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46 rue Barrault, 75013 Paris - France

michel.roux@enst.fr

KEY WORDS: Airborne Laser Scanner Data, Aerial Image, Image Segmentation, Registration

ABSTRACT

At present, the calibration of airborne laser scanner data relies on the estimation of the position and attitude of the aircraft during the
acquisition using GPS and INS systems, but also on the estimation of some other parameters: time bias, scan angle offset, etc, which
usually requires the acquisition of extra data over known features: along and across the airport runway, over an horizontal building
edge, etc. The operator need then to identify within the cloud of 3D points the position of these known features.
The aim of this paper is to propose a tool for the automated registration of airborne laser scanner data with one aerial image over
urban areas. The method makes use of the intrinsic rigidity of the aerial image: the registration is performed by optimizing the 3D
reconstruction of the scene calculated with the aerial image and the laser points. On the assumption that urban areas are mainly
composed of planar surfaces, a segmentation algorithm generates a partition of the aerial image and a robust technique estimates a 3D
plane for each region. The quality of the registration is calculated according to the global number of outliers remaining after the robust
estimation.
Experimental results show the convexity of this registration estimator for some low frequency deformations: 3D translations and
rotations, and also curvature along and across the flying direction. The system then uses a Nelder-Mead simplex algorithm to calculate
a precise registration of both data sets.

1 INTRODUCTION

The calibration of airborne laser acquisition systems is a complex
task: its goal is first to identify the systematic errors and then to
correct the raw laser data. The different components (the scanner,
the GPS and INS systems, etc.) should be calibrated separately,
as well as the complete mounted system. Part of the calibration
is performed on the ground, but several parameters require also
in flight calibration, which supposes the acquisition of extra data
over perfectly known features before and after, even during, the
acquisition of the data of interest for the mission. The detection
and the estimation of systematic errors from these extra data is
usually carried out interactively, which reduces the automation of
the complete process and causes delays in the delivery of the final
data.

Different studies have been dedicated to the modeling of system-
atic errors in laser acquisition systems (Baltsavias, 1999, Schenk,
2001). Among the identified sources of error, two classes ap-
pear: sources of global deformation of the 3D points cloud, and
sources of local perturbations. For instance, range error generates
a local translation, whose magnitude is constant, but its direction
depends of the relative position of the point and the scanner. On
the other hand, the mis-alignment of the laser system with the
vertical direction generates a global rotation of the 3D points.

The goal of the present paper is to propose an automatic tool to
help for the recovery of systematic errors leading to a global de-
formation of the 3D points. The method is based on the automatic
registration of the laser data with a pre-calibrated aerial image.
The method is based on the estimation of the quality of the 3D
surface reconstruction using both data sets.

A previous study was dealing with the registration of laser data
with a digital elevation model generated from aerial images with
a classical stereo-restitution approach (Bretar et al., 2003). The
new method presented here has the advantage to require only one

image, and to avoid the calculation of a 3D reconstruction from
aerial images which may be the source of additional errors.

The next section presents the image segmentation tool and the
different approaches tested for the estimation of a planar surface
for each region. The section 3 proposes a quality criterion for
the evaluation of a 3D reconstruction calculated with both data.
The convexity of this criterion for different relative deformations
shows its adequation for the automatic registration of one aerial
image with the 3D points acquired by a laser scanner system.
The section 4 presents briefly the approach developed for the au-
tomated registration which is based on a simplex method, and
gives the results of the registration for a scene in the suburb of
Brussels.

2 3D SURFACE ESTIMATION

We first briefly describe the algorithm used for the segmentation
of the aerial image into regions, and then we investigate several
techniques for the estimation of a plane from a set of 3D points.

2.1 Image segmentation

The partitioning of the image into meaningful regions is of great
interest for aerial images of urban areas since it may provide a
useful detection of main components: buildings, roads, cars, etc.,
which will have individual properties in term of geometry and
therefore of models. Region-based segmentation of aerial im-
ages is justified because of the specific properties of urban areas:
man-made structures often have rather constant albedo as they are
often built with a single material.

Split-and-merge techniques for region-based segmentation have
shown their ability to generate consistent and robust partitions.
Among them, the algorithm proposed by Suk and Chung has the
advantage to be a fast and performing technique (Suk and Chung,
1983). This operator is controlled with 3 parameters: each of the



split and merge predicates uses one parameter, the last parame-
ter gives the minimum surface of a region in the final segmenta-
tion. The adaptation of this algorithm to colour images in RGB
or L*a*b* spaces, and an evaluation of segmentation strategies
are presented in (Roux et al., 1997).

