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ABSTRACT

This paper describes a method appropriate for 3-D measurement from a long distance with a digital camera mounting
a super telescopic lens. Long distance observation with telescopic lens camera is a effective method for displacement
measurement such as small movement of top of a large cliff. However the conventional orientation method with the
central perspective model widely used in close range photogrammetry is unstable in this case because of weak condition.
In this study, an alternative model called the orthogonal projection model is applied. This model, which derived from
the affine projection model with a constraint of orthogonality, is simple and better adapted to long distance observation.
Furthermore, it is a great advantage that the orthogonal projection model does not require initial values of orientation
parameters. In this study, the geometric characteristics of the orthogonal projection model were clarified by various
simulations, and also the effectiveness of the method was verified by long distance field tests. Focal length of telescopic
lens used in the field test was 400mm and distance to objects was over 100m. RMSE between the adjusted results with a
camera and those with a totalstation was about 2.8mm. The accuracy with the proposed method is more than twice higher
than that with the conventional method.

1 INTRODUCTION

In recent years digital close range photogrammetry has be-
come applied to various objects in various fields. However
it has not widely enough spread in fields of civil engineer-
ing and construction. In construction work, displacements
of cliff faces or construction materials have to be precisely
observed for disaster prevention, but ordinarily the target
sites range over vast areas and moreover arrangement of
view points is restricted. For example, movement of un-
stable rocks on top of large cliff has to be monitored to an
accuracy of a few millimeters at ground points over 100m
distant in some cases.

Close range photogrammetric techniques using camera with
wide-angle lens are not available in these situations. Ap-
proaching the target objects is dangerous and may be im-
possible. It is not uncommon that fixing a deal of reflective
targets on the objects is not allowed. In many cases, there is
no alternative but to observe the object shape without clear
marks from a distance. By using a telescopic lens cam-
era, optical resolution can be kept high enough in spite of
long distance observation. As focal length increased, how-
ever, view angle becomes smaller and geometric condition
becomes worse. What is worse, available control points
may be not many enough and may be ill-placed. Under
these circumstances, the central perspective model gener-
ally used in close range photogrammetry is hardly applica-
ble because of ill-posed problems.

Scaled orthographic projection models are widely used in
computer vision to model the imaging process(Ullman 1979;
Huang and Lee 1989; Tomasi and Kanade 1992; Shapiro et
al 1995; Xu and Sugimoto 1999). They are mainly used for
calculation of an approximation to perspective projection

model, but it should be noted that these models are stable in
ill-conditions. Some papers in computer vision categorize
them to the following camera models; the affine model, the
weak perspective model and the para-perspective model.

The authors contrived the orthogonal projection model (Ono
2002), which belongs to the weak perspective model in the
sense of camera model, but the basic concept is quite dif-
ferent from that of computer vision. The main aim of 3-D
image analysis in computer vision is efficient estimation
of motion. The weak perspective model is not a rigorous
model but a approximate one in the real world. On the
other hand, the orthogonal projection model is directly de-
rived from the central perspective model without approx-
imation. This model can provide an accurate solution by
itself.

2 ORTHOGONAL PROJECTION MODEL

2.1 Basic concept

The conceptual diagram of orthogonal projection model is
illustrated in Figure 1. The procedures of orthogonal pro-
jection model consist of the weak perspective projection
and the projection transformation from the central perspec-
tive images.

From another viewpoint, this can be considered as a pro-
gressive model of the affine projection model, which Okamoto
(1992,1998) proposed for long range observation.

2.2 Derivation of model equations

If the lens distortions and the shift of the principal points
are negligible, the central perspective model is expressed



central perspective
orthogonal
projection

projection

contraction

Central Perspective Model

projection
transformation

Orthogonal Projection Model

w
eak perspective projection

Figure 1: Conceptual diagram of orthogonal projection
model

as:
 x

y
−c


 = λ


 a11 a12 a13

a21 a22 a23

a31 a32 a33




 X − Xo

Y − Yo

Z − Zo


 (1)

where λ is a scale factor, c is a principal distance, aij is
components of rotation matrix and (X0, Y0, Z0) is perspec-
tive center.

The value of λ changes in proportion to distance to object
points. By substituting λ by constant scale parameter m,
Equation (1) is described as :
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By transposing (Xo, Yo, Zo) to left site, equation (2) is de-
scribed as following.
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The orthogonal projection with contraction is expressed by
the first and second equations of (3).

xa = m{a11X + a12Y + a13Z} + xo

ya = m{a21X + a22Y + a23Z} + yo
(4)

The number of independent parameters is six. They consist
of xo, yo, m and three rotation angles.

