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ABSTRACT: 
 
In recent years remote sensing has made remarkable technological progress and has significantly expanded into several application 
fields. The rapid technological advances have come with the potential to widen the range of applications and to go beyond 
conventional mapping. Technical aspects of using high-resolution airborne imagery and LiDAR to support traffic flow monitoring 
and management are discussed in this paper. The primary objective of this ongoing research effort is to assess the feasibility and 
reliability of extracting moving objects over transportation corridors, and the accuracy of their velocity estimation. This 
investigation includes airborne LiDAR, video and high-performance digital camera imagery. A review on the potential of using 
CCD and airborne laser scanning technology for transportation applications, especially for identifying and tracking moving objects 
on the roads is provided. 
 

 
1. INTRODUCTION 

Unprecedented technological developments characterize the 
last five years in spatial data acquisition and processing, 
resulting in a paradigm shift in spatial information sciences 
and totally revolutionizing airborne surveying practice:  
• New active imaging sensors were introduced, such as 

LiDAR, which almost immediately became the most 
important source of terrain data.  

• GPS/IMU-based direct georeferencing, essential to 
several new sensors, including LiDAR and IfSAR, 
became the primary technique for sensor orientation.  

• 1-meter commercial satellite imagery was introduced.  
• Aerial photography experienced a major milestone, as 

digital cameras reached and in fact surpassed the 
performance of analog large format aerial cameras.  

These advances in sensor technology lead to increased 
volumes of data along with more complex data types, which, 
in turn, demands higher automation of the data processing. In 
fact, the boundaries of spatial information sciences are 
becoming less defined as we enter the new age of 
telegeoinformatics (Grejner-Brzezinska et. al., 2004a). 
 

The rapidly increasing use of the new sensor data with rich 
information content presents a potential for new applications 
that could go beyond conventional mapping. Mapping of 
man-made objects with terrain features, such as urban 
mapping or corridor mapping of transmission and 
transportation lines, is probably the most common mapping 
task, which is primarily concerned with the static part of the 
object space. However, these are probably the most dynamic 
areas in terms of human activities. Most importantly the 
traffic, including a variety of vehicles and various dynamics 
presents a formidable challenge for the mapping processes, 
as moving objects should be identified and removed. Instead 
of throwing away the removed objects, it is very 
advantageous to use these data to derive valuable information 
for traffic monitoring and management. This paper is focused 
on detecting moving objects on the roads by using airborne 
remote sensing to support traffic flow information gathering. 
 

The research described is supported by the National 
Consortium for Remote Sensing in Transportation-Flows 

(NCRST-F), sponsored by the U.S. DOT and NASA. 
NCRST-F was established in 2000 as a Consortium of three 
universities: The Ohio State University, George Mason 
University and the University of Arizona 
(http://www.ncrst.org/research/ncrst-f/ncrst-f_home.html). 
The primary goal of the Consortium is to improve the 
efficiency of the transportation system at the national, state 
and local levels, by integrating remotely sensed traffic flow 
data obtained from airborne and/or satellite platforms with 
traditional data collected from the ground. It should be 
emphasized that the important features that are unique to 
remote sensing in traffic monitoring are: (1) sensors are not 
attached to just one location (for example, track dangerous 
cargo or incidents), (2) sensors can be deployed during 
special events (natural disasters, evacuation), (3) remote 
sensing can provide superior spatial resolution, and (4) can 
provide up-to-date traveler information, if applied in real-
time. 
 

This paper provides a review of research using state-of-the-
art remote sensing sensors to support traffic flow extraction 
using LiDAR and digital camera sensors installed on 
airborne platforms. The results from LiDAR corridor 
mapping and helicopter-based road intersection monitoring 
are discussed. It is important to note that rapid developments 
of UAV technologies are expected to provide an additional 
platform that is not only extremely cost-effective, but very 
flexible to accommodate in terms of offering a wide variety 
of platform altitude and velocity. 
 

2. LIDAR TECHNOLOGY  

LiDAR (or airborne laser scanning) systems have become a 
dominant player in high-precision spatial data acquisition in 
the late 90’s.  Installed in aircraft and helicopters, these 
active sensor systems can deliver surface data at decimeter-
level vertical accuracy in an almost totally automated way.  
In fact, this new technology has quickly established itself as 
the main source of surface information in commercial 
mapping. Despite the initial high price, these systems have 
made remarkable market penetration. Recent technical and 
algorithmic advances have further improved the capabilities 
of this remote sensing technology. In particular, intensity 



 

data became available, usually on all four multiple returns, 
and the laser repetition rate has approached 100 kHz. These 
developments provide an unprecedented point density on the 
ground, which, in turn, helps to accelerate the process of 
moving from simple surface extraction use of LiDAR to 
more sophisticated feature extraction, such as building or 
vehicle extraction (Vosselman and Dijkman, 2001). 
 

