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ABSTRACT

With the increasing number of cameras the need for plug-and-play calibration procedures arises to realize a subsequent
automatic geometric evaluation of observed scenes. An easy calibration procedure is proposed for a non-zooming station-
ary camera observing objects of initially equal and known heights above a ground plane. The image coordinates of the
corresponding foot and head points of these objects serve as observations. For the interior and exterior orientation of the
camera a minimal parametrization is introduced with the height of the camera above the ground plane, its pitch and roll
angle and the principal distance. With the idea of corresponding foot and head trajectories being homologue, the situation
can be reformulated with a virtual second camera observing the scene. Therefore a plane induced homography can be
established for the observation model. This special planar homology can be parametrisied with the unknown calibration
quantities. Initially the calibration is estimated by observing foot and head points of objects with known heights. In the
subsequent evaluation phase the height and positions of unknown objects can be determined. With the same procedure
the calibration can be checked and updated if needed. The approach is evaluated with a real scene.

1 INTRODUCTION

Motivation. Metric scene reconstruction is the subject of
many vision tasks. With the increasing number of video
cameras there is a demand of quick and easy calibration
procedures which lower the expenses of camera installa-
tions while guaranteeing the desired measurement accu-
racy. In this paper a calibration procedure is presented
for stationary, non-zooming cameras as a contribution to
the realization of plug-and-play video cameras. The ap-
proach uses the observed foot and head points of object
with equal heights on a ground plane. The formulas for the
solution of the problem will be assembled and explained
and the achievable accuracies for the calibration will be
determined as well.

Approach. With a straight line preserving pinhole cam-
era a minimal parametrization is introduced: For the intrin-
sic camera parameters the principal distance is the crucial
parameter which determines the reconstruction. The ex-
terior orientation is realized by the pitch and roll angle of
the camera as well as the distance of the projection center
to the ground plane (height above ground). For the cor-
responding foot and head points of imaged objects a so-
calledplane induced homography(Hartley and Zisserman,
2000) can be introduced which maps the foot points into
the corresponding head points. Assuming that the head
and foot points are identical in the object space, the situa-
tion can be reformulated with the help of a second, virtual
camera observing the same points. This idea allows to ex-
ploit a stereo approach: The motion between both cameras
induces a planar homology as a special homography and
enables the formulation of constraints between the obser-
vations and the unknown parameters. The latter are esti-
mated in a combined adjustment for which in principle no
approximation values are needed.

Procedure. The realization of the approach consists of
two stages:(1) Initialization: Since photogrammetry ac-
quires angles, metric information has to be provided in an
initial calibration phase by observing objects of equal and
known height. After the collection of sufficient data the
initial calibration is performed and then the determination
of the height and positions of unknown objects is possible.
(2) Parameter update:Due to environmental influences the
calibration parameters may vary, especially the principal
distance, therefore, the parameters have to be checked and
updated. By assuming that the camera height above ground
is constant, this can be achieved by the observation of pos-
sibly other objects of equal but unknown heights.

Notation. We denote vectors of the image and the cam-
era coordinate systems with small boldface letters, e. g.
x, and coordinates in the object coordinate system with
capital boldface letters, e. g.X. Vectors and matrices are
denoted with slanted letters, matrices sans-serif, thusx or
R. Homogeneous vectors and matrices, which represent
the same object when multiplied with a scalarλ 6= 0, are
denoted with upright letters, e. g.x or K. We use the skew
symmetric matrix

S(x) =

 0 −x3 +x2

+x3 0 −x1

−x2 +x1 0


of a 3-vectorx = (x1, x2, x3)T to represent the cross prod-
uct bya × b = S(a)b. The Euclidean normalization of a
vectorx is preformed by the operatorN(x) = x/||x||.

2 MODELLING

2.1 Parametrisations and Observations

Coordinate Systems. The orientation of the camera in
the object coordinate system can be described by the pitch



angleα, the roll angleγ and the heightZ of the camera
(cf. fig. 1). Since the azimuthβ of the viewing direction
is at our disposal, the rotation matrix from the object to
the camera system readsR = RZ(γ) · RX(π/2 + α) and
with the normal to the plane in the object coordinate sys-
tem E = (0, 0, 1)T the normal in the camera coordinate
systems becomes

n = RE = (nX , nY , nZ)T. (1)

The relationships between the normal and the angles is

α = arctan
(

nZ

nY

)
, γ = − arctan

(
nX

nY

)
(2)

andnT = N (tan(−γ), 1, tan(α)) .

