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ABSTRACT:

In this paper we investigate the influence of linear features (segments) in a bundle adjustment. Bundle adjustment is the problem of
refining a set of parameters (internal calibration, external calibration, 3D model). The refinement is performed by the minimization of
a cost function. In usual photogrammetric applications, this cost function is based on image tie points and 3D control points. The cost
function measures the distance between the observed data and the model. Linear features are especially important when dealing with
architectural or terrestrial images, since they do not require segment extremity to match. So, they are easier to detect automatically
within particular scenes (buildings, landscapes...). First, we present the basic concepts of bundle adjustment and the integration of
linear features. Using the same concept, the linear feature model is based on the distance between the 3D line re projection in the image
and the detected image segments. We describe an algorithm for the resolution of this non-linear least-square problem under constraints.
Second, we study the influence of these features on two cases. The first case is a calibration polygon, with a large overlap between
images. The second one is a facade of a building. We compare a statistical evaluation of the reliability of the estimated parameters to
the theoretical bounds calculated with the eigenvalues and eigenvectors of the Hessian matrix associated to our problem. We stress that
segments can be relevant features and can highly increase precision.

1. INTRODUCTION

Accurate parameter estimation is paramount for many image
based applications. Feature matching and

���
feature reconstruc-

tion are intimately linked to camera parameter estimation. Hence,
the knowledge of the viewing parameters permits to face the

���
structure reconstruction problem. Conversely, accurate feature
matching can provide a refinement of the viewing parameter esti-
mation. For instance, viewing parameter estimation is a problem
that both the computer vision community and the photogramme-
try community have tackled for the last decades. Moreover, both
communities are currently able to provide a solution for a rough
estimation of numerous parameters using different techniques.
On the one hand, linearity of geometric relations using projec-
tive geometry provides simple expressions for many parameters
(Heuel, 2001). Hence, robust algorithms providing viewing pa-
rameters (Faugeras et al., 2001),(Xu and Zhang, 1996), (Torr and
Davidson, 2003) are widespread in the computer vision commu-
nity. These robust estimations often lack accuracy or metric inter-
pretation. On the other hand, many problems in the photogram-
metric community can be faced thanks to a rough estimation of
the viewing parameters (using GPS, INS). Thus, given a rough
estimation of the parameters, bundle adjustment provides jointly
a refinement of the

���
structure and of the viewing parameters

((Triggs et al., 2000), (Hartley and Zisserman, 2002), (Kraus,
1993)). Usually, only points are used for the process. But, in
man-made environments, linear features are often easier to detect.
So, it is of importance to include them in the bundle adjustment
process, as well as to quantify their contribution. The quantifi-
cation can be done by estimating the accuracy improvement of
each parameter. If the measurements used for bundle adjustment
are Gaussian, we can use error propagation results in order to as-
sociate an uncertainty to each estimated parameter. Correlation
between different parameters can also be estimated (Triggs et al.,
2000), (Hartley and Zisserman, 2002), (Förstner, 2004).

2. BUNDLE ADJUSTMENT

2.1 Introduction
Bundle adjustment is the well known process used to refine a
set of parameters such as camera positions and orientations,

���
point and line positions. It relies on the minimization of a cost
function based on all available observations such as Ground Con-
trol Points (GCP), tie points and tie lines. In this section, we suc-

cessively describe the parameters, the cost function and, finally,
the observations.

2.2 Parameters

Parameters are representative of the problem modeling. In this
problem, three kinds of parameters are to be retrieved : camera’s,
points’ and linear features’.

Camera Camera position is obviously represented by three co-
ordinates �����
	����� in a true

���
system. Multiple representations

exist for the camera orientation. We have chosen to use a unitary
quaternion to represent it. This representation is non-minimal but
simple and never degenerate. Unitary quaternions are represented
as a quadruplet of value ������������������������� , with constraint :� ���� � ���� � ���� � ������� "! (1)

and there is a simple mapping taking unitary quaternions to ro-
tation matrices (Chou and Kamel, 1991). The system has # un-
knowns and � constraint for each camera.

Point feature A point is represented by three coordinates������	����$� in a true
���

system. So the system has
�

unknowns
for each point.