Every indication is that transportation and other agencies will 
be deploying LiDAR systems over transportation corridors at 
an increasing rate in the future – mainly to support 
infrastructure mapping to create accurate surface information 
of highways and areas around highways. Primarily for 
engineering purposes, the road surface must be determined at 
sub-decimeter level accuracy. In general, the vehicles on the 
road represent obstructions to the LiDAR pulses sent to 
reflect off the pavement.  Therefore, a substantial amount of 
processing must be devoted to “removing the vehicle 

signals.”  Rather than removing and discarding the signals, 
however, they can be turned into traffic flow information. 
This way, LiDAR surveys devoted to surface extraction will 
soon be able to provide a valuable byproduct with little or no 
additional effort. It was shown for the first time that civilian 
vehicles could be extracted from LiDAR data with good 
accuracy (Toth et. al., 2003c). As verified below, vehicles 
can be reliably classified into several categories such as cars, 
trucks, and multi-purpose vehicles, based on the pattern of 
the LiDAR returns. With the appropriate LiDAR point 
density, it is expected that vehicle velocities can be estimated 
more reliably in the future.  
 

Figures 1 and 2 show representative LiDAR data, including 
range and intensity components over a highway segment in 
downtown Toronto, Canada. The data was acquired by a 70 
kHz Optech 30/70 ALTM system.  

 

 
Figure 1. LiDAR elevation data of a freeway in Toronto downtown. 

 

 
Figure 2. LiDAR intensity data of a freeway in Toronto downtown. 

 

 

3. OPTICAL IMAGERY 

Aerial photography was the main technology for airborne 
mapping for decades. As a proven tool, large format aerial 
cameras have provided an enormous amount of spatial data – 
estimates run as high as 95% of geospatial data were 
collected from aerial photography until the late 90’s. Digital 
camera systems have been used on airborne platforms for a 
decade, but due to their limited resolution (ground coverage) 
they initially served only remote sensing applications – their 
good radiometric characteristics provide for excellent 
classification performance. As imaging sensor developments 
resulted in larger CCD chips, reaching the 16 Megapixel 
range, the feasibility of building photogrammetric quality 
aerial digital cameras became a reality. Currently, there are 
two main categories of these cameras: (1) medium format 
single sensor frame cameras, such as a 4K by 4K sensor 
based systems, and (2) high-performance large format aerial 
digital camera systems, such as the ADS40 scanner from 
Leica, which is based on linear sensors and multihead camera 
systems, for example, the DMC camera from Z/I Imaging or 
the UltraCam from Vexcel. 

 

The digital camera systems are mostly different from their 
analog counterpart by the sensor characteristics. The 
complete description of this topic goes beyond the scope of 
this paper; see vendors specifications and, for example, the 
recently published Manual of Photogrammetry. In short, 
CCDs have linear transfer characteristics and, in general, can 
produce much better radiometric data than their analog 
predecessors (scanned imagery). 10-12 bit intensity data are 
quite common, and more importantly, the noise level can be 
as low as the least significant bit. To a great extent, this 
excellent radiometric performance can counterbalance a 
moderate spatial resolution in terms of processing efficiency. 
Earlier digital cameras had a rather low data cycling rate – it 
took seconds to read off the image from the CCD sensors. 
Newer systems, however, can acquire imagery at rates faster 
than one second, and thus multiple overlap can be easily 
obtained at literally no cost – a definite advantage to support 
highly automated processing. Finally, it must be noted that 
the large gap between the parameters of the images acquired 
from various sensor platforms is rapidly shrinking, as the 
resolution of the upcoming satellite systems continues to 
improve from the currently highest 62 cm GSD. 



 

For the framework of the NCRST-F research, the focus was 
on using 4K by 4K cameras, as this category is frequently 
used as a companion digital camera for LiDAR systems. In 
addition, the availability as well as the cost prohibited the use 

of the high-end digital camera systems until recently. A 
representative 4K by 4K image, acquired by the DDS digital 
camera system simultaneously with the LiDAR data, is 
shown in Figure 3.  

