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ABSTRACT:

In this paper an unusual taxonomy for optical mappings is introduced based on their geometric characteristics: 1. type of projection
center (single viewpoint, non single viewpoint) and 2. type of transformation (projective, non projective). Under this background we
survey the multi media geometry (refraction resulting from different optical media). Strict physical models of non projective mappings
can be very complex in dependency on their geometric nature. Therefor different methods for reducing the complexity exist. This paper
describes a method of ascertaining a virtual camera to approximate non projective mappings by a projective model and their application
for a 3D point determination using multiple views with non projective multi media geometry. As will be seen, the approximation can be
used without loosing the quality of the strict model significantly. For the matching process we introduce a new algorithm for multiple
views based on geometric constrains alone which uses all images simultaneously.

1 INTRODUCTION Table 1: Classification of imaging systems

1.1 Motivation Class| Mapping | Viewpoint | Imaging System Modeling
distortion
The nature of an optical mapping process between a 3D object 1 Projective | Single Pinhole -
space and a 2D image space depends on the geometry of the Viewpoint
imaging system, its physical laws and the scene structure. 2 Non Single Wide-angle  cam- | based on
Projective Viewpoint | eras, fish-eye position
In this context we use the term imaging system instead of camera cameras, —  CeN- | jn image
system, because it should contains all parameters, which have an tral Catidmpt".c space
effect on the nature o_f the_optical me}pping. In partic_ular the eff_ect fﬁg:izrr? S’Of oksz[:?ixv";
on the way of mapping light-rays, influenced by light refraction distortion
or reflection. 3 Non Non- Wide-angle  cam- | based on
. . . ) Projective Single eras, fish-eye | position
Based on the different nature of optical mappings and their char- View- cameras , catadiop- | in object
acteristic, several kinds of classifications exist (e.g in (Hartley points tric cameras, camera space
and Zisserman, 2003) whether they have a finite centre or a cen- clusters,  moving
tre “at infinity”, or whether they preserve straight lines or not). cameras, multi-
media  geometry,
An unusual feature for a classification of mappings is the kind of objective distortion

image distortion, resulting from light refraction or reflexion of the
mapping rays. Therefore we introduce a classification of imag-
ing systems, based on the following geometric features, which
influence the characteristics of image distortions:

Geometrical characteristics of optical mappings:

1. Single Viewpoint (SVP) or Non Single Viewpoint
(NSVP)
mapping rays intersect in one single point or not

2. Invariance or variance of straight lines
straight lines in the scene appear as straight lines in
the 2D image space (projective mapping) or appear as
curves

From the combination of these geometric features, we get a clas-
sification of imaging systems with three different classes, sum-
marised in table 1. It is based on the classification of optical

mappings in (Wolff and Forstner, 2001) and on the taxonomy of
distortions published in (Swaminathan et al., 2003).

1. Class 1is the perspective mapping, also named pinhole cam-
era. It is the most specialized and simplest model, where
the straight projecting rays intersect in a single viewpoint
(the pinhole) and preserves straight lines. This results in
no image distortions (not taking distortions into account,
which result from the perspective mapping). All cameras
modelling central projection are specialisations of the gen-
eral projective camera, therefore we use the term projective
mapping which could be presented by a projective model.
Every deviation from this model causes image distortion.

2. Class 2 is created by mappings with single viewpoints, not
preserving straight lines. However, this leads to image dis-
tortions, which depends on the image position. Its influence




or error can be calculated in dependency on their image co-
ordinates (image space based). No information about the
scene structure are needed. An example for such an pro-
jection is the general used model for the optical distortion.
Strictly, it has not a single viewpoint, but the accuracy of
this approximation is well enough.

3. Class 3 is formed by projections with non single viewpoints
which do not preserve straight lines. The projection rays are
no straight lines and they do not intersect in one point. But
their envelope forms a locus of viewpoint in three dimen-
sions which is called caustic surface or just caustic (Swami-
nathan et al., 2001). The resulting image distortions are
called caustic distortions. Their exact determination bases
on the position of the observed feature in object space (ob-
ject space based). Therefor information about the scene
structure are necessary to determine the influence of the dis-
tortions. Imagesystems like wide-angle, fish- eye and cata-
dioptric cameras with a spherical and conical reflector based
design (Nayar et al., 2000), camera clusters, strict model of
objective distortion and multi media geometry (e.g. air and
water) belong to this class. In section 2 we will present the
caustic of a multi-media system.