Linear feature A linear feature can be rather tricky to repre-
sent. Both computer vision and photogrammetry communities
have tried to introduce these features for camera parameter esti-
mations (Habib, 1999), (Xu and Zhang, 1996). We have chosen a
simple model: linear features are considered infinite in

���
, and

their image measurement is simply the position of their extremi-
ties (Kumar and Hanson, 1994).���

linear features have only % degrees of freedom, but represen-
tations using a minimal set of parameters can be rather complex.
So we have chosen to use a simple & parameter representation :
a line is represented by a start point ' and a direction () . Any
point * on the line can be expressed as *  ' �,+ () , with+.-"/ . To get a unique representation, ' and () are subject to
two constraints : 0 () 0 � ���� "! (2)

and �1� 23 '546()  "! (3)

where
3

has coordinates � ! � ! � ! � . The system has 6 unknowns
and 2 constraints for each line.



2.3 Cost function

Bundle adjustment is based on the minimization of a cost function7
, which depends on the parameters that have been defined. Let(8 -9/;:=< be the vector of all parameters. >@? is the number of

unknowns : 7 per image, 3 per point, and 6 per line. The cost
function is generally the sum of the squared differences between
computed and observed values :7 � (8 �  :�AB C D � EGF C � (8 �
H �  :IAB C D � JLK�MONQPC � K�R MTS�UC � (8 �V C W �

(4)

whereX > M is the number of observations,X F C � (8 � is the Y6Z\[ element of the normalized residual vector(F -]/^: A , F C � (8 �  `_ Abadcegf _Gh A
ikje l�mn�op e ,X K�MTNQPC
is the Y Z\[ observation,X K R MTS�UC � (8 � is the computed value of the Y6Z\[ observation,X V C is the expected standard deviation of

K�MONQPC
.

Constraints have also to be taken into account. Let > R be the total
number of constraints : 1 per quaternion (see equation 1) and q
per line (see equations 2 and 3). Let (r -s/ : h be the vector of all
constraints. Satisfying constraints is equivalent to (r � (8 �  (! .
The minimization problem consists of finding (8 :(8  "tvuwyx{z}| E 7 � (8 � H subject to constraints (r � (8 �  (! (5)

2.4 Observations

Camera observations In some cases, camera position as well
as its orientation can be directly measured. They can be taken into
account in the cost function by adding one observation which can
be a camera position or an orientation (e.g. GPS/INS measure-
ment can be directly included in the process). V is then the ex-
pected error on GPS/INS measures. These camera observations
can also be used in order to provide an initial solution for our
minimization process (Section 3.).

Point observations For Ground Control Points (GCP), the
���

position �����b	~�b��� is an observation. The cost function is directly
the distance between the observed position and the measured one.V is the expected error on position measurement, depending on
the measurement method (GPS, topography, ...).

For each point, the image positions � r ����� either in pixels or in mil-
limeters are also observations. The cost function is the distance
between the projection of the corresponding

���
point and the

measured image position. V is the expected error on image po-
sition measurement, depending on the method used to determine
the point position (monocular, stereo, automatic, etc.).

Line observations In order to introduce linear features in the
bundle adjustment process, we only need to introduce a distance
between an observed and a computed value. Most algorithms
represent image segments using their two extreme points � � and� � (see Figure 1).

The cost function is the distance between the projected
���

line
and these extreme points, orthogonally to the projected

���
line.

Using this definition of distance, segment extremities in differ-
ent images do not have to match, they just have to be as close
as possible from the q � re projection of the same

���
line. It

is therefore possible to create tie lines between images with no
overlap. V is the expected error on the position of segment ex-
tremities, orthogonally to the

���
line projection. Practically, this

expected error is not easy to determine.

Figure 1: Linear features distance

3. MINIMIZATION

This section deals with the problem of minimizing the cost
function

7
, which is obviously a non-linear function. It is

achieved through the Gauss-Newton algorithm. Should robust-
ness problems arise, our algorithm may be easely transformed in
a Levenberg-Marquard iterative algorithm. Constraints will be
addressed in subsection 3.3.