 

 
Figure 3. 4K by 4K digital camera ortho image of a freeway in Toronto downtown. 

 

 
4. TRAFFIC FLOW 

Vehicle traffic over the transportation infrastructure affects 
almost every facet of our life and has a primary impact on the 
economy. As vehicle traffic continues to grow while the 
resources to increase the road capacity are limited, the only 
answer to keep up with the ever-increasing traffic is better 
management. This, in turn, depends on the availability of 
better traffic data, i.e., timely information on almost every 
vehicle traveling on the transportation network. 
 

Traffic flow is a generic term used to describe vehicle 
movement and volume over a transportation network; two of 
the most important traffic measures produced by state DOTs 
and other transportation agencies around the world are 
AADT and VMT (Pline ed., 1992). Average annual daily 
traffic (AADT) is produced to represent the vehicle flow over 
a highway segment on an average day of the year. Vehicle 
miles traveled (VMT) indicates travel over the entire 
highway system and is used to indicate mobility patterns and 
travel trends. VMT is also used as an indicator for allocation 
of highway resources. Flow data are generally obtained by 
ground-based equipment, such as loop detectors or road tubes, 
which are fixed to a location and are deployable as needed. 
In the latter case, the sample data are collected from road 
tubes placed in the traveled portion of the road, disrupting 
traffic and endangering the crews when placing or collecting 
the tubes. Using satellites and air-based platforms, the 
survey/control crews can cover large areas, access remote 
highways, and carry sensors that can collect data from safe 
and non-disruptive off-the-road locations. The imagery 
collects “snapshots” of traffic over large areas at an instant of 
time or a sequence of snapshots over smaller areas, whereas 
traditional data collection observes vehicles at a point on the 
highway over much longer time intervals (McCord et. al., 
2003).  
 

Short-term flow parameters, including daily or hourly 
parameters broken down to vehicle categories are also of 
high interest, but can be acquired only with a limited spatial 
extent with traditional techniques, as the density of ground-
based sensors cannot be increased infinitely. The use of 
airborne imagery, however, offers an on-demand deployable 
tool with excellent temporal and spatial resolutions that can 
easily provide for sizeable area coverage at fast sampling 
rates. Therefore, the primary objective of this investigation 
was to research the feasibility of obtaining short-term flow 
data by using remote sensing technologies. 

 
5. VEHICLE EXTRACTION, GROUPING AND 

TRACKING 

The investigation of extracting flow data from airborne 
remote sensing has been carried out using two different 
sensor configurations: (1) to monitor the feasibility of 
obtaining traffic flow data over road segments, LiDAR data 
were acquired from several test flights, and in one case, 4K 
by 4K imagery was simultaneously captured and then used as 
the ground truth for the LiDAR data, and (2) to assess the 
potential of flow monitoring at intersections, a 4K by 4K 
digital camera and a standard video system were installed on 
a helicopter platform and several test flights were conducted. 
 
5.1  Vehicle Extraction and Grouping From LiDAR Data 
 
In the first step of the data processing, the input LiDAR data 
are filtered to reduce the point cloud to the road area. The 
approximate location of the road geometry is usually 
available from CAD or GIS databases, maintained by 
transportation agencies. Since the accuracy of the road 
location information is limited, or only the centerline data are 
available, it is mandatory to perform a road-matching step. 
During this process, the edge lines of the road are tracked 
from the LiDAR data. Once the road surface area has been 
identified, the vehicles can be extracted by a simple 
thresholding. During this process the road surface modeled 
and the surface normal are considered, thus, the resulting 
vehicle points are reduced to the height with respect to the 
modeled road surface (road invariant description of the 
vehicles). 
 

The point cloud of a vehicle can contain a varying number of 
points, mainly depending on the laser point density and the 
relative speed between the vehicle and LiDAR sensor. The 
effect of the latter factor is more important and demands a 
parameterization of points that can, at least, partially reduce 
the effect of vehicle shortening and elongation (compare 
vehicles in Figures 1-2 to Figure 3). The selection of 
parameters has a major impact on the classification process, 
namely, how reliable can the different vehicle groups be 
separated. The basic model was formed from six parameters, 
including the length and width of the vehicle and four height 
values, representing an average height over four equal 
segments of the vehicle. Figure 4 shows the interpretation of 
the basic parameters. 
 