4. The combination of a non single viewpoint with an invari-
ance of straight lines is under the valid physical laws not
possible.

The influence of image distortion using imaging systems with
non single viewpoints is object space based, that means it cannot
be determined or corrected without any information of the scene
structure. If no information about the scene structure are given,
it is necessary to make some assumption about the scene struc-
ture (e.g. (Swaminathan et al. 2003)). For the mapping process
between the object and the image space, special algorithms are
needed. For example the iterative algorithms for the multi media
geometry in (Maas, 1995), which could be very complex.

Another method is to replace the non single viewpoint by a sin-
gle viewpoint, so that the mapping process can be modeled with-
out any information about the object space. Swaminathan et al.
presented in (Swaminathan, 2001) a method to determine a sin-
gle viewpoint by estimation the best location to approximate the
caustic by a point for catadioptric cameras. This methods based
on the determination of singularities of the caustic.

A method which is used here to define a single viewpoint is first
mentioned in (Wolff and Forstner 2000) and was published in
more detail in (Wolff and Forstner 2001): the explicit strict phys-
ical model with non single viewpoints is replaced and approxi-
mated by a less complex projective mapping with a single view-
point. Therefor no pre-informations about the scene structure are
needed. The estimation of the approximation is posed as the
minimization of the back projection error in image space. The
introduced approximation is applicable for all kinds of optical,
non projective mappings. The degree of approximation can be
augmented by partitioning the object space into small segments
and calculating a local approximation for every part of the object
space separately. For this partitioning we need the extension of
the observing area approximately. The method was presented in
(Wolff and Forstner 2001) used for a matching process based on
the trifocal tensor.

1.2 Goal of this paper

In the context of non projective projections, the paper makes the
following key contributions:

e Under the background of the taxonomy of imaging systems
we survey the non projective multi media geometry (project-
ing rays passes different media e.g. air, perspex and water).
It belongs to class 3 with a caustic as a non single viewpoint.

e \We presend a new image point matching algorithm for a 3D
reconstruction using multiple views, based on geometrically
constraints alone. The method uses all images simultane-

o HRIOPRGRLADRYRAIEREH (B RIARAR A RMRRhS5F S vir-
tual, projective camera is used for the image point matching
process for multiple views with multi media geometry. As
we will see, this is implemented without loosing the quality
of the strict model significantly.

e Different quality tests for the approximation and the point
matching algorithm are realized.

1.3 Projective Geometry

We use multiple-view geometry as it has been developed in recent
years and is documented in (Hartley and Zisserman 2003).

Assuming straight lines preserving mappings, the projection of

object points X to image points x’ can be modeled with the direct
linear transformation (DLT):

1T

X = PX=| 27

3T

X = KR(I| - 2)X

for object points X represented in Pliicker coordinates. P is the
projection matrix, K the calibration matrix, R the rotation matrix
and Z the projection center of the camera.

2 GEOMETRY OF IMAGING SYSTEMS WITH NON
SINGLE VIEWPOINTS

2.1 Caustics as Loci of Viewpoints

For the modeling of point projection we need two relations:

1. A projection relation predicting the image point x’ of a given
object point X.

2. An inverse projection relation, giving the mapping ray L in
the object space. In case of projective mapping a light ray is
build by the projection center and the image point. In case
of non projective mappings only that part of the broken ray
is important, which intersects the object point.

For Class 1 and 2 of our classification the realization of these two
relations is geometrically trivial. The mapping ray is built by the
object point or rather the image point and the projection center.
In the case of image distortion a correction of the image points
can be calculated image space based.

