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ABSTRACT: 
 
The land cover mosaic (LCM) classification concept, which is based on the aggregate-mosaic theory, improves geo-information on 
tropical deforestation for decision-makers. Land cover mosaics are spatial units constituting mixtures of different land cover types. 
They are defined by two parameters, that is the mix of different land cover types and the spatial size of these land cover types. In this 
paper, a sensitivity analysis was performed to test the impact of the parameter spatial size on LCM classification results using two 
Landsat TM images of a peatswamp forest in Kalimantan, Indonesia. Five methods were selected to evaluate the LCM-classification 
results, the standard remote sensing accuracy method KHAT, and four Landscape Pattern Metrics as applied in landscape ecology. 
Results showed that for spatial sizes up to 150 ha, the total area of forest cover remained constant for both the 1990 image and the 
more fragmented 1996 image. This finding is very useful for assessing the area of forest cover, which often differ widely between 
various sources. From a decision-making point of view it is important that maps are produced with identical parameter settings, 
when comparing temporally different images, because spatial size has effect on the spatial arrangement of forest cover. Combining 
results of KHAT and Landscape Pattern Metrics thematic classes causing significant differences could be indicated. Finally, based 
on variations in LCM classifications, it can be concluded that between 1990 and 1996 forest was depleted not due to logging 
practices, but due to agricultural practices. Such a finding could be very useful to support planning and development strategies, and 
to improve governmental policies to manage tropical rainforests in a sustainable way. 
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1. INTRODUCTION 
 
Global studies of tropical deforestation are based on 
information sources compiled at regional levels. Parts of these 
regional information sources are based on digital maps derived 
from remote sensing data, where forest cover information is 
classified and stored at pixel level. These maps are static and, 
without further interpretation, they do not have much 
explanatory or predictive power about the driving forces and 
mechanisms behind forest cover changes (the actors). Decision-
makers, however, need such explanatory information on actors 
to decide when and where to take action concerning 
undesirable developments in tropical rainforest areas.  
Consequently, remote sensing image analysts should expand 
their monitoring task of land cover at pixel level towards 
identification of actors, design models on actors behavior, and 
prepare scenario’s on the impact of the actors. This calls for an 
underlying remote sensing theory that describes how to retrieve 
such explanatory information form remote sensing data. An 
important issue of such a theory is handling the problem that 
vegetation in tropical rainforest areas is extremely 
heterogeneous (Whitmore, 1998). It often consists of different 
mixtures of trees, shrubs and grasses at different spatial 
aggregation levels resulting in different vegetation structures. 
Consequently, vegetation heterogeneity should be expressed as 
variations in vegetation composition and vegetation structure at 
different spatial aggregation levels. As such, variations in land 
cover mosaics can be related to different actors. 
A range of innovative processing techniques have been 
developed to improve per-pixel based classifications. However, 
the majority of the techniques either address vegetation mixture 

(to reduce autocorrelation or spectral overlap) or vegetation 
structure (to handle image texture). Examples of reducing 
autocorrelation are segmentation algorithms (Hill, 1999), 
filterin g (Palubinskas et al., 1995), and Markov random fields 
(Cortijo & Perez de la Blanca, 1998). Examples of reducing 
spectral overlap are co-occurrencies (Kushwada et al., 1994), 
semi-variograms (Woodcock & Strahler, 1987), and cover-
frequencies (Bandibas et al. 1995). Examples of handling 
image texture are wavelet transforms (Carvalho et al., 2001; 
multi-resolution segmentation (Burnett & Blaschke, 2003), and 
post-classification aggregation (Beurden van & Douven, 1999).  
Aggregate-mosaic theory describes the concept of land cover 
mosaic (LCM) classification to address both vegetation mixture 
and vegetation structure at higher aggregation levels than the 
pixel when classifying remote sensing data (Obbink, et al., 
2002). Land cover mosaics are spatial units constituting 
mixtures of different land cover types. They are defined by two 
parameters, that is the mix of different land cover types and the 
spatial size (expressed as minimum -area) of these land cover 
types. Based on expert knowledge, variations in land cover 
mosaics can be related to different actors. The objective of this 
paper is to demonstrate the LCM classification concept for two 
temporal images of a peatswamp forest in Kalimantan, 
Indonesia. Specifically, a sensitivity analysis was performed to 
test the impact of the parameter spatial size on LCM 
classification results, and on variability and arrangement of 
forest cover and forest cover pattern using KHAT and four 
Landscape Pattern Indices.  
 
