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ABSTRACT: 
 
GIS databases often need to include maps from diverse sources. These can differ one another by many characteristics: different 
projections or reference systems, (slightly) different scales, etc. Theoretical and/or empirical transformations are available in 
literature to obtain maps in a unique system with a fixed tolerance. These transformations are nevertheless insufficient to completely 
remove differences and deformations: the outcome is that the geographic features on the maps do not fit in a perfect way. To reduce 
the deformation several transformations (affine, polynomial, rubber-sheeting) exist. The paper presents a new approach to the 
problem based on an interpolation by means of multiresolution spline functions and least squares adjustment. One map is taken as 
reference and the others are warped to comply with it. The interpolation is made by comparison of coordinates of a set of 
homologous points identified on the maps. The use of spline functions, compared to affine or polynomial interpolation, allows to 
have a greater number of coefficients to make more adaptive and localized the transformation. The multiresolution approach 
removes the rank deficiency problem that ordinary spline approach suffers for. Moreover the resolution of the spline functions 
depends areawise on the spatial density of homologous points: the denser are the points in the area, the better adapted to them can be 
the interpolating surface. A statistical test has been built to automatically choose the maximum exploitable resolution. The paper 
presents the method and one application in the example. 
 
 
 

1. INTRODUCTION 

1.1 Interoperability in Geographic Information Systems 

The increase of application fields of GIS (local administration, 
tourism, archaeology, geology, etc.) has made of new interest 
the study of the sharing of information from different 
geographic databases, also known as “GIS data 
interoperability”.  
In general, with the technical term interoperability we define a 
user’s or a device’s ability to access a variety of heterogeneous 
resources by means of a single, unchanging operational 
interface. In the GIS domain, interoperability is defined as the 
ability to access multiple, heterogeneous maps and 
corresponding geo-referenced data (either local or remote) by 
means of a single, unchanging software interface. 
Interoperability engages at several levels: network protocol, 
hardware & OS, data files, DBMS, data model and application 
semantics. Nowadays greater automation is already evident, 
especially at the first four levels of interoperability; however at 
the most fundamental levels (data model and semantics) there 
remains further room for improvement. 
Usually geographic information is formed by geometric and 
thematic attributes. For this reason the research on 
interoperability is focused on topological compatibility (at the 
level of data structure) and on semantic compatibility (at the 
level of identifiers) of the data. 
To guarantee the interoperability there is another very 
important problem often not mentioned: the geometrical 
compatibility (at the level of coordinates) of the maps. 
GIS databases often include maps coming  from diverse 
sources. These can differ one another by many characteristics: 

different projections or reference systems, (slightly) different 
scales, different kinds of representations, etc., with the result of 
geometric incompatibility of the different maps.  
 
1.2 The “Conflation Maps” problem 

Map conflation was first addressed in the mid-1980s in a 
project to consolidate the digital vector maps of two different 
organizations (Saalfeld, 1988). The problem was split into two 
parts: the detecting of homologous elements between the two 
maps, and the transformation of one map compared with the 
other (Gillman 1985; Gabay and Doytsher, 1994). Point 
elements within one map were selected as the group of features 
whose counterpart points on the other map enable the conflation 
process (Rosen and Saalfeld, 1985).  
Since then, many conflation algorithms have been developed 
and improved. Recently, the main concern has been focused on 
data integration. Several geodata sets which cover the same 
area but are from different data providers, may have different 
representation of information and may be of different accuracy 
and forms.  
Conflation can be used to solve different practical problems like 
spatial discrepancy elimination (such as sliver polygons, shifts 
of features, etc.), spatial feature transfer (new features can be 
added into the old map, or old coordinates can be update), 
attribute transfer (i.e. the attributes in the old maps can be 
transferred into the new maps). 
The conflation algorithms can be classified into three kinds: 
geometric, topological and attribute method. 
Geometric methods are mostly used because we are dealing 
with spatial objects. They scan geometric objects from both 
data  sets  and compare them  by  geometrical  criteria: distance,  