The figure 1 shows the result of the region-based segmentation
over a small part of an aerial image.

Figure 1: Part of the original image ( c
�

EUROSENSE) and result
of the segmentation.

2.2 Planar estimation

We propose to investigate different approaches for the estimation
of a 3D plane for each region of the segmentation. The plane
is estimated with all the laser points whose projection using the
collinearity equation falls inside the region (see figure 2).
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Figure 2: Projection of the laser points in the image plane, and
attribution to the regions of the segmentation.

Given � laser points �������
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� � � , the problem is to estimate
the equation of a plane as:��� ����� � 	���� � � ��!#"%$
or, if vertical and near-vertical faces are disregarded:�&" �'� �#��� � 	(���
Two types of parameter estimation techniques can be evocated:
linear and non-linear approaches. Among the first ones, the least

squares estimator has been widely adopted because its ease of
computation. On the other hand, non-linear techniques proved to
be robust to the presence of outliers: the LMedS and the RANSAC
estimators have also been tested for this application. An extensive
tutorial on parameter estimation can be found in (Zhang, 1997).

Least Squares Estimation (LSE): in the case of the second
plane equation, the LSE approach consists in the minimization of
the mean quadratic error:) " * + �,���
� � � � ��� ���-��� � 	.�-���0/1�����
2�
The solution is given by:3 � ��54 " 3 + � 2� + � � 	 � + � �+ � � 	 � + 	 2� + 	 �+ ��� + 	�� � 476 � 3 + � � � �+ 	.�8�9�+ � � 4
The figure 3 presents 2 views of the 3D reconstruction for the
black and white regions of the figure 1. These examples show
clearly the inadequation of the LSE approach when outliers are
present in the set of 3D points. One way to overcome this be-
haviour would be to replace the LSE, i.e. minimization of

+ � ) � 2 ,
with one M-estimator, i.e. minimization of

+ �.: � ) � 2 � , where :
is positive and symmetric function with a unique minimum at
zero (Rousseeuw and Leroy, 1987).

Figure 3: Two views of the 3D reconstruction of 2 regions using
the LSE approach.

Least Median of Squares (LMedS): the LMedS estimates the
parameters of a shape by solving the non-linear minimization
problem: ;=<�>?; ) ! < � > �A@�� 2
where @ � is the residual at the point

<
. This problem does not have

an analytical solution. It is solved with a search in a large set of
possible models generated with the data:B select

>
features randomly, and estimate the corresponding

model,B calculate the residual to the model for each feature,B sort the square residuals and select the median value as qual-
ity measure for the estimated model,B repeate previous steps C times and select the model with the
better quality measure.

where
>

is the minimum number of features to calculate a model.
In the case of 3D planar surface

> "ED . The number of iterationC should be large enough to have selected at least one set of
>

features without outliers. The probability of success or failure
can be calculated according to the maximal proportion of outliersF : GIHKJ �MLONQPR "E��ST/U��SV/ F ��W-��X



In the case of the LMedS estimator F "%$ � � , but other values may
be used according to a priori knowledge on the outlier proportion.
The table 1 gives the number of iterations for different values of
the probability of failure. The complexity of the LMedS is rela-
tively high: �'�8������� �8�7�
� , since the residuals of all the features
should be sorted.GIHKJ �,LON9PR SK$ 6 � S $ 6 2 S $ 6 	 S $ 6 
 SK$ 6 �C� � W 18 35 52 70 87

Table 1: Minimum number of iterations for an expected proba-
bility of failure.

Figure 4: Two views of the 3D reconstruction of 2 regions using
the LMedS approach.

The RANSAC algorithm: the Random Sample Consensus has
been proposed for the robust estimation of shape parameters (Fis-
chler and Bolles, 1981). It is very similar to the LMedS. As prin-
cipal difference, the RANSAC requires the operator to give a tol-
erance threshold to reject a point as outlier for a given model. The
outline of the algorithm is the following:B select

>
features randomly, and estimate the corresponding

model,B count the number of features which are out a given tolerance� to the model,B repeate previous steps C times and select the model with the
minimum number of outliers.

The RANSAC paradigm can be considered as the dual approach
to the LMedS estimation: the RANSAC algorithm optimizes the
proportion of features which are within a given error to the model,
while the LMedS optimizes the error for a given proportion of
features. Both have the same probability of failure. The figures 4
and 5 indicate a similar robustness against outliers for the estima-
tion of planar surfaces. The advantage of the RANSAC over the
LMedS is its complexity, which is linear with the total number of
features.