 
 



2. METHOD 
 
2.1 Study area, remote sensing data and software  
 
The Pelangkaraya study area is situated in an extensive peat 
swamp forest, roughly between the cities Palangkaraya and 
Banjarmasin, South Kalimantan, Indonesia (Figure 1). It covers 
roughly 115.000 ha (45 by 25 Km). Three main rivers (i.e., 
Barito, Kahayan and Kapuas) cut across the flat area. For 
centuries, shifting cultivation has been the main practice in this 
area. Since the eighties, however, numerous logging firms and 
large transmigration projects have been active in the area. As a 
result of both logging and transmigration, the forest changed 
into a mosaic of logged forest, heavily logged forest, patches of 
original forest, agricultural fields (trees and crops), fields 
covered mainly with grasses (as a result of fire in the past), 
abandoned fields covered mainly with shrubs, and water areas.  
 

 
 

Figure 1:  Location of study area 
 
In this research, two Landsat TM remote sensing images of 
30/08/1990 and 10/05/1996 covering the Pelangkaraya study 
area were used. Colour composites (Landsat TM bands 453) of 
both images are given in Figure 2. The images were 
geometrically corrected using cubic convolution for resampling 
to a spatial resolution of 30 meters. Software packages ILWIS 
academic 3.0 and eCognition 3.0 were used for LCM 
classification. SPSS wa s used to calculate KHAT and Z 
statistics, and Fragstats 3.3 was used to calculate four 
Landscape Pattern Indices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Colour composites of two Landsat TM images of 
1990 and 1996 (bands 453, histogram equalization) 

2.2 LCM classification method 
 
The LCM classification concept is a multi-scale classification 
approach based on two levels (Figure 3). The first level 
contains elementary objects consisting of conventional land 
cover classes. The second level contains composite objects 
consisting of land cover mosaic classes, which are based on 
two LCM parameters that is the size and mix of elementary 
objects (Obbink, et al., 2002; Schaijk-Obbink et al., 2000).  
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Figure 3: The Land Cover Mosaic (LCM) classification 
concept. 
 
In this study, elementary objects were created by segmenting 
the remote sensing image into (radiometrically) homogeneous 
segments. The eCognition segmentation algorithm was used to 
segment the Landsat TM images (band 3,4,5,7) using the 
following parameters: scale 10, color 0.9, shape 0.9. Nearest 
neighbor was used for a supervised classification of the 
elementary object into eight land cover classes (i.e., logged 
forest, heavily logged forest, shrub, agriculture, grass, water, 
river, and clouds). Composite objects were created by merging 
all adjacent elementary objects that represent similar land cover 
classes. Based on the spatial size (expressed as minimum-area, 
MA) and mix (expressed as relative-border-to-neighbor, BN) of 
the elementary objects, composite objects were classified into 
seven land cover mosaic classes (i.e., mainly logged forest, 
mainly heavily logged forest, mainly shrub, mainly agriculture, 
mainly grass, mainly water, and mainly clouds), and one land 
cover class (i.e., river). Mainly refers to predominance of a land 
cover class. This means that if the size of an elementary object 
with a certain land cover type is smaller than a certain threshold 
(MA in ha), and it is surrounded by another elementary object 
with a different land cover type as set by a threshold (BN in %), 
then both elementary objects are part of a higher level thematic 
class that is a land cover mosaic class.  
 
2.3 Sensitivity Analysis and evaluation methods  
 
A sensitivity analysis was performed to test the impact of the 
LCM parameter size (M A) on classification outcome. Fourteen 
different MA values were selected ranging from 5 ha to 18800 
ha (i.e., 5, 5.5, 15, 25, 50, 100, 150, 200, 250, 300, 350, 400, 
15000, 18800 ha). These values were chosen according to the 
size of the image objects  present in the classified images: from  

TM 1990 

TM 1996 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Elementary objects versus composite objects expressed in cover percentages (PLAND) for respectively the land cover 
classes (LC) and land cover mosaic classes (LCM); the latter are based on the mean PLAND values resulting for the 14 different 
MA values  (p1990 image and p1996 image).  
 