3.1 Gauss-Newton algorithm

The Gauss-Newton algorithm is an iterative algorithm requiring
an initial estimate (8 l � o . In this paper, (8 l � o is supposed to be
available and will not be discussed (see Introduction). At each
step � , vector (8 l�� o is updated : (8 l}�G� � o  (8 l�� o � �b2� 8

. Let
H
E (8 H be the Hessian matrix of function

7 � (8 � :

H

C�� � E (8 H  `� � 7 E (8 H� 8 C � 8 � with Y�d� -���� �T>�?�� (6)

and (� � (8 � be the gradient of
7 � (8 � :� C E (8 H  � 7 E (8 H� 8 C with Y -���� �T>�?$� (7)

At each step, we seek (8 � �2� 8
minimizing cost function

7
.

Hence :

!� � 7 E (8 � ��2� 8 H� 8 � (� E (8 H � H
E (8 H ��2� 8 (8)

which enables us to determine
�b2� 8

. The algorithm is :X
at each step � , compute

�b2� 8
using:

H
E (8 l}� o H �b2� 8  �� (� E (8 l�� o H (9)X (8 l��G� � o  (8 l�� o � �2� 8X �  � �"�X

go to step 1



3.2 Jacobian approximation

In most applications, H � (8 � and (� � (8 � can be complex to com-
pute, so a first order approximation is performed:

H � (8 � � J Z � (8 � J � (8 � (10)

where J is the Jacobian matrix :

J

C�� � � (8 �  � F C � (8 �� 8 �  �V C � K�R MTS�UC � (8 �� 8 �with Y -���� �> M �d�6� -���� �T>�?�� (11)

Using the same approximation, (� is computed using :(� � (8 � � J Z � (8 ��(F � (8 � (12)

This problem is equivalent to solving the linear least square prob-
lem :

J
E (8 H ��2� 8  (F E (8 H (13)

The system can be expressed using the usual matrix form :�
J Z J ��� ��2� 8��  �

J Z (F � (14)

Seeing that the matrix is symmetric and positive, the system can
be solved using the Cholevsky algorithm.

3.3 Constraints

At the beginning of this section, we did not take the constraints
into account. So, even if at step � , (8 l}� o satisfies the constraints,(8 l��G� � o  (8 l}� o � ��2� 8 , with

�b2� 8
solution of equation 14 has no

reason to satisfy the constraints.

The first obvious solution to this problem is to modify each(8 l��G� � o in order to satisfy the constraints (by renormalization or
projection on the constraint space). This is an easy and direct
solution, but, the theory does not guarantee the convergence. In
practice, the convergence is slow. An alternative solution is to
introduce the constraints in the resolution process (see (Triggs et
al., 2000)).

Equation 5 can be solved using Lagrange multipliers. Let (� -/ : h be the vector of Lagrange multipliers. Let the first order
expansion of the constraint vector be (r � (8 � �
2� 8 � � (r � (8 � � C (8 ,
where C is the matrix of the constraints gradients :

C

C�� �  � r C� 8 � with Y -��}� �> R �d�Q� -���� �T>�?$� (15)

Solving equation 5 is equivalent to finding (8 � �b2� 8 that optimizes7 � (r 4 (� , subject to (r  �! . The first order expansion of both
expressions are :

!� �� 8 E 7 E (8 � �2� 8 H � (r E (8 � ��2� 8 H 4 (� H� (� E (8 H � H
E (8 H ��2� 8 � C Z E (8 H (� (16)

and !� (r E (8 � ��2� 8 H]� r E (8 H � C �2� 8 (17)

Combining these two equations gives the expression for each step
of the algorithm : �

H C Z
C !��s� ��2� 8 (�� ¡ ¢� � (� (r � (18)

Using the same approximation as in section 3.2, the system be-
comes :

�
J Z J C Z
C ! �s� ��2� 8 (�� ¡ ¢� �

J Z (F(r � (19)

The main difference between this system and equation 14 is that
the matrix is not positive anymore. So, it cannot be solved using
the Cholevsky algorithm. Other algorithms such as LU, QR or
Householder transform can be used. We generally use the LU
transform.