Figure 5: Two views of the 3D reconstruction of 2 regions using
the RANSAC approach.

Choice of the estimator: among the three approaches presented
above, we retained the RANSAC algorithm, since it has the ad-
vantage to be robust to the presence ouf outliers in the data and
to have a complexity which is linear with the number of observa-
tions.

The presence of outliers in the data requires some explanation.
In the context of 3D plane estimation, the outliers in the image
regions have three principal origins:B some laser points correspond to small structures which are

discarded in the segmentation because of the minimum size
of the regions: chimneys on the roofs, cars on the streets,
etc.,B the segmentation is far to be perfect and presents over and
under-segmentation problems, which are clearly visible on
the figure 1,B a bad localization of the laser point cloud compared to the
aerial image generates mis-matchings between the laser points
and the segmented regions.

The two first sources of outliers correspond to local artifacts in
the laser data or in the image segmentation. They are supposed
to have negligible effects compared to the third origin of outliers.

3 REGISTRATION AND 3D RECONSTRUCTION

3.1 Evaluation Function

The quality of the 3D reconstruction being used to determine the
relative position of the laser points and the optical image, an eval-
uation function for the 3D reconstruction is needed, whose opti-
mum corresponds to the true relative position. Obviously, the
evaluation function should be directly related to the technique in-
volved in the 3D reconstruction. Since we made the choice of the
RANSAC approach, the global proportion of outliers calculated
with all reconstructed surfaces will serve for the evaluation.

Let ���="�� @ �
� < " S ����� ��� be the partition of the aerial image
provided by the segmentation algorithm, � the set of 3D laser
points and � the deformation to be evaluated. We will abusively
use the notation ����� � for the projection of a 3D point � in the
image plane � using the collinearity equations. Then the set of
laser points whose projection in the image after the deformation� falls in a region @ � of the segmentation is noted:

� H�� P� " �!��"��$#%���&� ��� �
�'" @�� �
The plane estimated with the RANSAC procedure using the 3D
points in � H(� P)� is called

GIH(� P� .
The criterion for the evaluation of the deformation � can then be
written as:

* �&��� " +P�!,.-0/ � � @ !1�2��"3� H�� P� #�! <)4 C �&� ��� � � GIH�� P� �05 � �+P�2,6-$/ � � @ !1�(� H�� P� �
where ! <)4 C ��� � G � is the Euclidian distance between the point �
and the plane

G
, and � is the tolerance error used in the RANSAC

procedure for the estimation of the planes.



3.2 Parametrization of the RANSAC algorithm

Two parameters are involved in the RANSAC algorithm: the
number of iterations C and the tolerance � for the detection of the
outliers. Experiments have been carried out in order to determine
the influence of these parameters.

The figure 6 indicates that a too small value of C generates addi-
tional local minima. On the other hand, values larger than

� $ do
not improve significantly the global convexity of the function.
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Figure 6: Evaluation function for a translation with different
numbers of iterations C in the RANSAC procedure.

The figure 7 shows that a smaller value of � gives a more convex
curve, but discards a larger amount of laser points.
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Figure 7: Evaluation function for a translation with different val-
ues of the tolerance � in the RANSAC procedure.

For the further experiments presented in this article, the valuesC=" � $ and � " � $ � ; have been selected. Nevertheless we
should point out that the tests were limited to one set of data, and
that the stability of the procedure should be evaluated against a
larger range of input data characteristics: aerial image resolution,
3D points density, laser accuracy, ...

3.3 Models of deformation

The registration approach has been tested against different defor-
mations applied to a cloud of laser points, which was originally
“perfectly” registered with the aerial image. These are mostly
rigid deformation: translation and rotation, but also curvature
along one of the planimetric directions. The convexity of the
evaluation function is tested for each of these deformations.

Planimetric Translation: the figure 8 presents a very sharp
global minimum, which may be reach from distances larger than
10 m. This is more than sufficient for an automatic calibration.

Figure 8: Evaluation function for planimetric translations.

Vertical Translation: on the other hand, the figure 9 indicates
that a vertical translation produces also a global minimum, but
less sharp than for planimetric translations. We should expect in
that case a not so good precision in the registration of the data.
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Figure 9: Evaluation function for vertical translations.

Rotation: rotations around the planimetric and the vertical axes
present also a different behaviour (see the figure 10). But in that
case, the rotations around the vertical axis generate the sharper
minimum, which is not of great interest for calibration purposes,
since they are less likely to occur than rotations around horizontal
axes.
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Figure 10: Evaluation function for rotations.