the smallest elementary object up to the largest composite 
object. In addition, the values should also include the 
minimum -area of tree covered land that should be considered 
as 'forest', which ranged from 0.01 ha in the Czech Republic to 
100 ha in Papua New Guinea (Lund, 1999). During the 
sensitivity analysis, the LCM parameter mix was kept constant 
(BN=0.55). A total of 28 LCM classifications were carried out 
on two Landsat TM images of the Pelangkaraya study area of 
1990 and 1996 further referred to as p1990 and p1996.  
Five methods were selected to evaluate the LCM -classification 
results, the standard remote sensing accuracy method KHAT 
(Congalton and Mead, 1983) and four Landscape Pattern 
Metrics as applied in landscape ecology (Forman, 1995; 
McGarigal et al., 2002). The discrete multivariate analysis 
technique KHAT and the Z-statistic for significance testing are 
used to evaluate the overall classification results (Hudson and 
Ramm, 1987). The elementary objects are used as reference to 
calculate the similarity matrices. The Landscape Pattern 
Metrics were used to evaluate the LCM classification results on 
variability and arrangement of forest cover and forest cover 
pattern. The metrics Percentage of Landscape (PLAND) and 
Number of patches (NP) evaluate forest cover, whereas the 
metrics Simpson’s Diversity Index (SIDI) and Landscape Shape 
Index (LSI) evaluate forest cover pattern. PLAND and SIDI are 
spatially independent metrics, which refer to composition or 
variability of the landscape, or ‘how different things are’. NP 
and LSI are spatially dependent metrics, which refer to the 
configuration or arrangement of the landscape, or ‘how things 
are distributed’ (Forman, 1995; Gustafson, 1998).  
 
 

3. RESULTS 
 
3.1 LCM classification results 
 
Figure 4 shows the LCM classification results for two different 
values for minimum area, i.e., MA is 25 ha and 300 ha, for the 
p1990 image (with BN=0.55). For comparison, figure 5 shows 
a standard per-pixel classification result uing the maximum 
likelihood classifier. Figure 4 clearly shows that LCM 
classification results provide crisp maps. In addition, the LCM -
classification with the larger minimum-area results in fewer 
small objects; it is more aggregated.  
Table 1 shows the classification results of elementary objects 
versus composite objects expressed in cover percentages (i.e., 
PLAND).  Overall,   both   aggregation   levels   show    similar 
ranking of major and min or classes. For the p1990 image, there  
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Figure 4: LCM-classification results for the p1990 image; MA 
is 25 ha (a), and MA is 300 ha (b), both with BN at 0.55.  
 
is almost no difference (<1% cover) in PLAND values between 
the two aggregation levels for all thematic classes. However, 
for the 1996 image two striking differences (≈ 4% cover) exists 
for the thematic classes related to heavily logged for est and 
shrub. From 1990 to 1996, shrub vegetation and grass 
vegetation have enormously increased, reducing the vegetation 
of heavily logged forest. The increase of grass vegetation is 
depicted by both aggregation strategies meaning that grass 
tends to occur in (homogeneous) clusters. However, the 
increase of shrub is differently depicted by both aggregation 
strategies meaning that shrub tends to be (heterogeneously) 
distributed over the landscape. This finding supports the fact 
that shrub is an intermediate vegetation between the transition 
of forest to agriculture and vice versa.  
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SH 24.60 mSH 24.95 0.52 SH 33.99 mSH 38.20 3.60 
AG 14.77 mAG  15.44 0.96 AG 14.53 mAG  14.40 0.74 
GR 6.13 mGR 5.62 0.79 GR 11.40 mGR 11.60 2.57 
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CL 0.00 - -  CL 0.00 - - - 
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Figure 5: Standard per-pixel classification result using the 
maximum likelihood classifier.  
 
3.2 Classification performance (KHAT & Z-statistic) 
 
Figure 6 shows the LCM classification results expressed in 
KHAT values for the fourteen different MA values. The figure 
clearly shows that varying MA values have more effect on the 
more fragmented p1996 image than on the p1990 image. 
However, the sensitivity of both images towards different MA 
values is similar. Overall, KHAT values decrease for increasing 
MA. Specifically, the largest decrease is for MA values 
between 5.5 ha and 100 ha, whereas MA shows a small 
decrease between MA100 and MA250, and a minor decrease 
between MA250 and MA400.  
The Z statistics showed that the majority of MA settings are 
significantly different at the 0.05 probability level. This means 
that almost all LCM-classification results are different. 
Specifically, the more the MA values are dissimilar, the higher 
the Z values. However, no significant difference occurs 
between MA100 and MA150, MA200 and MA250, and MA300 and 
MA350 for the p1990 image. For the p1996 image a similar 
'pattern' occurs, but with a small shift of plus 50 ha, that is, no 
significant difference occurs between MA150 and MA200, MA250 
until MA350, MA350 and MA400. It seems that both images react 
similarly on different values for MA, although the p1996 image 
is more fragmented than the p1990 image.  
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Figure 6: KHAT values for different values of minimum-area 
(MA) in LCM classification.  
 