 

angular information of linear objects, location relationships, 
shape feature of the objects (i.e. lines length, polygon perimeter 
and area, etc.). The geometric method is used in most cases and 
requires that two data sets have similarity in geometric location, 
thus map alignment or rubber sheeting may be involved in the 
processing. 
Topological methods use topological information such as 
connectivity between lines, adjacency between polygons and 
composition relationships to correlate objects: arcs meet at a 
node, arcs form a polygon, and so on. 
Topological matching is usually used to reduce the search range 
or check the results of geometric matching and it can be used 
only when topological information is available. 
The attribute method is also referred to as the semantic method. 
This method can be used to match features if both data have 
common attributes with the same known semantics. Otherwise 
a relationship table must be established.  
Once the correspondence between different data sets are 
established, the spatial features need to be put together and 
some transformation may be done so that the data describing 
the same object coincide.  
Theoretical and/or empirical transformations are available in 
literature to obtain maps in a unique system with a fixed 
tolerance. These transformations are nevertheless insufficient to 
completely remove differences and deformations. 

 
1.3 Problems of the most common transformations 

Geometric transformation is the process of converting a digital 
map from one coordinate system to another by using a set of 
control points (also known as homologous pairs) and some 
transformation equations. There are several types of 
transformations. 
Polynomial transformations between two coordinate systems 
are typically applied in cases where one or both of the 
coordinate systems exhibit lack of homogeneity in orientation 
and scale. The small distortions are then approximated by 
polynomial functions in latitude and longitude or in easting and 
northing. Depending on the degree of variability in the 
distortions, approximations are carried out using second, third, 
or higher degree polynomials. 
Polynomial approximation functions themselves are subject to 
variations, as different approximation characteristics may be 
achieved by different polynomial functions. The simplest  
polynomial is the affine transformation (or first order 
polynomial) which is a 6 parameter transformation (rotation, 
shift in X and Y, differential scaling in X and Y and skew). 
The most important advantages using affine transformation are: 
straight lines are transformed in straight lines; parallel lines are 
transformed in parallel lines; incident lines are transformed in 
incident lines; the ratio between parallel lines is preserved. 
Using particular restriction on the polynomial coefficients it is 
also possible to preserve the areas of the features (congruence 
transformation) or the shapes (similarity transformation). 
The higher order polynomials are useful in registering maps 
with varying localized distortions, i.e. where the distortion can 
not be easily modelled by affine transformation. The greater the 
local distortions is, the higher is the polynomial function to be 
used. 
One property of polynomial interpolation, which is undesirable 
in practical applications, is that the interpolating polynomial 
can show oscillations which are not present in the data. These 
oscillations get worse as the degree of the polynomial increases. 
To clarify this concept a one dimensional case can be taken into 
account: figure 1 shows the famous example of this 
phenomenon due to Runge using 11 equally spaced data points 

on the interval [-1,1] and the interpolating polynomials of 
different degree (3,7 and 11 respectively). 
 

 
Figure 1. Oscillation problem of polynomial interpolation 

 
 

The second method commonly used applies a variable 
transformation to different portions of the unadjusted data. A 
possible solution is based on the triangulated data structures 
method suggested by Gillman (1985) and Saalfeld (1987)  and a 
piecewise linear homeomorphic transformation, known also as 
rubber sheeting, suggested by White and Griffin (1985), 
Saalfeld (1985) and Gabay and Doytsher (1995). This 
approach, again based on homologous points of the two maps, 
is today the most popular (Lupien and Moreland, 1987; 
Doytsher and Hall, 1997; Cobb et al., 1998).  
The main disadvantage of the rubber sheeting transformation is 
that it holds the control points fixed, that is the control points in 
the two maps match precisely, therefore they are treated as 
being completely known and with no error. This kind of 
approach is purely deterministic and it doesn’t consider the fact 
that any coordinate in a geographic database has a measurement 
error. This second consideration is particularly important: while 
rubber sheeting allows for a better solution from the numerical 
point of view (the control points coincide and therefore null 
residuals are obtained) it can bring about the description of the 
phenomenon of transformation far from the physical reality. 
Another problem related to the rubber sheeting transformation 
is that each error in the selection of control points affects, 
without any error filtering, the deformation of its no 
homologous neighbouring points. 
 
