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ABSTRACT: 
 
In this article, we present an evaluation of the application of statistical shape models for automatic landmark generation from a 
training set of deformable shapes and in particular, from a class of human hands models. The human hand is a dynamic object with 
considerable changes over time and variations in pose. A human being can easily recognize a hand despite its variations (e.g. skin 
tone, accessories, etc.) and put it in the context of an entire person. It is a visual task that human beings can do effortlessly, but in 
computer vision, this task is a complicated one. While a number of different techniques have been proposed, ranging from simple 
edge-detection algorithms to neural networks and statistical approaches, the development of a robust hand extraction algorithm is 
still a difficult task in computer vision. Human hand extraction is the first step in hand recognition systems, with the purpose of 
localizing and extracting the hand region from a complex and unprepared environment. This paper presents work in progress toward 
the segmentation and automatic identification of a set of landmark points. The landmarks are used to train statistical shape models 
known as Point Distribution Models (PDMs). Our goal is to enable automatic landmark identification using a context free approach 
of human hands’ grey-scale still images held in a database. Our method is a combination of previously applied methods in shape 
recognition. In this paper we describe the motivation of our work, the results of our method applied on still images of examples of 
human hands and the extension of the method for building Active Appearance Model (AAM) using automatically extracted data for 
the recognition of deformable models in augmented reality systems.  
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1. INTRODUCTION 

The aim of our research is to extract, using automatic methods, 
landmark points which are used to train a statistical flexible 
template known as Point Distribution Model (PDM) introduced 
by Cootes et. al. (1995), for the statistical analysis of 2D 
models from a set of deformable shapes. These models with the 
true location of the underlying shape can be used to built an 
Active Appearance Model (AAM), which in future work will 
be used for the tracking of 3D human hands in an augmented 
reality system.  
 
A landmark point is a point of correspondence on each object 
of the class; it identifies a salient feature such as high curvature 
and is present on any object of the class. Dryden and Mardia 
(1998), discriminate landmarks as anatomical, mathematical 
and pseudo-landmarks. In our method we use mathematical 
landmarks, points located on an object based on high curvature 
or extreme points. These landmarks can be generated manually 
or automatically by applying different constrains. The manually 
correspondence is both laborious and subjective. While it gives 
good results in 2D images it would be impossible in the 
labelling of 3D images. On the other hand, the automatic 
correspondence can be more reliable, less time consuming, 
objective and can be applied to 3D images, but it works with 
constrains proposed by a number of authors (Hicks, 2002; Hill, 
2000). This paper compares and addresses the problems of the 
manual and the automatic correspondence, reviews existing 
approaches and describes a simple and efficient method for 
automatic landmarking. In section 2, we review past work to 
automate the model building process. Section 3 outlines the 
method used to automate the construction of statistical shape  

 
 
models from a training set of human hands. Section 4 presents 
experimental results of applying the method to the training set. 
Section 5 concludes our method and suggests further 
extensions. 
 
 