 

3.3 Variability and arrangement of forest cover (PLAND & 
NP)  
 
Figure 7 shows the LCM classification results as measured by 
the two class-related metrics PLAND (percentage of landscape) 
and NP (number of patches) for the two LCM forest classes 
mainly logged forest (mLF) and mainly heavily logged forest 
(mHLF), and the intermediate LCM class mainly shrub (mSH).  
For all MA values up to 400 ha, PLAND is almost constant 
(less than 2% cover difference) for all three LCM classes in 
both images, except for the LCM class mainly shrub of the 
p1996 image. This LCM class increases between MA25 and 
MA150 from 34% to 39%. For MA values higher than 400 ha, 
PLAND changes for all three classes about 5% (cover). The 
figure shows also clearly that NP for p1996 is higher than NP 
for p1990 for the entire MA range. For the class mainly heavily 
logged forest NP of p1990 is higher, because of the enormous 
reduction of this class in 1996.  
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Figure 7: LCM classification results as measured by the two 
landscape pattern metrics PLAND (percentage of landscape) 
and NP (number of patches) for forest cover.  
 
Being a fragmentation measure of the patch type, higher NP 
values for the p1996 image means that indeed this image is 
more fragmented than the p1990 image for all three vegetation 
classes. Generally, NP tends to decrease when increasing MA 
for all LCM classes and for both images. Specifically, the 
influence of MA on NP is largest for MA values smaller than 
100 ha; above MA100 NP stays constant for all classes. This 



means that the spatial arrangement of the classes varies up to 
MA100 and remains constant for larger MA values. However, 
the intensity at which classes vary differs between the three 
LCM classes. The class mainly logged forest (mLF) is less 
sensitive for MA than the class mainly heavily logged forest 
(mHLF), which on his turn is less sensitive than the class 
mainly shrub (mSH).  
 
3.4 Variability and arrangement of forest cover pattern 
(SIDI & LSI) 
 
Figure 8 shows the LCM classification results as measured by 
the two landscape-related metrics SIDI (Simpson’s diversity 
index) and LSI (landscape shape index). Simpson's index 
literally means the probability that any two pixels selected at 
random would be different LCM classes. For the p1990 image, 
SIDI remains constant up to MA400, meaning that the relative 
proportions of the LCM classes do not change. For the more 
fragmented p1996 image, however, SIDI shows a distinct 
decrease between MA25 and MA150. This means that the 
dominance of one or a few LCM classes increases. Both images 
show a distinct decrease in SIDI between MA400 and MA15000.  
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Figure 8: LCM classification results as measured by the two 
landscape pattern metrics SIDI (Simpson's diversity index) and 
LSI (landscape shape index) for forest cover pattern.  
 
The metric LSI measures the perimeter-to-area ratio for the 
entire landscape. An increase in LSI means that patches 
become increasingly disaggregated, thus the spatial 
heterogeneity of the landscape increases. Overall, LSI is higher 
for the p1996 image than for the p1990 image. Thus, p1996 has 
a more heterogeneous landscape than p1990. For both images, 
LSI decreases when MA increases. Specifically, LSI shows a 

significant decrease between MA5.5 and MA100 for both images; 
in this range LSI shows a 50% decrease. In addition, spatial 
heterogeneity of the p1990 image and the more fragmented 
p1996 image shows a similar trend for the entire MA range.  
 