4. ACCURACY

This section deals with error propagation in the bundle adjust-
ment problem. It enables us to assess the accuracy of all recon-
structed parameters.

4.1 Accuracy prevision

It is well known that, if observed values
K MONQP

have only a Gaus-
sian noise, vector (8 which minimizes

7 � (8 � is also the maxi-
mum likelihood vector. Let V be the variance matrix :

V

C�� �  "£ � E (8 C ��£ � (8 C � H{¤ E (8 � ��£ � (8 � � H �
with Y��6� -���� �T>@?$� (20)

where £ ���~� denotes the expectation of variable � .

For (8 minimum of
7

, the inverse of the Hessian matrix H f � � (8 �
is equal to the variance matrix V. Some justifications can be
found in (Hartley and Zisserman, 2002) or (Förstner, 2004).

So, it is possible to know the accuracy and the correlation be-
tween unknowns just by inversing the Hessian matrix. This re-
sults is confirmed by experimental results (see section 5.).

A correlation matrix can also be computed :

Corr

Cd� �  V

C�� �¥
V

C�� C ¤ V

�O� �
with Y��Q� -���� �T> ? � (21)

Each matrix element Corr

C�� �
gives the correlation (between -1 an

+1) between two parameters
8 C

and
8 �

.

4.2 Camera position Accuracy

We denote by ¦§ the estimation of the camera position after the
bundle adjustment algorithm, and by V

C
, the

�s¨��
sub matrix

of V corresponding to variance-covariance matrix of the camera
position is extracted. Error propagation follows:

' © ª��v¦§ � V C � (22)

Hence, �d' � ¦§ � Z V f �C �d' � ¦§ �«© ¬ � � � � (23)

Now, given a significance number  , we can associate to the es-
timated camera position a covariance ellipsoid ®���¦§ ��¯� :

�d' � ¦§ � Z V f �C �d' � ¦§ �±° ¬ � � � ��¯� (24)

With ¬ � � � �¯� representing the ²Z�[ quantile of a chi-square law
with

�
degrees of freedom. To get the axes length of the ellip-

soid, standard eigenvector decomposition of the matrix V

C
is per-

formed.



4.3 Camera Rotation Accuracy

Rotation parameters are estimated using a normalized quaternion¦� representation. As for the camera position, we can extract a
variance covariance matrix from V. This matrix V ³ will repre-
sent the variance covariance matrix of the quaternion. Because of
the normalization constraint, V ³ does not provide any direct in-
formation on the uncertainty of the rotation. Hence, we will use
a backward transport of the covariance (Hartley and Zisserman,
2002). We can define a rotation by an axis )�´ � µ and an angle ¶ .) ´ � µ  ��·¹¸�º��d»=��º z}| ��¼L�O��º z}| �d»=��º z�| ��¼��O�b·¹¸�º���¼���� Z (25)

Let ½`¾ / � 2¿/^À be a differential mapping taking a parameter
vector ¦F  � ¦¶Á� ¦»k� ¦¼L� to a measurement vector ¦� .

½{� ¦¶Á� ¦»k� ¦¼L�  ��·G¸�º ¶q ��º z}| ¶q )�Â´ � Âµ � (26)

Hence, we can deduce an approximation of Ã ÂÄ � Â´ � ÂµÃ ÂÄ � Â´ � Âµ  � J Z Å V
f �³ J Å � � (27)

With * � designing the pseudo-inverse of matrix * and J Å be-
ing the Jacobian of ½ . Again, given a significance number  ,
we can associate a covariance ellipsoid to the estimated camera
rotation ®�� ¦¶�� ¦»�� ¦¼��¯� .
4.4

���
Points Accuracy

We use the same method as in the Camera position Accuracy sec-
tion. Again, given a significance number  , we can associate to
a tie point or a GCP a covariance ellipsoid ®y�v¦§ ��¯� . One impor-
tant application of this accuracy estimator is to predict roughly
the accuracy of a

���
reconstruction.

4.5
���

Lines Accuracy

Line accuracy can be computed using our bundle adjustment
technique. This part is still under development in our system.
Some error propagation algorithms involving lines can be found
in (Taillandier and Deriche, 2002) or (Heuel, 2001).