 

 
 

Figure 4. Vehicle close-up from LiDAR with parameters. 
 
In subsequent tests, additional parameters were used, such as 
average intensity values of the four equal segments, or 
derived parameters, such as vehicle footprint size or vehicle 
volume. Since all these parameters were mostly generic, no 
physical modeling was used. The Principal Component 
Analysis (PCA) was selected as an obvious choice to identify 
significant correlation among the parameters describing the 
data, and ultimately, to use for the minimum and sufficient 
subset of parameters. There were two training sets used for 
PCA, one from Dayton, OH containing 72 vehicles and one 
from Toronto with 50 vehicles. Table 1 summarizes the PCA 
results for various parameter selections. Additional details 
can be found in (Toth and Brzezinska, 2004). 
 

Parameters # 1st component 2nd component 
H1, H2, H3, H3 4 74.87 16.15 
W, L, H1, H2, H3, H3 6 96.58 2.12 
W, L, H1, H2, H3, H3, 
I1, I2, I3, I4 

1
0 

65.48 21.94 

W, L, A (W*L),  
V (W*L*H) 

4 99.43 0.49 

 

Table 1. PCA performance for various parameter sets. 
 
The vehicles of the two training sets were grouped into three 
categories: cars, MUVs (Multipurpose Utility Vehicles) and 
trucks. Using the two most significant eigenvalues as a 
classification space, the training set can be visualized as 
shown in Figure 5.  
 
 

 
 

a) 

 
b) 

 

Figure 5. Vehicle distribution in the classification space 
defined by the 6 (a) and 4 (b) parameter spaces. 

 

The classification performance was evaluated by using three 
widely used techniques (Toth et. al., 2003a). The first 
method, a rule-based classifier, contains decision rules 
derived from the PCA transformed features. As depicted in 
Figure 4, a clear separation, in other words, a clustering of 
samples with identical labels, can be easily made between the 
groups by using straight lines. The second method was a 
fundamental statistical technique: the minimum distance 
method. This classifier is based on a class description 
involving the class centers, which are calculated by 
averaging feature components of each class. Finally, the third 
method in the vehicle recognition investigation was based on 
an artificial neural network classifier. A 3-layer feed-forward 
(back-propagation) neural network structure was 
implemented in our tests. The training method was the 
Levenberg-Marquard algorithm (Demuth, 1998), the 
maximal number of training steps (epochs) was 70, and the 
required error goal value was 0.1. The network error was 
calculated by the mean square error (MSE) method. The 
three studied vehicle classification techniques were tested on 
the first training data set of Ohio (1), on the data set 
containing vehicles from Ohio and Michigan (2), and on a 
combined dataset, including the Ontario data (3), provided by 
Optech. The first test (in-sample test) was only an internal 
check of the algorithms. Table 2 shows a performance 
comparison of the three techniques. Additional results can be 
found in (Toth et. al., 2003a). 
 

Data set  
(total number of 

vehicles) 
Rule-based Minimum 

distance 
Neural 

network 

Ohio (72) 0 (0%) 8 (11.1%) 2 (2.8%) 
Ohio + Michigan (87) 2 (2.3%) 12 (13.8%) 8 (9.2%) 
Ohio + Michigan + 
Ontario (102) 

2 (2%) 17 (16.7%) 16 (15.7%) 

 

Table 2. The comparison of the three classification 
techniques: vehicle count of misclassification errors. 

 
5.2 Vehicle Extraction and Tracking from Helicopter 
Imagery 
 
In cooperation with the University of Arizona (UoA), an 
experimental sensor configuration based on a 4K by 4K 
digital camera with a 50 mm focal distance and 15-µm pixel 
size, 602 mm2 imaging area, a video, and a small resolution 
digital frame camera assembly was flown to acquire images 
over a busy intersection north of the UoA campus area (see 
details in Grejner-Brzezinska and Toth, 2003; Grejner-

Passenger car 

Multi-purpose vehicle 

Trucks 

Right side 
 
Left side (vehicles 
and LiDAR sensor 
move in the same 
direction) 



 

Brzezinska et. al., 2003). A sample high-resolution and a 
video image are shown in Figure 6. 

 

a) 

 
b) 

 

Figure 6. Sample images of the selected intersection: 4K by 
4K CCD (a), video (b). 

