set for 
classification. A modified neural network is therefore employed 
as a means to classification. The proposed approach has shown 
good results on a three-element classification into poplar, 
bushes and background in a region where the features are 

visibly well differentiated. This illustrates that SAR imagery 
can be classified effectively where there are distinct regions of 
each class and when additional information is provided on 
texture and structural features with rather strong orientation. An 
important consideration in the whole process of classification of 
SAR images, however, is that it involves a multiple-exploitation 
of techniques to interpret land surface characteristics. This 
particular combination of methods was consistent in this 
context but extension into further environments, both different 
and more complex, requires further research. 
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