2. BACKGROUND 

The motivation of our work is the automatic identification of 
landmark points from a training set of human hands. Baumberg 
and Hogg (1993) describe a system, which generates flexible 
shapes models from walking pedestrians using automatic 
landmark extraction. Landmarks are generated by computing 
the principal axis of the boundary, identifying a reference pixel 
of the boundary where the axis crosses the boundary, and by 
generating a number of equally spaced points along the 
boundary. While the process is satisfactory the parameterisation 
of the process is arbitrary and is described only for 2D shapes. 
Hicks and Bayer (2002) describe a system that automatically 
extracts landmark features from biological specimens, and is 
used to build an Active Shape Model (ASM) of the variations 
in the shape of the species. Their approach is based on 
identifying shape features such as regions of high curvature that 
can be used to establish point correspondences with boundary 
length interpolation between these points. While this method 
works well for diatom species where the heights and the relative 
position of the contour curvature local maxima and minima 
changes a little, it is unlikely that it will be generally successful 
for shapes such as hands where there are a lot of variations in 
the shape. Hill and Cris (2000) present an auto-landmarking 
framework, which employs a binary tree of corresponded pairs 
of shapes to generate landmarks automatically on each of a set 
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of example shapes. In order to solve the pairwise 
correspondence problem they use a polygon-based 
correspondence algorithm which locates a pair of matching 
sparse polygonal approximations, one for each of boundaries, 
by minimising a cost function using a greedy algorithm. While 
the algorithm works well with different classes of objects, it 
assumes that the objects are represented by closed boundaries. 
Furthermore, the algorithm was not tested on objects with 
multiple closed boundaries, e.g., faces.  Recently Davies et. al. 
(2002) have described a method for automatically building 
statistical shape models by using the Minimum Description 
Length (MDL) principle. The MDL is obtained from 
information theoretic considerations and the model order is 
defined as the model that minimises the description length, e.g. 
the model that encodes the vector observations in the most 
efficient way (Walter, 2002). In their method each shape is 
mapped onto a corresponding sphere where a given number of 
landmarks is first selected. The positions of the landmarks are 
then altered by parameterisation functions before selecting the 
parameterisations that build the best model. The best model is 
defined as the one, which minimises the description length of 
the training set, and its quality is regulated by an objective 
function that evaluates the quality of the PDM. This is a very 
promising method for measuring the model quality of a 
statistical shape model and results show better PDMs via 
manual landmarking.  However, due to the very large number 
of function evaluations this optimisation method is 
computationally expensive. 
 
 

3. OUTLINE OF THE METHOD 

In our system we used 20 close related grey images of human 
hands recorded using a digital camera at a resolution 
1024x768. Four people contributed with five images each of 
their right hand. In our experiments three main stages have 
been conducted: 

1. Image segmentation or outline extraction using 
thresholding and the Canny Edge Detector to obtain the 
foreground (shape of the hand). 
2. Freeman chain code 8-connectivity boundary 
descriptor to obtain automatically the coordinate of the 
boundary pixels and the direction of the boundary. 
Minimum Perimeter Polygon (MPP) is used to identify 
curvature descriptions.  
3. Point Distribution Model (PDM) to describe the hand 
shapes and their variations based on the position of the 
automatic landmark points. 
 

3.1 Extracting the hand shape 

We are interested in extracting the outline of the hand shape. 
The method to separate the shapes from the background was to 
select a threshold  
  

 [ , , ( , )]x y f x yΤ=Τ                         (1) 
 
where f(x,y) is the grey level of point (x,y). The threshold 
image g(x,y) is defined as: 
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where 1 and 0 corresponds to the distinction between the 
background and the foreground.  For edge detection we used 

the Canny Edge detector which find edges by looking for local 
maxima of the gradient of f(x,y).  

The gradient 2 2 1/ 2( , ) [ ]X Yg x y G G= + and edge direction 
1( , ) tan ( / )a x y Gy Gx−= are computed at each point. A 

vector T=[T1 T2] containing two threshold is used to find the 
strong and the weak edge pixel and an edge linking is 
performed by including the weak pixels to the strong. By using 
those two detectors we managed to extract the shape of the 
hand regardless of the grey level difference between the 
foreground and the background.   
 
3.2 Obtaining the Boundary coordinates of the shapes 

For contour-based shape representation and description we 
chose an 8-connectivity derivative Freeman chain code, which 
is based on the fact that an arbitrary curve is represented by a 
sequence of small unit length vectors and a predefined set of 
possible directions. During the encoding successive contour 
points are adjacent to each other. The chain code was used as a 
numbered sequence that represents relative directions of 
boundary elements measured in a counter-clockwise 45o 
direction changes. The representation is based on 8-
connectivity and the direction of each component is coded by 
the numbering scheme seen in Figure 1.  
 

 
Figure 1.  Chain code in 8-connectivity. 
 