For class 3 relation 2 is also trivial. The projecting light rays
change their direction because of refraction and reflection (see
Fig. 1). These changes can be directly determined using the
Snell’s refraction law and reflection law. Relation 1 is not as
trivial like the others, because the direction of the ray coming
from the object point is not directly determinable if the object
point and the physical pupil of the lense is given alone. But, as
seen in Fig. 1, the envelope of the rays, which do not intersect in
one point, forms a locus of viewpoints in three dimensions, the
so called caustic. The light rays in object space are the tangent
on this surface. Each point on the caustic surface represents the
three-dimensional position of a viewpoint and its viewing direc-
tion. Thus, the caustics completely describes the geometry of the
catadioptric camera (Swaminathan et al., 2001).



Swaminathan et al. uses this caustic in (Swaminathan et al., 2001)
for an analyzation of an catadioptric camera for its characteristics
like field of view, resolution and geometric singularities. They
also present a calibration technique to estimate the caustic sur-
face and camera parameters for a conic catadioptric system using
known camera motion.

object point X

Figure 1: Geometry of a multi media system consisting of air and
water, showing the projecting light rays and the caustic of the
system.

2.2 Multi Media Geometry

Multi media geometry results from the observation of an object
through several transparent physical media with different refrac-
tion indices. The light rays are refracted at the interface surfaces
between two media. The classical application is to aquire im-
ages of objects through the media air, perspex and water, e.g. the
3D tracking of particles for modelling in fluid dynamics (Maas,
1991) or the observation of fluvial transportation processes under
water (Wolff and Forstner, 2000).

The parameters of an imaging system with multi media geometry
consists of the parameters of the used camera and the parameters
of the refraction (exterior orientation of the refracting interfaces
and the refraction indices). As seen in Fig. 1, refracted light
rays coming from object points do not intersect in one point, but
their envelope forms a caustic (Wolff and Forstner 2001). The
imaging systems involve the projection center of the camera and
the non single viewpoint. Therefor the mapping in general is not
projective, it does not preserve straight lines. The resulting im-
age distortions could not be modeled image space based and the
complexity of the calculation of the mapping between object and
image space increase.

For the strict realisation without approximation of the two rela-
tions mentioned in section 2.1, we use the multi media geometric
models described in (Maas, 1995). He used a strict multi me-
dia geometric model based on Snell’s Law for the effect of a ray
being twice broken. For relation 1. a radial shift of each object
point relative to the nadir point of the camera can be calculated
and used as a correction term in the collinearity condition. This
projection actually inverts a ray tracing process. As the algebraic
expression cannot be directly inverted, the calculation is an iter-
ative procedure. For relation 2 the Snell’s Law is used to inverse
the projection directly by ray tracing.

3 APPROXIMATION OF NON PROJECTIVE
MAPPINGS BY MEANS OF VIRTUAL PROJECTIVE
CAMERAS

For the approximation we assume the expected volume V' in ob-
ject space to be approximately known. We assume the non pro-

jective mapping x’ = f(X) to be known, i. e. the orientation and
calibration to be available. The task is now to find a projective
mapping X' = PX such that the systematic errors of the image
coordinates X' — x’ are minimum. This leads to the well known
problem: determine P such

Q= / x' —PX)"(x' — PX)dX — min,
XeVv

where the integral is to be taken over the expected volume V'
of interest. The camera with this projection matrix P is a vir-
tual projective camera, which we use for the approximation. Its
quality impair with the enlargement of the volume V. To get the
acquired quality of the approximation, we may partition the ob-
ject space and in corresponding way the image space such that
for every part V;, ) . V; = V of the volume a local DLT with the
local projection matrix “P is solved. To define the partition of the
volume V" a priori quality analysis of the projective model have
to be carried out (Wolff and Forstner, 2001).The determination of
the Direct Linear Transformation contains the following steps:

Determination of the Direct Linear Transformation:

1. determination of the parameters of the imaging system
orientation using the strict model

2. define of a regular o x p x ¢ grid of object points X;, 7 =
1..(o - p- q) lying in the expected object volume.

3. apriori quality analysis of the projective model

4. subdividing of the object volume V" into parts V; accord-
ingly to the a priori quality analysis

5. calculation of the corresponding image points xj, i =
1..(o - p - ) using the strict non projective model

6. estimation of the projection matrices “P for every V;
by minimizing the back-projection error using the object
points X; and the image points x;.