 

2. THE INTEGRATION PROCESS 

2.1 The first step: the automatic research of homologous 
points 

The starting point to estimate every transformation is the 
homologous points detection.  
Control points are points that are in the same location in both 
datasets. Usually they are manually chosen interactively in 
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both datasets: they are displayed on the screen and the user 
clicks on a location in one map and then the same 
corresponding location in the second map. Typically control 
points are easily identifiable features such as  building corners, 
major road intersections, etc. The selection of control points 
must be done carefully; their number and the quality influences 
the types of curve fitting that can be performed (i.e. at least four 
points are needed for an affine transformation estimation). 
Moreover control points must be spatially scattered over the 
datasets and in a number greater than the minimum necessary to 
compute the parameters of the chosen transformation.  
The estimate of the parameters, independently from the kind of 
transformation used, becomes better (more accurate) as the 
number of homologous points increases. 
To avoid the time-consuming manual search of these 
correspondence and the possible human errors, a strategy is 
needed to automate the procedure. 
The idea is to reproduce as much as possible what the operators 
manually do when they try to superimpose two maps: they 
visually search for the same geographic features represented on 
the two different cartographic supports. To detect the feature 
related to a certain entity the operators implicitly makes at the 
same time geometric, semantic and topological analyses. 
During the visual analysis, the operators compare the shape of 
the features on the maps. We can summarize this operation by 
considering three steps: an analysis of the coordinates of the 
points that geographically describe the shape of the objects, an 
analysis of the “directional” compatibility of the segments 
starting from the points and finally a semantic analysis. 
Therefore, the basic hypothesis is that, since every cartographic 
entity is essentially defined by points (coordinates) and 
semantic attributes, the simplest way to make the search is to 
focus on them: a point P1 on map c1 is homologous of a point P2 
on map c2 if the geographic feature related to the two points 
corresponds: figure 2 shows the example of homologous points 
that can be manually detected on two corresponding maps. 
 

 
Figure 2. Homologous points on two different maps 

 
 
2.2 The second step: the choose of the transformation  

Once homologous pairs have been detected a warping 
transformation follows to optimally conflate the different maps. 
To make it more adaptive and localized a  combination of finite 
support functions can be used. 
In this way the estimation of each function coefficient will only 
depend on the data within the corresponding finite domain. The 
most common functions used for this estimation approach are 
the splines. 
 
 
 

2.2.1 The classic spline interpolation approach 
 
In general terms, we want to interpolate a field d(t) sampled on 
N spread points t1, t2, …, tN in a plane. 
The main idea is that the observed value do(t)  can be modelled 
by means of opportune spline combinations (deterministic 
model) and residuals νi thought as noises (stochastic model). 
The one-dimensional 0 order spline (see figure 3.a) is defined 
as: 
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The basic function can be shifted and scaled throw: 
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where j fixes the scale and k the translation. 
The splines of higher orders can be obtained starting from 
ϕ(0)(t) by means of convolution products.  
The expression of the first order mono-dimensional spline (see 
figure 3.b) is therefore: 
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and then: 
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Figure 3. Mono-dimensional 0 (a) and 1 (b) order splines 

 
Using a linear combination of g order splines with a fixed j 
resolution we obtain the following function: 
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which represents a piecewise polynomial function on a regular 
grid with basic step [k2-j, (k+1)2-j]. 
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The corresponding bi-dimensional formulation of the generic g 
order spline can be obtained simply by: 
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Figure 4 shows the behaviour of the first order bi-dimensional 
spline known also as bilinear spline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Bi-dimensional first order spline or bilinear spline 
 