5. EXPERIMENTS

5.1 Test fields description

Calibration polygon The first test field contains 16 images of
a calibration polygon with 75 materialized GCP with an accuracy
of 0.1 mm (see Figure 2). The polygon was created in order to
precisely determine camera internal parameters. Here, it is used
to assess the quality of accuracy prevision.

Building facade The second test field is made of 16 images of
a facade (see Figure 3) taken from a mobile vehicle using a stereo
rig. It is representative of forthcoming image acquisitions from a
vehicle. At a given instant Æ two cameras along a vertical baseline
take pictures of building facades. A more accurate description of
the acquisition process can be found in (Bentrah et al., 2004).
Nine tie lines have been manually selected. Thirty GCP have
been measured by a surveyor using classical topographic tools
with an accuracy of ! 4 q�Ç mm.

5.2 Simulation
In order to verify accuracy previsions coming from the Hessian
matrix inversion, two different experiments have been carried out
on each test field. In each case, a perfect solution has been cre-
ated. The first experiment (A) adds simply a Gaussian noise on
all observed value (tie points, tie lines and GCP). The second one

Figure 2: Calibration polygon test field. #�Ç materialized GCP
have been measured with an accuracy of 0.1 mm.

Figure 3: Building facade test field. A stereo rig mounted on
a mobile vehicle has taken � & images of a facade.

� ! GCP are
available. È vertical and one horizontal tie lines have been manu-
ally selected.



Experiment GN I (px) RE I (px) GN G (m) RE G (m)
A 1 0 0.001 0
B 1 1 0.001 0.001

Table 1: Experiments description.

Test field V diagonal mean error V mean error
Polygon A 0.026 % 0.51 %
Polygon B 0.027 % 0.71 %
Facade A 2.7 % 11.2 %
Facade B 2.7 % 11.3 %

Table 2: Stability of V.

(B) introduces rounding errors, which are non Gaussian and are
much more realistic. For each experiment, on each geometry,
1000 trials have been made.

Table 1 shows the different experiments. The legend for Table 1
is : X

GN I : Gaussian Noise on all Images observations, points
and lines;X
RE I : Rounding Error on all Images observations, points
and linesX
GN G : Gaussian Noise on Ground Control Points,X
RE G : Rounding Error on Ground Control Points.

Stability of accuracy prevision First, we have verified that
the matrix V is stable, i.e., that it does not change when data
and solution change a little. Using all trials, we can compute
a mean value and a standard deviation for each element of É .
Experimental results are shown in Table 2. V diagonal mean error
is the mean, for all elements of the diagonal of V, of the standard
deviation divided by the mean value of this element. V mean
error is the mean, for all elements of V, of the standard deviation
divided by the mean value of this element.

These results show that V is very stable, and is not influenced
much by usual noise. It seems that some simulations with lines
are less stable than the one without lines. Anyway, for real cases,
the matrix V obtained after convergence can be used directly.

Accuracy previsions vs measured accuracy The goal of this
part is to verify that the observed errors and the computed ones
are coherent. Using all trials, it is possible to compute the vari-
ance and co-variance of all unknowns

8 C
, and to compare it with

V. The results are shown in Table 3. Legend for Table 3 is :

Test field Mean SDE Mean CE
Polygon A 0.016 % 0.025
Polygon B 0.037 % 0.025
Facade A 0.6 % 0.09
Facade B 0.5 % 0.17

Table 3: Accuracy simulation results.X
SDE : Standard Deviation Error is :Ê

V
MTNQPC�� C � V

Cd� C Ê
V
MTN6PCd� C with Y -���� �T> ) � (28)

where V
MTNQPC�� C

is the observed value of V;X
CE : Correlation Error is

Ê
Corr

MONQPCd� � � Corr

Cd� � Ê
for all un-

knowns ( Y��Q� -Ë��� �T> ) �\� ), where Corr
MONQPCd� �

is the observed
correlation between unknowns

8 C
and

8 �

Camera Position Rotation
���

Point
(mm) (mrad) (mm)£ � mean 39 3.8 2.7

sd 3 0.7 2.8e-02£ � mean 32 2.5 2.6
sd 2 0.6 2.8e-02

Table 4: Camera rotation and position accuracy with 30 GCP
(line £ � ) and with tie lines (line £ � ).