The chain code was used to derive the boundary length of the 
hand shapes and their direction. The entire vertical and 
horizontal steps have unit length while the length of the 
diagonal steps is 2 .  We calculated the contour length of the 
chain code as the number of vertical and horizontal components 
plus 2  times the number of diagonal components. The 
diameter of the shape boundary b is defined as: 
 

 ( ) max[ ( , )]
,

D b D p pi j
i j

=                     (3) 

where D is the Euclidean distance measure between ip  

and jp  and is defines as: 

 

 2 2( ) ( ) ( )D p p x y x yi j i i j j= − + −        (4) 

 
where ( , , , )i i j jx y x y  coordinates of the ip  and jp  points. 

One constrain of the chain codes is that in order to work 
properly the boundary should be a closed boundary, and a 
starting point should be defined. In order to choose an initial 
starting point on the closed boundary, which will have the 
associated parameter value, 1u=  we searched where the vertical 
and the horizontal principal axes, the axes that pass though the 
centroid of the boundary points, intersect. The horizontal 
extension of the intersection meets the thumb, which was 
selected as the starting point of the chain code. It is assumed 
that this point is fixed for all shapes. This is reasonable since 
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we are dealing with shapes where no occlusion occurs.  With 
Freeman chain code we managed to found changes in code 
direction which indicates a corner in the boundary. By 
analysing direction changes following a clockwise direction 
through the boundary we determine and mark the convex and 
concave vertices based on Sklansky’s approach (1972). In our 
method a vertex of a polygon is defined to be a convex if its 

angle is in the range 0 180o oθ ; otherwise the vertex is a 
concave. We obtain the polygon by connecting all the convex 
points and delete all points that are outside the polygon. Doing 
this we obtain a uniform boundary with curvature defined 
where a change of the slope occurs and the control points 
approximately uniformly spaced along the curvatures. 
 
3.3 Point Distribution Model (PDM) 

The point distribution model (PDM) is a recent development in 
shape description and its roots are based on the development of 
active contour models from Kass, Witkin and Terzopoulos 
(1987b). It is most useful in describing features that have well 
understood shape and are non-rigid. This method was first 
develop by Cootes et. al. (1992) and has been applied to 
numerous examples including electrical resistors, faces and 
bones within the hand. 
 
3.3.1 Labelling the training set. Previously we described 
how we could automate the labelling of the training set. Let us 
denote the number of shapes from the training set {S} and n the 
landmark coordinate points for each of the {S} shapes. The 
vector describing the n landmark points of the {Si} shape in the 
training set would be: 
 

[ , , , ...... , , ..... ], ,0 1 2 1 0 1 2 1
Tx x x x y y y yi i i i i i i i in n

=
− −

x  (5) 

 
3.3.2 Aligning the training set.  Before any alignment takes 
place, we assume that each shape has been normalised such that 
the centre-of-gravity is at the origin.  Figure 2 shows unaligned 
and un-normalised shapes. We achieved the required alignment 
(scaling, rotating and translation) by using Generalised 
Procrustes Analysis. Details of the method are given by Cootes 
et. al. (1995). The result of this is shown with the Procrustes 
mean shape superimposed in Figure 3.  
 

 
Figure 2. Unaligned and un-normalised shapes. 
 

 
 
Figure 3.  Aligned shapes with the centre-of-gravity removed 

and the mean shape superimposed. 
 