Mathematically m is an arbitrary constant, which is in-
volved with image coordinates xa, ya. From a practical
standpoint, m is adjusted so as to scale down the average
photographing distance to be same length as principal dis-
tance c (Figure 2).
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Figure 2: Constant scale parameter m

Let H be the average photographing distance to Z direction
(H = Z̄ − Zo), m is described as following.

m = − a33c

Z̄ − Zo
= −a33c

H
(5)

Equation (1) is reversely transformed as following.
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Taking notice of the third equation of (6), λ is expressed
by:

λ =
a13x + a23y − a33c

Z − Zo
(7)

By substituting (5) and (7) into (2), the equations of trans-
formation from central perspective image coordinates to
orthogonal projection ones are derived.

xa =
Z − Zo

H

a33c

a33c − a13x − a23y
x

ya =
Z − Zo

H

a33c

a33c − a13x − a23y
y

(8)

Both of equations (4) and (8) are derived by the central
perspective model without approximation. In this sense,
the model consisting of (4) and (8) is as rigorous as the
central perspective model.

2.3 Generalization of Orthogonal Projection Model

By simply generalizing equations (4), collinearity equa-
tions of affine projection model are derived.

xa = A1X + A2Y + A3Z + A4

ya = A5X + A6Y + A7Z + A8
(9)

Addition of constraints for orthogonal projection to (9) leads
to the generalized orthogonal projection model. Because



the generalized coefficients Ai(i = 1, 2, 3, 5, 6, 7) of equa-
tions (9) are derived from components of rotation matrix
aij and scale parameter m, they have following features:

Constraint 1: vector (A1, A2, A3) and (A5, A6, A7) are per-
pendicular to each other.

Constraint 2: norm of (A1, A2, A3) is equivalent to that of
(A5, A6, A7).

Constraints 1 and 2 are described as:

A1A5 + A2A6 + A3A7 = 0 (10)

A2
1 + A2

2 + A2
3 = A2

5 + A2
6 + A2

7 (11)

respectively. Constraint 1 means that an image plane and
incident rays from objects are orthogonalized to each other.
Constraint 2 means that scale of xa direction is equivalent
to that of ya direction.

Affine projection model (9) with constraints (10) and (11)
is defined as generalized orthogonal projection model. As
mentioned above, orthogonal projection model has six in-
dependent orientation parameters. Two constraints reduce
the degrees of freedom of equation (9) from 8 to 6 in gen-
eralized orthogonal projection model.

By generalizing the model, some advantages arise. Geo-
metric orientation parameters of equation (4) are not lin-
ear to each other. This means that the initial values of
unknowns are necessary just like the central perspective
model. On the contrary, the orientation parameters of the
generalized model are linear in equation (9). Equations
of constraints are not linear, but there is no problem be-
cause equation (9) can give the approximation values. Fur-
thermore, the generalized model has higher linear indepen-
dence than the geometric model. Thus, the generalization
of orthogonal projection model presumably conduces to
robust adjustment.

From here, the generalized orthogonal projection model is
treated as orthogonal projection model.

2.4 Estimation of Geometric Orientation Parameters

As mentioned above, orthogonal projection image coordi-
nates (xa, ya) have to be transformed from observed im-
age coordinates (x, y). The transformation equation (8) re-
quires values of components of rotation matrix a13, a23, a33,
Z, Zo and c. These parameters can be estimated with the
generalized parameters Ai.

Components of rotation matrix are estimated by following
approaches. By definition of Ai,

(
A1 A2 A3

A5 A6 A7

)
= m

(
a11 a12 a13

a21 a22 a23

)
(12)

Because norm of each line of rotation matrix is 1,

m2 = A2
1 + A2

2 + A2
3 (13)

With equations (11) and (12), a11, a12, a13, a21, a22, a23,
are easily determined. The other components a31, a32, a33

can be estimated by considering geometric feature of rota-
tion matrix.

a2
11 + a2

21 + a2
31 = 1

Thus

a31 = ±
√

1 − a2
11 − a2

21

In the same way,

a32 = ±
√

1 − a2
12 − a2

22

a33 = ±
√

1 − a2
13 − a2

23

Furthermore,

a11a31 + a12a32 + a13a33 = 0
a21a31 + a22a32 + a23a33 = 0

There are two sets of a31, a32, a33 which satisfy these all
equations. A set closer to initial value is selected.

If c is given, Zo is calculated with equation (6).

Zo =
a33c

m
+ Z̄ (14)

If precise value of c is unknown, compensation value ∆c
has to be calculated in collinearity equations. Even if X, Y, Z
and Ai are correct, transformation errors by ∆c cause large
residuals of image coordinates. Conversely, ∆c can be es-
timated from residuals of image coordinates. By equation
(8) partial differential coefficients of xa and ya with re-
spect to c are described as following.