4. DISCUSSION 
 
The setting for the minimum-area (MA) in LCM classification 
has an impact on classification outcome, especially from MA5.5 
to MA150. However, for MA values up to 150 ha the total area 
of forest cover (mLF + mHLF) remained constant for both the 
p1990 image and the more fragmented p1996 image. This 
finding is very useful for assessing the area of forest cover in a 
certain area. Forest area is an easily understood baseline figure 
that provides the first indication of the relative importance of 
forests in a country or region (FAO, 2001). In addition, the 
results show that according to Van Beurden and Douven 
(1999), decision-makers (at different decision-levels) can make 
sensible consistent decisions on forest area, because several 
levels of aggregation provide the same forest area. However, in 
the more fragmented p1996 image, PLAND (percentage of 
landscape) of the LCM class mainly shrub (mSH) did not 
remain constant for MA values up to 150 ha. Realizing that 
HLF and SH share very similar spectral signatures, it depends 
very much on the accuracy of the input level (elementary 
objects) whether the total area of forest cover is independent of 
MA. MA has an effect on NP (number of patches), meaning 
that it has an effect on the spatial arrangement of forest cover. 
Consequently, from a decision-making point of view it is 
important that maps are produced with identical MA values, 
when comparing temporally different images. In addition, the 
indices NP and KHAT seem to be a useful combination to 
indicate which classes are causing significant differences 
between classification results. 
Simpson's diversity index (SIDI) remained constant for the 
p1990 image. However, for the p1996 image it showed a 
distinct decrease between MA25 and MA150. This difference in 
SIDI between the two images can be explained by combining 
the results of PLAND and SIDI. PLAND of all seven LCM 
classes did not change along the entire MA range (i.e., MA up 
to 400 ha) for the p1990 image. However, for the p1996 image, 
PLAND did change for the LCM class mainly shrub, especially 
at the range between MA25 and MA150 for which SIDI changed. 
A constant PLAND and a constant SIDI mean that the LCM 
classes in the image have their own specific composition in the 
landscape. Nevertheless, for certain classes like mainly shrub 
for which PLAND changed, SIDI quantifies this compositional 
change. In this respect, SIDI is a useful index to quantify 
change s in LCM classifications in addition to standard PLAND 
values. The indices KHAT and LSI, showing a similar trend, 
are complementary to each other. From a decision-point of 
view, such a combination seems to be useful to indicate which 
classification results differ significantly. 
 
 

5. CONCLUSIONS 
 
From the classification results it can be concluded that the 
LCM classification concept provided explanatory information 
on vegetation changes in tropical rainforest areas. Based on the 
findings of the LCM parameter spatial size, three conclusions 
can be made towards decision-making: 
 

1. Decision-makers at different decision-levels can 
make sensible consistent decisions on forest area, 
because several levels of aggregation provided the 
same total forest area.  



2. Decision-makers at different decision-levels can 
make sensible consistent decisions on forest area 
change, because overall the two images responded 
quite similar to the LCM parameter spatial size (with 
restriction of conclusion 3). 

3. Decision-makers at different decision-levels need 
temporal maps that are produced with identical 
parameter settings to avoid comparing apples and 
oranges, because the LCM parameter spatial size 
proved not to be consistent in the arrangement of 
forest cover. 

 
In addition, regarding the sensitivity estimators it can be 
concluded that the composition and configuration measures as 
used at both the class and landscape level are very useful for 
remote sensing based classifications in addition to conventional 
KHAT statistics and cover values (as measure by PLAND). In 
this respect, the indices LSI and KHAT seem to be a useful 
combination to indicate the levels of disaggregation at which 
classification results differ significantly. The indices NP and 
KHAT seem to be a useful combination to indicate which 
classes are causing significant differences between 
classification results. The indices LSI and PLAND, or NP and 
PLAND (a configuration and a composition measure) seem to 
be a useful combination to indicate suitable combinations of 
parameter settings for the LCM parameter size to compare 
temporally different images. Moreover, the indices SIDI and 
PLAND (both composition measures) seem to be a useful 
combination to indicate underlying change processes in forest 
areas. SIDI provided the area range (35-100 ha) at which a 
striking diversity change occurred, whereas PLAND indicated 
the vegetation class most likely involved (shrub vegetation). 
Combining both measures, it can be concluded that shrub, 
which is an intermediar vegetation in the transition from forest 
to agriculture and vice versa, contributed significantly to the 
change in SIDI and thus plays an important role in the 
underlying change process. This means that between 1990 and 
1996 forest is depleted not due to logging practices, but due to 
agricultural practices. This type of information can be very 
useful for decision-makers at local, provincial and national 
level, who are urged to preserve rainforest for future 
generations.  
 
 

REFERENCES  
 
Bandibas, J.C., Bruce, R.C. & Daels, L., 1995. Using frequency 

based classifier for remote sensing of spatially heterogeneous 
land-use/land-cover systems in the tropics. Asian-Pacific 
Remote Sensing Journal, 7(2),  pp. 65-70. 