3.3.3 Capturing the statistics. The outcome of the 
alignment is M aligned shapes 1 2, ,...... Mx x x , and we 

proceed to determine the mean shape µx .  
Each shape is given by n coordinate pairs, 

[ , , , ...... , , ..... ], ,0 1 2 1 0 1 2 1
T

x x x x y y y yi i i i i i i i in n
=

− −
x so, the mean 

shape is given by:  
 

 1

1

M

M i
µ = ∑

=
xx ii                           (6) 

 
The modes of variation of the training set can be found by 
applying the principal component analysis (PCA). For PCA to 
work properly we subtract the mean from each of the data 
dimensions. The mean subtracted is the average across each 
dimension. This produces a data set which mean is zero. The 
deviation from the mean is given by: 
 

 d i i iµ= −x x x                         (7) 

 
The covariance matrix for the 2n x 2n landmark points is given 
as: 
 

 1

1

M TC d di iM i
= ∑

=
x xx                    (8) 

 
The modes of variation can be derived by applying an eigen-
decomposition of the Covariance matrix Cx  such that: 
 

 C i i iλ=p px                             (9) 
 

where iλ  ( 1i iλ λ≥ + ) is the thi  eigenvalue of Cx  and ip  is 

the associated thi  eigenvector. It can be shown that the 
eigenvectors of the covariance matrix corresponding to the 
largest eigenvalues describe the most significant modes of 
variation. Most of the variation can be described by a small 
number of modes, let us say t. One method for calculating t is to 
calculate the sum of the iλ  and choose t such that: 
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where 0 1a≤ ≤  will govern how much of the variation seen in 
the training set can be represented by a small number of t 
modes. Any shape in the training set can be approximated using 
the mean shape and a weighted sum of the principal 
components from the t modes. 
 

       t tµ= +x P bx                             (11) 

 
where  

 ( ... )1 2t t=P p p p                             (12) 
 
is the matrix of the first t eigenvectors and  

 

 ( ... )1 2
T

t t=b b b b                         (13) 
 
is a vector of weights for each eigenvector. The eigenvectors 
are orthogonal so equation (11) can be written as: 
 

 ( )T
t µ= −b P x x                           (14) 

 
Since the variance of  ib  over the training set will be the 
associated eigenvalue iλ we might expect that the limits should 
be in the order of: 

 3 3bi i iλ λ− ≤ ≤                          (15) 
 
where we see that most of the population is in the order of 3σ  
from the mean. This allows us to generate plausible shapes that 
are not part of the training set. Summarising, the PCA analysis 
has given us the original shapes in terms of their differences 
and similarities. In other words it has identified the statistical 
patterns in the data. Since the variations can be performed with 
the most significant eigenvectors we can reduce the 
dimensionality of the data and describe the variations with 
fewer variables (Hamarneh, 1998). 
 
3.3.4 Back-projection.  In order to get the original data 
back we need to add the mean of the original data. So, the new 
generated back-projected data will be given by:  
 

 ' ( ( ))Tµ µ= + −b P P xx x                (16) 
 
The result of this process is shown in Figure 4. 
 

 

Figure 4.  Back-projection of the original data annotated with 
the landmark points 

 
 

4. RESULTS 

In our experiments we used 20 training shapes with 70 
landmark points (hence 140 parameters) and found that the first 
four modes accounted for 92% of the variance of the training 
data. The variance of each mode is as follows: mode 1 (m=1) 
with variance (v=1.34), mode 2 (m=2) with variance (v=1.03), 
mode 3 (m=3) with variance (v=0.6), and mode 4 with variance 
(v=0.43). Some of the significant modes of variation together 
with how the training data are arranged in the PCA space are 
shown in Figure 5. 
 

 
 
Figure 5. The first four modes of variation of the automatically 

generated model of the hand outlines. 
 
 

5. CONCLUSIONS 

In this article we have presented a new method for automatic 
landmark detection on the contour of hand shapes. The method 
is based on Freeman chain code for changes in code direction, 
which indicates a corner in the boundary and on Minimum 
Perimeter Polygon approximation for defining curvatures where 
a change of the slope occurs with the control points 
approximately uniformly spaced along the curvatures.  Success 
of the whole procedure is suggested by distinct modes that 
generate eligible shape variations. However, the above method 
considered only hands represented by closed boundaries and 
non-occluding boundaries. These problems are part of our 
current research together with extending the method to high-
level 3D hand shape variations. 
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