 

To support the vehicle matching and tracking in the image 
domain, the images were first orthorectified, i.e., all 
distortions due to surface and different camera pose have 
been removed. The processing, in general, benefits from the 
ortho domain; for instance, vehicle extraction can be done at 
true object scale and detection of moving objects can be 
easily obtained by simple image differencing, as shown in 
Figure 7. The vehicle extraction process includes edge 
extraction, intensity-based thresholding, profile analysis and 
morphological filtering (further details are in Paska and Toth, 
2004; Toth et. al., 2003b). The limitation of the 4K by 4K 
digital camera system, used in the Tucson, AZ flight, 
unfortunately allowed only for a 6-sec image acquisition rate, 
which was too low to obtain an adequate sampling of vehicle 
positions, and thus, resulted in unacceptable automated 
vehicle tracking performance. In contrast, the automation of 
video imagery resulted in excellent performance for small 
area tracking (see Mirchandani et. al., 2003). 
 

 
 

Figure 7. Detecting moving objects in the ortho domain. 
 
5.3  Velocity Estimates 
 
The information on the vehicle counts and locations 
represents only the density aspect of the traffic flow, as the 
velocity, at least the average velocity, is needed to obtain the 
true flow data. For the LiDAR data, the observed vehicle 
sizes compared to the actual sizes can provide a basis for the 
velocity estimation. However, the problem is that only the 
major vehicle categories can be identified, and thus, the true 
vehicle size is unknown, as only the size range is known for 
a given category. Nevertheless, the coarse estimates for 
individual vehicles can lead to an acceptable average 
velocity estimate. Table 3 shows the statistics of the road 
segment shown in Figure 1. The imagery, in general, can 
provide a better source for velocity estimates. In our test data, 
good velocity estimates were obtained from the video, while 
the slow image acquisition rate of the 4K by 4K camera 
could deliver only coarse average velocity estimates. 
Intersection flow volume of the test area in Figure 5 is shown 
in Figure 8. 
 

Lane # Spacing 
[m] 

Velocity 
[km/h] 

Density 
[vehicle/km] 

Flow 
[vehicle/h] 

1 32.8 81.6 30.5 2487 
2 24.1 76.8 41.6 3187 
3 23.7 75 42.2 3164 

Average 26.9 77.8 38.1 2946 
 

Table 3. Traffic data. 
 

 
 
Figure 8. In bound and out-bound traffic flow of the selected 

intersection. 
 



 

6. SUMMARY OF RESULTS 

The experimental results obtained with the two data sets 
confirmed that LiDAR and optical imagery from airborne 
platforms can deliver valuable traffic flow data. In addition, 
the initial performance analyses of the representative data 
sample have shown a good potential for automated 
processing. Table 4 provides generic performance metrics, 
which compare the potential of various airborne remote 
sensing technologies to obtain traffic flow data. 
 
Sensor LiDAR Digital camera 
Platform Airplane Airplane Helicopter Satellite 
General 
characteristics  

    

Spatial extent Good Good Limited Excellent 
Temporal extent Moderate Moderat

e 
Excellent Weak 

Process     
Vehicle extraction Simple Difficult Difficult Complex 

Vehicle 
classification 

Simple Feasible Feasible Limited 

Vehicle tracking Not 
feasible 

Limited Good Not 
feasible 

Velocity estimate Moderate Good Excellent Not 
feasible 

Flow computation Feasible Good Excellent Not 
feasible 

 

Table 4. Performance comparison metrics. 
 

7. CONCLUSIONS 

The feasibility and efficiency of using airborne remote 
sensing to traffic monitoring were demonstrated. Airborne 
sensors, LiDAR and frame imagery in particular, provide 
high spatial and temporal resolution data that can effectively 
support modeling and management of traffic flows. It should 
be mentioned that even though the cost per unit of traffic 
data for airborne platforms could be lower, as compared to 
the traditional ground based methods, the cost of the platform 
and the sensors might still be prohibitive. As a great amount 
of LiDAR data, as well as imagery, is collected for routine 
aerial mapping over transportation corridors and in urban 
areas with dense road networks, there is already an 
opportunity for obtaining such flow data at practically no 
extra effort. Similarly, digital sensor systems can be turned 
on to collect data during transit between mapping project 
areas. Thus, at almost no cost, a significant amount of data 
rich in traffic flow information can be acquired. To move 
from a prototype implementation to a turn-key system, 
further algorithmic developments are required to achieve a 
highly-automated processing plus more tests are needed with 
varying vehicle density and dynamics, as well as during 
various flight conditions/environment. 
. 
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