Beurden, A.U.C.J. van & Douven, W.J.A.M., 1999. 
Aggregation issues of spatial information in environmental 
research. International Journal of Geographical Information 
Science, 13(5), pp. 513-527. 

Burnett, C. & Blaschke, T., 2003. A multi-scale segmentation/ 
    object relationship modelling methodology for landscape 

analysis. Ecological Modelling, 168(3), pp. 233-249. 
Carvalho, L.M.T. de, Fonseca, L.M.G., Murtagh, F, & Clevers, 

J.G.P.W., 2001. Digital change detectio with theaid of 
multiresolution wavelet analysis. International Journal of 
Remote Sensing, 22(18), pp. 3871-3876. 

Congalton, R.G., Oderwald, R.G. & Mead, R.A., 1983. 
Assessing Landsat classification accuracy using 
discrete multivariate analysis statistical techniques. 
Photogrammetric Eng.&Remote Sensing, 49(12), pp. 
1671-1678. 

Cortijo, F.J. & Perez de la Blanca, N., 1998. Improving classical 
contextual classifications. International Journal of Remote 
Sensing, 19 (8), 1591-1613. 

FAO, 2001. The Global Forest Resources Assessment 2000 
(FRA 2000). FAO Forestry Paper 140,  
http://www.fao.org/forestry/fo/fra/main/index.jsp (accessed 5 
Nov. 2003). 

Forman, R.T.T., 1995. Land mosaics: the ecology of 
landscapes and regions. Cambridge University Press, 
Cambridge, pp. 317-321. 

Gustafson, E.J., 1998. Quantifying landscape spatial 
pat tern:What is the state of the art. Ecosystems, 1(2), pp. 
143-156. 

Hill, R.A., 1999. Image segmentation for humid tropical forest 
classification in Landsat TM data. Internation Journal of 
Remote Sensing, 20(5), pp. 1039-1044. 

Hudson, W.D. & Ramm, C.W., 1987. Correct formulation of 
the Kappa coefficient of agreement. Photogrammetric 
Engineering and Remote Sensing, 53(4), pp. 421-422. 

Kushwada, S.P.S, Kuntz, S. & Oesten, G., 1994. Applications 
of image texture in forest classification. International 
Journal of Remote Sensing, 15 (11), 2273-2284. 

Lund, H.G., 1999. Forest classification: a definitional 
quagmire. In: The World's Natural Forests and their Role in 
Global Processes, Khabarovsk, Russia, 17 p. 
http://home.att.net/~gklund/quagmire.htm (accessed 7 Nov. 
2003). 

McGarigal, K., S.A. Cushman, M.C. Neel, and E. Ene (2002), 
FRAGSTATS: Spatial Pattern Analysis Program for 
Categorical Maps. University of Massachusetts, Amherst. 
www.umass.edu/landeco/research/fragstats/fragstats.html 
(accessed 23 Feb. 2004). 

Molenaar, M., 1998. An introduction to the theory of spatial 
object modelling for GIS. Taylor & Francis, London, pp. 20-
31. 

Obbink, M.H., Clevers, J.G.P.W. & Viergever, K.M., 2002. 
Multi-level segmentation of remote sensing imagery for 
mapping forest transitions. In: Operational tools in forestry 
using remote sensing techniques, Edinburgh, Scotland, 10 p. 

Palubinskas, G., Lucas, R.M., Foody, G.M. & Curran, P.J.,  
1995. An evaluation of fuzzy and texture-based classification 
approaches for mapping regenerating tropical forest classes 
from Landsat-TM data. International Journal of Remote 
Sensing, 16 (4), 747-759. 

Schaijk-Obbink, M.H. van, Molenaar, M. & Gier, A. de, 2000. 
Tropical forest change assessment: the use of aggregates, a 
semantic approach. In: International Archives of 
Photogrammetry and Remote Sensing , Amsterdam, The 
Netherlands,Vol. XXXIII, Part B7, p. 1601-1608.  

Whitm ore, T.C., 1998. An introduction to tropical rain forests  
– 2nd ed. Oxford University Press, Oxford, 282 p. 

Woodcock, C.E. & Strahler, A.H., 1987. The factor of scale in 
remote sensing. Remote Sensing of Environment, 21, pp. 
311-332. 

 
 

ACKNOWLEDGEMENTS  
 
SRON, Wageningen University and ITC (The Netherlands) are 
acknowledged for supporting this research. 