∂xa

∂c
=

Z − Zo

H

−a33x(a13x + a23y)
(a13x + a23y − a33c)2

(15)

∂ya

∂c
=

Z − Zo

H

−a33y(a13x + a23y)
(a13x + a23y − a33c)2

(16)

By adding ∆xa = ∂xa/∂c∆c, ∆ya = ∂ya/∂c∆c to equa-
tion (8), ∆c can be adjusted as well as other unknowns.

2.5 Similarity to Object Space

Orthogonal projection image has a smaller number of in-
definitenesses than affine projection one. Therefore it is
conceivable that the 3-D model image constructed with
overlapped orthogonal projection images has also a smaller
number of indefinitenesses than 3-D affine model one.

For simplifying the problem, it is assumed that internal
orientation parameters are known. The number of inde-
pendent orientation parameters on stereo pair images is
6×2=12. By expressing with suffixes l and r to parameters
of left and right images respectively, coplanarity condition
of corresponding rays is described as following.

∣∣∣∣∣∣∣
A1l A2l A3l A4l − xal

A5l A6l A7l A8l − yal

A1r A2r A3r A4r − xar

A5r A6r A7r A8r − yar

∣∣∣∣∣∣∣
= 0 (17)



By rearranging this equation, the following linear equation
is derived.

xal = B1yal + B2xar + B3yar + B4 (18)

This shows that the coplanarity condition can mathemati-
cally provide 4 orientation parameters among the 12 ones
of the stereo pair of orthogonal projection images. Hence,
the number of the parameters determined by absolute ori-
entation is 12 - 4 = 8. This means that free network so-
lutions by orthogonal projection model have 8 - 7 = 1 in-
definiteness against similarity to object space. In concrete
terms, an angle between the corresponding rays of stereo
pair images becomes indefinite, and the constructed space
deforms to the depth direction.

In the next place, considering the orientation problem on
the triplet orthogonal projection images, the number of ori-
entation parameters is 6×3 = 18. On the other hand, the
number of parameters determined by coplanarity condition
is 4times3 = 12, but all of 12 parameters are not com-
pletely independent to each other. Because the following
coplanarity condition with regard to all of three images is
formed, one degree of freedom decreases.

xal = C1yal + C2yar + C3yac + C4 (19)

Ci(i = 1, .., 4) are derived from 12 parameters of 3 copla-
narity condions. Therefore, the coplanarity conditions can
mathematically provide 12 - 1 = 11 orientation parame-
ters. Thus, the degrees of freedom of the free network so-
lutions are 18 - 11 = 7. This means the free network 3D
model space constructed with triplet orthogonal projection
images has high similarity to objects.

Finally, the case where principal distance c is unknown is
discussed. If c is unknown and fixed in triplet images, the
number of unknown parameters increases to 19. As men-
tioned above, ∆c can be estimated from residuals of image
coordinates. In the other words, ∆c can be determined by
the coplanarity conditions. The number of parameters de-
termined by coplanarity condition comes to be 12. There-
fore, the degrees of freedom of the free network solutions
come to be 19 - 12 = 7. High similarity to the object space
is retained in case where c is unknown and fixed.

3 SIMULATIONS

In order to investigate the geometrical characteristics of the
orthogonal projection model, simple simulations were per-
formed on the following cases.

1. stereo pair images are used and c is given

2. triplet images are used and c is given

3. triplet images are used and c is unknown

Configuration of camera and object points is illustrated in
Figure 3 and Table 1.

Table 1: Coordinates of object points and camera position
(mm)
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Figure 3: Configuration of camera and object points

No. X Y Z
1 -200 800 0
2 -200 500 0
3 -300 100 0
4 -100 700 200
5 -150 350 300
6 100 700 0
7 50 450 0
8 250 800 350
9 300 550 0

10 250 250 250
11 400 800 0
12 400 150 0
A -3000 500 10000
B 3000 400 10000
C 0 400 11000

Observed values and initial values were given by perturb-
ing true values by normal random with the following stan-
dard deviations: 0.001mm in image coordinates, 10mm in
object coordinates, 10mm in camera position, 2 degrees in
inclination of camera.

3.1 Case 1

Only two images taken at point A and B were used. Prin-
cipal distance c was fixed to true value 300mm.

The following indexes are shown in tables.

1. RMSE of image coordinates σ0

2. Internal errors

3. RMSE between true values of object points and free
network solutions transformed to center of objects by
similar transformation

4. RMSE between true values of object points and free
network solutions transformed to center of objects by
3-D affine transformation

3. appreciates all deformations of obtained 3-D space,
whereas 4. does not appreciate the overall deformation.
By comparing values of 3. and 4., similarity to object space
can be estimated.