If enough well distributed control points and corresponding non
projective image points can be measured, the DLT could be also
determined by using these real data.

4 MATCHING AND 3D DETERMINATION OF POINTS
FOR MULTIPLE VIEWS USING GEOMETRICALLY
CONDITIONS

4.1 The Algorithm

The algorithm for finding matching candidates in multiple image
views assumes the extracted points of n > 2 images to be given
with their projection matrix P. The radiometric information of
the images were only used to extract the image points and are not
required for the matching algorithm. It has the following charac-
teristics:

1. only geometric conditions: all projection rays of correspond-
ing image points intersect in one object point.

2. all images are used simultaneously.

test of hypotheses placed in object space.

4. if necessary, correspondency tests using radiometric infor-
mation can be easily implemented.

w

Methods for multiple image matching based on geometrically
constraints use often only three or four images simultaneous, like
the matching algorithm using the trifocal tensor (Wolff and Forstner,
2000), the quatrifocal tensor or using the intersection of two epipo-
larlines (Maas 1997). To take all images into account, the algo-
rithms are used for different combinations of three or four images.



The number of ambiguities using geometrically conditions alone,
was examined by Maas in (Maas, 1992) for different numbers of
images. The complexity of the matching strategy arise with the
number of images, but the high amount of ambiguities to be ex-
pected requires more images to be reduced. Therefore we use
n > 2 images and the constrain for an object point, that its im-
age points are seen in at least three images, to eliminate wrong
hypotheses.

The presented algorithm uses all images simultaneously, therefor
the test of hypotheses is realised in the object space. The geomet-
ric condition is that all projection rays of corresponding image
points intersect in one object point. Therefor we first find match-
ing hypotheses by using the epipolar constraints defining one im-
age as the starting image. The epipolarlines between the starting
image and all other images are calculated and every image point
close to the epipolarline is a hypotheses for a corresponding point
to the point in the starting image. The epipolarline can be shorten
by considering the height extension in object space. To get also
the points, which are not seen in the first image, but maybe in at
least three other images, this step should be calculated also for
other images as starting images. The number of starting images
depends on the constellation of the image system. Then we deter-
mine the object points belonging to these two point hypotheses.
The result is a 3D point cloud, where a group of at least m close
points define one object point. The number of points m depends
on the number of starting images. To test the hypotheses of corre-
spondences, a clustering of the point cloud is calculated using the
k-means algorithm. The resulting clusters containing at least m
points belong to one object point. The mean value of the points in
one cluster is a first approximation of the 3D point determination.
If a higher quality is required, all points can be finally determined
with by estimating a bundle adjustment. Therefor we use the im-
age point correspondences resulting from the points belonging to
one cluster. We summarize the algorithm into the following steps:

The main steps of the algorithm for 3D prediction of points

are:

1. Extraction of points x?) in all n images, where j is the
number of the image and i the number of the point.

2. define one image as the starting image a.

3. for all points x¢ in image a determine hypotheses of
point correspondences using epipolar lines in all other
images.

4. define another image as second starting image b.

5. for all points x? in image b determine hypotheses of

point correspondences using epipolar lines in all other
images.

6. if necessary repeat point 4 and 5 for as much different
images as it is convenient.

7. clustering of the 3D point cloud P resulting from point
2 to 6 — approximated 3D object points X;,7 = 1..m.

8. final bundle adjustment of all matched points, using
Xi,i = 1..m as approximated values — final object
points X;.

If the imaging system and the resulting images are not projective,
then there exist two different possibilities:

1. The specialized strict physical model of the mapping pro-
cess will be implemented in the algorithm, which is some-
times not possible, or the strict physical model can be very
complex and the computational time can rise in dependency
on the algorithm.

2. An approximation for the non projective mapping is used
for the matching process. For the a priori quality control of
the percentage reduction of computation complexity for the
replacement of the multi media geometry by a normalized
projective model see (Wolff and Forstner, 2001).