Curvature: the last deformation which have been investigated
in this preliminary study is a curvature of the laser points along
one of the planimetric direction, as illustrated with the figure 11.
This deformation is controlled with a parameter

�
, which is re-

lated to the curvature radius � via the formula:

� " S � � 2
� �

For
� " $ , the curvature radius is equal to the infinity, i.e. no

distorsion is applied to the laser points. The parameter
�

can
take positive and negative values. The two sharp minima on the
figure 12 indicate that this kind of deformation could also be es-
timated with this registration approach.

1 m

δ

Figure 11: Parametrization of the curvature deformation:
�

is the
vertical distortion at 1 meter from the curvature axis.

4 AUTOMATIC REGISTRATION

The convexity of the quality criterion demonstrated in the previ-
ous section led us to use a simple approach for the automation
of the registration. The Nelder-Mead simplex method has the ad-
vantage to be very fast to implement and does not require the
calculation of the gradient of the evaluation function (Nelder and
Mead, 1965).

Presently, the automatic registration procedure is limitated to the
search of the best planimetric translation, but it can easily be ex-
tanted to more complex deformations. The data used for this ex-
perimentation are presented on the figures 13 and 14. The scene is
in the suburb of Brussels and covers a surface of

��� $ � D���$ ; 2 .
The aerial image is in colour and has a resolution of 8 cm on
the ground. The laser points have been acquired with a oscil-
lating mirror system with a density of $ � D � � C!# ; 2 . Since both
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Figure 12: Evaluation function for curvature around X and Y
axes.

data were already calibrated, we used the original position as the
ground truth.

To test the robustness of the approach, the simplex algorithm was
run from 8 initial positions in different directions at a distance
larger than 10 meters from the real position. The final positions
where close to the ground truth (see table 2), but we noticed a
relative dispersion of these local minima.

original simplex iterated simplex
(cm) X Y X Y
mean 13 0 6 7
std 18 15 2 7

[min , max] [-8 , 52] [-35 , 12] [3 , 9] [-1 , 15]

Table 2: Statistics for 8 different starting positions with the orig-
inal and the iterated simplex methods.

In order to improve the stability of the registration process, two
solutions may be proposed at the expense of a higher cost in com-
putation time:B since the simplex shrinks when approaching the minimum

of the evaluation function, it may be too small for the last
iterations: a solution is to re-run the algorithm from the last
position with a relatively large simplex,B close starting positions may result in different local min-
ima: a solution is to run the simplex algorithm from different
starting positions and with different initial simplex size.

The table 2 gives the mean position, the standard deviation and
the interval of the 8 final positions obtained with the original sim-
plex procedure, and with the twice iterated procedure. We can no-
tice that with the second method all the final position are grouped
within a disk of radius 10 cm.

5 CONCLUSION

A 3D model of an urban scene can be reconstructed with airborne
laser data and a single aerial image using robust parameter esti-
mation techniques. We proposed to use the quality of the 3D
reconstruction to estimate the relative position of both data, and
further to automate their relative registration. A possible appli-
cation is the automatisation of the calibration process for the 3D
points acquired with an airborne laser scanning system.



Figure 13: Aerial image in the suburb of Brussels
( c
�

EUROSENSE).The scene is
��� $ � D��.$ ; 2 and the im-

age has ground resolution of 8 cm.

The 3D reconstruction is performed using robust parameter es-
timation in order to limit the influence of image segmentation
defaults and of the presence of outliers: it is with this aim in view
that the RANSAC approach has been selected. The criterion to
evaluate the quality of a relative registration of both data is then
the proportion of outliers revealed by the RANSAC procedure.
Because of the global convexity of this criterion a simple Nelder-
Mead simplex method may be used to recover the deformation
between the aerial image and the cloud of laser points. The ex-
periments show that rigid deformations can be recovered with this
approach.

Further experiments should be undertaken in order to prove the
efficiency of the approach for the calibration of airborne laser
data:B application to other data with different characteristics: im-

age resolution, laser scanning systems (oscillating or rotat-
ing mirror, optic fibers, ...), laser point density, etc.,B test for more complex deformations of the laser points cloud:
composition of translation, rotation and curvature; and de-
formations with higher frequencies.B integration in a global laser point calibration system, espe-
cially verify that the precision reachable using this registra-
tion approach is sufficient for calibration purposes,

With a different objective than the registration of a laser point
cloud and an aerial image, the tools presented in this study may
also be of great interest for a fine and detailed 3D reconstruction
of a urban scene using 3D laser points and several aerial images.
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Figure 14: Footprint of the laser points ( c
�

EUROSENSE). The
elevation is ranging from 11m to 45m.
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