Camera Position Rotation
���

Point
(mm) (mrad) (mm)£ � mean 84 6 74

sd 12 2 45£ � mean 41 1 18
sd 9 0.2 8

Table 5: Camera rotation and position accuracy with & GCP andqv% tie points (line £ � ) and with tie lines (line £ � ).
Results are very promising : observed and computed variance are
very similar. So the matrix H f � is a very good estimate of the
variance matrix V. The variance of any unknown can be predicted
with an error inferior to 1%, even if noise is not perfectly gaus-
sian. Linear features seem to degrade the quality of the estimation
of correlation between parameters, especially when rounding er-
ror is applied (Facade B). Anyway, this method enables us to get
the precision of each parameter of the system.

5.3 Mobile Vehicle

This real case study corresponds to the facade test field. In the
first experiment (Table 4) all GCP have been used in the bundle
adjustment algorithm. The second experiment (Table 5) analyzes
the result of the bundle adjustment process with only 6 GCP (24
points are set as tie points in our process). For both experiments,
significance number  is set to ! 4 Ì$Ç . Statistics are made on the
length of the longest axis of each

���
ellipsoid.

The comparison of the angle between the longest ellipsoid axis
and the

3 � axis stresses the fact that using vertical tie lines pro-
vides a longest ellipsoid axis closer to the

3 � axis by 2-5 degrees.

In the second experiment, one should note that all q�% control
points, which are not used in the bundle, fall inside the estimated
covariance ellipsoid.

5.4 Discussion

Simulation and real experiments have stressed the importance of
lines in order to increase parameter estimation accuracy in a bun-
dle adjustment process. We have observed that the gain in ac-
curacy was depending on the orientation of the given lines. The
error propagation modeling has also been validated by our exper-
iments.

6. CONCLUSION AND FUTURE WORK

We have presented a technique to compute a bundle adjustment
with points and lines. We provide an error propagation algo-
rithm in order to assess the reliability of the estimated parameters
(viewing position, viewing rotation,

���
points and lines). Exper-

iments on simulated data and on real data are described. Many
extensions and further research on this topic can be done:X

Error propagation with non-Gaussian distributions. De-
pending on the algorithm used to select points and lines the
error distribution is non-Gaussian. Moreover, very often
we must face a bundle adjustment problem with small data
sets. In these situations, specific statistical tools have to be
used in order to estimate parameter accuracy (large devia-
tion, etc.)



X
Guidelines for a matching algorithm. For some appli-
cations, we can suppose that the reliability of the viewing
parameters and the

���
reconstruction is fixed. Hence, our

bundle adjustment algorithm with error propagation can as-
sess when the reliability goal is reached. If not, the match-
ing algorithm still has to extract and match more features in
order to increase the reliability in the given parameters.X
Dealing with large scale surveys. The experiments were
performed with a reduced amount of data (20-30 images,
several hundreds of measures). Dealing with large-scale
surveys will necessitate an optimized design and we will
have to handle sparse matrix. Some optimization processes
are well known in the photogrammetric community and de-
scribed in (Triggs et al., 2000).X
Spatial reasoning. A very promising area of research con-
cerns the way to choose points and lines in images in order
to improve the accuracy of the estimated parameters. As a
matter of fact, the spatial distribution of the features (points
and lines) inside the images, as well as the geometric ar-
rangement of the camera, have a tremendous impact on the
accuracy of the estimation of the different parameters of a
bundle adjustment problem (Michaelsen and Stilla, 2003).
Correlation analysis between different parameters will be of
interest in order to estimate the crucial parameters.X
Introducing more knowledge concerning the data. More
constraints or parameters can be introduced depending on
the knowledge we have of the scene. For instance, vertical
lines can be introduced in the bundle adjustment thanks to
vanishing points or constraints on the

���
lines (Bentrah et

al., 2004), (Van den Heuvel, 2001).
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