4.2 Application for Non Projective Views

The application of the approximation by a virtual projective cam-
era presented in section 3 contains the following steps:

Implementation of the virtual camera for an effective 3D point
determination using non projective mappings

1. determine virtual projective mappings “P for the obser-
vation space

2. matching the image points using P
3. final bundeladjustment using the strict model

5 EXAMPLE AND QUALITY CONTROLS
5.1 Data: a surface of a fluvial sediment

Our work on using multi media geometry is motivated by in-
vestigations on the generation of fluvial sediments (Wolff and
Forstner, 2000). The aim is to derive a physical model of the
underlying process of the dynamical sediment transport. The sur-
face of the water is smoothed by a perspex pane. We get the
standard case of multi media geometry: air, perspex and water
with plane interfaces. The observed sediment surface is shown
together with the extracted points of one image in Fig. 2 (for the
extraction of interest points see (Forstner, 1994). The surface of
the sediment was formed by a jet of water hitting the sediment.
We used four Sony XC-77 CE cameras (748 x 564 pixel) for the
acquisition of the images.

Figure 2: Image of the sediment surface with extracted points.

5.2 Determine the reference data using the strict model

To get reference data for the quality analysis of the matched im-
age points and determined object points we carried out the pre-
sented algorithm using the strict multi media model. We use the
same software and values for its parameters to calculate reference
data and the approximated data.

5.3 Quality analysis

For the quality analysis of the 3D determination of points using
the approximation, we want to examine the following points:



Table 2: Quality analysis 1: estimation of the virtual cameras
observing area: left lower corner (3,3,—17) [cm]
observing area: right upper corner (21,23, —11) [cm]

number of points used for estimation 845

distance between points 2 [em]
Gapprozve (cameraCl) 0.04 [pel]

Table 3: Coordinates of the projection centre of camera C1 for
the strict model and the approximation VC

| Projection center | X1 [cm] | Xo [em] | X5 [em] |
Strict model 3.08 4.53 63.46
Approximation VC 3.07 451 85.98

Quality analysis:

1. A priori quality DLT:
residuals as backprojection errors in image space

2. Quality DLT:
residuals in object space for new points

3. Quality point matching algorithm:
comparison of the reconstructed points (before final es-
timation) using the strict and the approximated model

4. Quality point matching algorithm:
comparison of the reconstructed points (after final esti-
mation) using the strict and the approximated model

5.4 Prediction of 3D points using the virtual camera

5.4.1 Estimation of the virtual cameras To define the seg-
mentation of the object space a priori quality test have to be calcu-
lated (see (Wolff and Forstner, 2001)). These a priori tests show,
that the determination of only one virtual camera (VC) for the
whole object space is enough. For the position of the four cam-
eras see Fig.4.

To investigate the quality of the determined virtual cameras (Qual-
ity analysis 1), we project the object points which were used for
the estimation of P into the image space and get the image points
x’. The estimated DLT (11 independent parameters) yields resid-
uals x” — x’ being systematic errors. To get an a priori quality of
the projective model we give the r. m. s. error

2% — %)

Gapprox = om — 11

where n is the number of points used.

Tab. 2 gives the entities and results of estimating the virtual cam-
eras of camera C1. The number of points used for the estimation
need not to be as high as in this case. Tab. 3 gives the coordinates
of the camera projection center for the three different orienta-
tions. The multi media geometry influence mostly the hight of
an object point, which is here the X3 coordinate of the projec-
tion center. Therefor the projection center of the two orientations
differ mostly in the hight.

5.4.2 Results of the point matching using the approximation
As mentioned above, the algorithm should be calculated for dif-
ferent starting images, to guarantee that also the points, which
are not extracted in the starting image, can be found. Here we
use four cameras, every camera could see the whole object scene.
Together with the constrain, that at least three corresponding im-
age points of an object point are needed, it is enough to have two
different starting images. Therefor and because of the constraints,

that the image points of an object point should be seen in at least
three image points, we got the constraint for our clustering algo-
rithm: a group of at least three define an object point.