Table 2: Results with stereo pair images (mm)

1 σ0= 0.00169
X Y Z XYZ

2 0.0854 0.0836 0.1299 0.1019
3 0.9334 0.5566 2.2348 1.4347
4 0.0572 0.0849 0.0922 0.0796



3. has more than 10 times larger errors than 4. This result
confirms that the orthogonal projection model cannot con-
struct 3-D model with high similarity to the object space in
case where only two overlapped images are used. Further,
it is shown that indefiniteness appears in depth direction Z .

3.2 Case 2

Triplet images taken at point A, B and C were used. Prin-
cipal distance c was fixed to the true value 300mm.

Table 3: Results with triplet images (mm)

1 σ0= 0.00087
X Y Z XYZ

2 0.0417 0.0411 0.0647 0.0504
3 0.0390 0.0499 0.0773 0.0577
4 0.0258 0.0328 0.0599 0.0422

Differences between 3. and 4. are small and the accuracies
of both are high. It was confirmed that the proposed model
is effective in the case where triplet images are used.

3.3 Case 3

Triplet images taken at point A, B and C were used. Prin-
cipal distance c was fixed to the false value 290mm.

Table 4: The case where false value 290mm is given to c

1 σ0= 0.00229
X Y Z XYZ

2 0.3014 0.2985 0.3892 0.3324
3 0.1077 0.0884 0.2655 0.1731
4 0.0350 0.0536 0.1170 0.0770

The value of σ0 was more than twice larger than that in the
case 2. And the object coordinates were much worse than
those in the case 2. This indicates that ∆c affects residuals
of image coordinates.

In the next test principal distance c was treated as unknown
and the initial values 290mm was given to c.

Table 5: The case where c is treated as unknown

1 σ0= 0.00083
X Y Z XYZ

2 0.0407 0.0401 0.0636 0.0494
3 0.0682 0.0454 0.1072 0.0779
4 0.0269 0.0216 0.0767 0.0485

The obtained value of c was 299.3mm. Compared to the
case where false value is given to c, the accuracy was ob-
viously improved.
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Figure 4: Configuration of camera and object points

4 FIELD TEST

A field test was carried out around Kamo-river at Kyoto
Japan. Configuration of camera and object points is illus-
trated in Figure 4.

Conditions on the test are described below.

Camera: Canon D30 (Digital Camera equipped with CMOS
sensor)
Image size: 2160 x 1440 pixels
Resolution: 10.5 µm / pixel
Lens: EF100-400mm F4.5-5.6L IS USM (Zoom lens)
Focal length: 400mm (fixed with tape)
Distance to objects: 100 – 110m
Target size: 2cm in diameter
The number of object points: 4 x 7 = 28
The number of images: 5

Figure 5: One of the photo images taken with D30

4.1 Bundle adjustment

The object coordinates was observed by the ground trian-
gulation with a total-station as check data at the following
accuracy.



Estimated standard errors: X:0.4767 Y:0.5031 Z:0.5173
(mm)

Initial values of object coordinates were calculated by re-
sampling the check data by 50cm. Initial values of orien-
tation parameters were estimated with the initial values of
object coordinates by using DLT.

For comparison purpose, free network bundle adjustments
were performed with both of the central perspective model
and the orthogonal projection model.
c was treated as unknown. Zeros were given to the other
internal orientation parameters.

4.2 Results

Two tests with different number of images were carried
out. The indexes mentioned at previous section were cal-
culated with both of the two models in each test.

Table 6: Results with 5 images (mm)

central perspective model
1 σ0= 0.002611

X Y Z XYZ
3 7.9642 2.6021 6.2955 6.0507
4 2.1044 0.7834 3.4743 2.3884

orthogonal projection model
1 σ0= 0.002658

X Y Z XYZ
3 3.4556 1.0566 3.4874 2.8994
4 2.1074 0.7836 3.4505 2.3777

Table 7: Results with 3 images (B,C,D) (mm)

central perspective model
1 σ0= 0.002633

X Y Z XYZ
3 99.5854 43.8100 96.2873 83.8805
4 3.8363 1.3900 6.7535 4.5555

orthogonal projection model
1 σ0= 0.002755

X Y Z XYZ
3 9.8375 3.9887 9.4912 8.2213
4 2.1514 0.9260 4.8342 3.1014

These results show that the orthogonal projection model is
more effective than the central perspective model for long
distance observation. Especially, the proposed model is
robust in bad condition.

5 CONCLUSIONS

This paper described the principles of the orthogonal pro-
jection model, which is appropriate for long distance ob-
servation. In addition, the following several characteristics
on the proposed model were confirmed by some simula-
tions and a field test.

• The proposed model can achieve higher accuracy than
the conventional model on long distance observation.

• More than three overlapped images are required for
accurate adjustment with the proposed model.

• Principal distance c can be self-calibrated with the
proposed model.

• Initial values of orientation parameters are not nec-
essary for adjustment with the proposed model. They
can be estimated with a small number of control points.
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