If we suppose that d(t) can be modelled as: 
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the spline coefficients {λk} can be estimated from the 
corresponding observation equations: 
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by using the classic least square estimation method. 
This ordinary spline interpolation approach suffers a rank 
deficiency problem when the spatial distribution of the data is 
not homogeneous. To make evident this concept, in figure 5.a a 
sample of 7 observations and the first order splines, whose 
coefficients we want to estimate, are shown. With this data 
configuration the third spline can not  be determined because its 
coefficient never appear in the observation equations: the 
unacceptable interpolation results is shown in figure 5.b. 
The simplest way to avoid this problem is to decrease the spline 
resolution with the consequent decreasing of the interpolation 
accuracy, especially where the original field d(t) shows high 
variability. 
Since homologous points detected on geographical maps are 
usually not regularly distributed in space, the use of single 
resolution spline functions leads to two different scenarios. 
In the first one, with low resolution spline functions, the 
interpolating surface is stiff also in zones where a great amount 
of points is available. 
 
 
 

 

Figure 5. Examples of mono-resolution spline interpolation: 
data (a) and interpolation (b) 

 
On the opposite, in the second case, corresponding to high 
resolution spline functions, a more adaptive surface is obtained 
but the lack of points in some area can give rise to local 
phenomena of rank deficiency, making the interpolation 
unfeasible. The multiresolution approach removes this problem. 
 
2.2.2 The multi-resolution spline interpolation approach 
 
The main idea is to combine splines with different domain 
dimension in order to guarantee in every region of the field a 
resolution adequate to the data density, that is to exploit all the 
available information implicitly stored in the sample data. 
To show the advantage of this approach we suppose to 
interpolate the mono-dimensional data set shown in figure 6.a. 
The classic spline interpolation approach requires to use a grid 
resolution in such a way that every spline coefficient appears at 
least in one observation equation. Figure 6.b shows the 
maximum resolution interpolation function which is consistent 
with the data set. The constraint on the grid resolution avoid the 
interpolation function to conform to the field data in high 
variability locations. Moreover, the use of the smallest 
allowable resolution can make the estimations sensible to the 
single observations in regions where data are sparse; the 
consequence is the generation of unrealistic oscillations, due to 
the fact that the noise is insufficiently filtered. 
 

 
 
 
Figure 6. Sample data (a) and result of spline interpolation 

using mono-resolution approach (b) 
 
In one dimension the multi-resolution can be obtained by 
modelling the interpolation function d(t) as: 
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where ϕ∆h(t) is the first order spline with h resolution on the 
domain [-∆h, ∆h]; M is the number of different resolutions used 
for the interpolation (levels); λh,k is the kth spline coefficient at 
resolution h; Nh is the number of spline with resolution h; ∆h is 
the half-domain of the spline at the resolution h. In order to 
uniformly distribute the spline into the whole domain 
D=[tmin,tmax] the (9) can be rewrite as follow: 
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The model requires the imposition of constraints on the λ 
coefficients to guarantee the occurrence of a spline only in 
locations where data are enough to its coefficient estimation 
and to avoid the contemporaneous presence of two or more 
splines, obviously at different resolution, at the same grid 
position. The second event in fact causes the singularity of the 
normal matrix in the least square estimation. In order to avoid 
it, the i spline with resolution hi is activated in point ti, and 
therefore the λh,i  coefficient is not zero if:  
• at least f observations are located inside its definition domain; 
• no j spline exists with resolution hj such as ti = tj and hi<hj. 
The f parameter acts as filtering factor to be used in the 
interpolation to avoid singularity.  
The results of two multi-resolution spline interpolations are 
shown in figure 7. 

 
Figure 7. Results of multi-resolution spline interpolation with 4 

(a) and 5 (b) levels 
 
 
The bi-dimensional formulation can be directly obtained 
generalizing the mono-dimensional case. 
We suppose that d(t) = d(t1,t2) can be modelled as: 
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where: 
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h1∆  = x grid resolution; 

h2∆  = y grid resolution; 
( ) ( ) ( )21 21

ttt
hhh ∆∆∆ ⋅= ϕϕϕ  

M = number of different resolutions used in the model;  
τlk = [l k]T = node indexes (l,k) of the bi-dimensional grid; 
λh,l,k = coefficient of the spline at the grid node τlk; 
N1h = number of x grid nodes at the h resolution; 
N2h = number of y grid nodes at the h resolution. 