First, we want to examine if the constraint for a object point, that
at least three close points in a group define an object point, is
sufficient. Fig. 3 shows the hypotheses of two matched image
points by there corresponding object points (seen from the side).
The distribution of the 3D points shows a very dense part, where
the sediment surface is supposed to be. All the other points might
be wrong hypotheses and should be deleted by the clustering al-
gorithm. Fig. 4 shows the results after the clustering. All points
which differ significantly from the surface are eliminated (Fig. 4
a). Fig. 4 b) shows the distribution of the object points on the
surface, which are evenly distributed.

L

Figure 3: Hypothesis of 3D point matchings before clustering. A
group of at least three points define an object point.
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Figure 4: Results after clustering the point hypotheses. The right
figure shows the point cloud from the side, the left figure shows
is from above together with the positions of the cameras.

Using the strict model gave 156 reconstructed 3D points, the use
of the virtual camera VVC found 161 points. For the quality anal-
ysis 3. we have to compare the two sets of points. Therefor a
threshold ¢ is defined, so that a point Xy, is defined as equal to a
referent point X; if | X — X;| < e. The number of points found
as equal in dependency of the threshold is shown in Fig. 5.

The main influence of the approximation refers to the hight of the
object points. The r. m. s. error of the X3 coordinate of the
reconstructed object points X = (X1, X2, X3) is

Cx. — Zl (Xfil — X, )2
Yo = n—1 ’
where n is the number of points used. The error of the approxi-
mation is given in table 5 in comparison to the referent data before
calculating the final bundle adjustment.

5.5 Final 3D determination of the predicted points using the
strict model

After the matching process, including an approximated determi-
nation of the object point, we calculate a final bundle adjustment
for the strict model and for the approximation VC. The clusters
resulting from the clustering algorithm contain that points, which
were found as corresponding points. To compare this clusters
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Figure 5: Quality analysis 3: comparison of the point prediction
between the strict and the approximated mapping. Left figure:
number of points found as equal, depending on the used threshold
e. Right figure: histogram of ox,, depending on threshold e.

Table 4: Quality analysis 4. Comparison of the final estimation
using the strict and the approximated model

| | Test |
number of points (e < 0.001) 149
Tmaz (€ < 0.001) 1.0 -107° [cm]
Ymaz (€ < 0.001) 3.0 -1075[cm]
Zmaz (€ < 0.001) 2.0 -10~* [cm]
number of points (e < 0.1) 1
number of points (e < 0.15) 2
number of points (e > 0.15)
or not found 4

(quality analysis 4), the corresponding object points were deter-
mined by fixed parameters of the orientation of the imaging sys-
tem. A cluster is defined as equal, if the difference between the
reconstructed points is smaller than 0.001 cm. The results are
given in Tab. 4. 149 clusters are identical, 1 object point has
a difference which is smaller than 0.1 cm, 2 points smaller than
0.15 cm and 4 points have a bigger difference than 0.15 cm or
were not found by using the virtual projective camera as an ap-
proximation.

For quality analysis 2 we compare the final estimated 3D points
using the strict model of the multi media mapping and the approx-
imation. The error is given in Fig.fig:histogram. The differences
are normal distributed.

Fig. 7 shows the digital terrain model of the sediment surface
resulting from the estimated object points.

number of points
0 T

06 04 02 0 02 04 06 distances [cm]

between points

Figure 6: Quality analysis 2: comparison of the final estimated
3D points using the strict model and the approximation.

6 SUMMARY

In this paper we introduced a classification of optical mappings
based on the geometry of the imaging system having a single
viewpoint or a non single viewpoint. From this classification
we got different kinds of image distortions: image space based
and object space based. The models for optical mappings be-
longing to the second kind of mappings need information about

Figure 7: Reconstruction of the sediment surface resulting from
the matched points using the virtual camera.

the scene structure and special complex algorithms for the pro-
jection between object and image space. Under this background
we surveyed the multi media geometry. We presented a method
to calculate a virtual projective camera which approximate the
strict non projective mapping. The approximation was used for
a point matching process using multiple views of a sediment sur-
face with multi media geometry. We introduced a new matching
process for multiple views based on geometric constraints alone,
which is usable for projective mappings and the approximation
of non projective mappings. Different quality tests show, that the
approximation is sufficient for the reconstruction of a sediment
surface.
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