 
As in the mono-dimensional model, a spline only starts up 
where data are enough to its coefficients estimation. Moreover, 
as usual, for each grid node only one spline is defined. It is 
important to notice that even though in a multi-resolution 
approach there is one grid for each level of resolution, the grid 
at resolution i+1 is built starting from the grid at resolution i by 
halving the grid step in both directions. The i-resolution grid 
nodes are therefore a subset of the ones at i+1 resolution (see 
figure 8). 
 
 
 
 
 
 
 
 

 
 
 
Figure 8. Interpolation grid with mono (a) and multi-resolution 

(b) approach 
 
2.2.3 The automatic resolution choice 
 
By passing from N to N+1 interpolation levels we introduce a 
certain number of splines whose coefficients, computed by least 
square estimation, are not null because of the stochastic 
deviation due to the noise. It is necessary to consider if the 
contribution of these new splines is significant, that is if they 
add new information to the field modelling or they only “chase” 
the noise. Given: 
 

n1   = number of spline used with N levels; 
n1+n2   = number of spline used with  N+1 levels; 
SN+1     = set of coefficients of the new n2 splines; 

 
we find the N level such as the statistical hypothesis: 

}0}ˆ{{: 10 +∈∀== Nkkk SssEsH , being }{⋅E  the expectation 
operator, is accepted. Without detailing the test, from the 
deterministic and stochastic model of the least squares approach 
we compute a variate F0 which can be compared, with a fixed 
significance level α, with the critical value Fα of a Fisher 
distribution of (n2,N-(n1+n2)) degrees of freedom. The test to 
accept the hypothesis H0:{N is the resolution to choice, that is 
the increase of the spline number with n2 new splines does not 
improve the fitting model and therefore their coefficients are 
null} can be formulated as follow: if H0 is true then F0 must be 
smaller than Fα with probability (1-α), otherwise H0 is false and 
we have to iterate the test with N+1  resolution levels.  
 
2.3 Application example 

The procedure presented in the previous paragraphs was tested 
both on artificial scenarios appropriately designed for estimate  

(a) 
(b) 

(a) (b) 



 

its performance and on real situations. The example here 
proposed is a real case: the maps that have to be combined into 
a single system are a cadastral one at scale 1:1000 and a 
regional one at scale 1:5000. An area of about 4 Km2 is 
represented on the maps. The transformation was applied on the 
homologous points automatically detected by the procedure 
previously mentioned. In figure 9 the spatial distribution of the 
homologous points and the corresponding multi-resolution 
splines are shown. The five different resolutions are highlighted 
with different grey gradation (higher resolution are darker). It is 
important to notice that the heterogeneous distribution of the 
control points makes in this case inapplicable the mono 
resolution spline interpolation, at least if we are trying to 
locally model the differences between the two maps. 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Spatial homologous points distribution (a) and  the 

multi-resolution spline collocation (b) 
 
 
The results obtained by using a multi-resolution approach are, 
as expected, better than those due to the classic affine 
transformation. To have an example of the improved 
performances in figure 10 a detail of the overlaps between the 
two maps  by using the classic affine transformation and the 
multi-resolution spline approach is shown.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Overlay of two maps using the affine transformation 

(a) and the multi-resolution spline approach (b) 
 
 
It is evident that the localized deformation in the upper-left 
corner of the map has been “catched” by the multi-resolution 
transformation (b) with the consequence of the improved 
overlap between the two maps. 
 
 

3. CONCLUSIONS 

The use of spline functions in modelling deformations between 
maps, compared to affine or polynomial interpolation, allows to 
have a greater number of coefficients to make more adaptive 
and localized the transformation. The multi-resolution approach 
here presented removes the rank deficiency problem that 

ordinary spline approach suffers for. Moreover a statistical test 
allows to choose the level of multi-resolution to be adopted in 
order to better model the deformations between the two maps. 
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