Without loss of generality, the projection centerZ =
(0, 0, Z)T is chosen. The origin of the object coordinate
system lies in the reference plane, the Z-axis runs through
the projection center of the camera. The Y-axis is defined
by the projection of the optical axis onto the plane, the X-
axis is perpendicular to both (cf. fig. 1).
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Figure 1: shows the definition of the involved coordinate
systems and the projection of a height into the image.

Camera Model. For the camera a straight line preserv-
ing pinhole model is introduced with the principal distance
c, the scale factorm, the shears and the principal point
(x′0, y

′
0) as the intrinsic camera parameters. With the ho-

mogeneous calibration matrix

K =

 c sc x′0
0 mc y′0
0 0 1


the homogeneous3×4–projection matrixP = KR(I3|−Z)
projects an object pointXi into the image pointx′i via the
linear transformationx′i = PXi.

With the presented approach and a camera in general posi-
tion, two of the five intrinsic parameters can be determined
— preferably the principal distance and the scale factor.
Therefore, initially the used calibration matrix has diago-
nal shape:

K = Diag(c,mc, 1).

Observations. For each object the four coordinatesx′b,
y′t, y′b andy′t (bottom, top) of the foot and head points are
available as observations.

2.2 Concept of the Virtual Camera

The mapping of an object foot pointx′
i = (x′b, y

′
b)

T
i into

the corresponding head pointx′′
i = (x′t, y

′
t)

T
i can be ex-

pressed by the projective transformation

x′′i ∼= Hx′i, (3)

called a homography with eight independent parameters
due to the homogenity. The3×3–transformation matrix
H is constant for objects of equal height and can be deter-
mined by four point correspondences. In the following we
show howH can be expressed as a function of the unknown
parameters and how a given transformation matrix can be
decomposed accordingly.

2.2.1 Virtual Homography. With the notion of corre-
sponding head and foot points being identical in space, the
situation can also be described with the help of a second
virtual camera (cf. fig. 2). Aplane induced homography
results from the images of two cameras observing the same
object on a plane. With the calibration matricesK′ andK′′

of these two cameras, the distanceZ of the first camera to
the plane and the baseline vectort the homography reads

H ∼= K′′
(

R′′ − 1
Z

tnT

)
K′−1, (4)

with the rotation matrixR′′ of the second camera in re-
spect to the first camera coordinate system; cf. (Faugeras
and Lustman, 1988) or (Hartley and Zisserman, 2000) for
an alternative derivation. The term in brackets is called the
motion matrixM. In our case we have one camera observ-
ing the scene from two altitudes with unchanged viewing
direction, thusK′ = K′′ = K, R′′ = I3, andt = Hn
(cf. fig. 2). The homography (4) becomes

H ∼= K
(

I3 −
H

Z
nnT

)
K−1. (5)

Observe that the baseline length‖t‖ is identical to the ob-
ject heightH.

The transformation (5) is a so-calledplanar homology
(Hartley and Zisserman, 2000, p. 585) since with the hori-
zon line l′ = K−Tn and the vanishing pointv′ = Kn
— normally the nadir — equation (5) reads

H ∼= I3 + (µ− 1)
v′l′

T

v′Tl′

with (µ − 1) = H/(Zv′Tl′). The planar homology has
five degrees of freedom — the vertexv′ (2 dof), the axis
l′ (2 dof) and the characteristic ratioµ (Semple and Knee-
bone, 1952) and can therefore be determined by 2.5 point
correspondences.

As H contains 5 dof, we can determine two intrinsic pa-
rameters in addition to the three parametersα, γ andZ of
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Figure 2: shows the true configuration (top) and the equiv-
alent situation with a second virtual camera (bottom). In
both cases the observations of the object foot and head
pointsX ′ andX ′′ are identical.

the exterior orientation. With the special calibration matrix
K = Diag(c,mc, 1) the planar homology explicitly reads

H ∼=


Hn2

X−Z
Z

HnXnY

Zm
cHnXnZ

Z
mHnXnY

Z
Hn2

Y −Z
Z

mcHnY nZ

Z
HnXnZ

Zc
HnY nZ

Zmc
Hn2

Z−Z
Z

 . (6)

Observe that form = 1 the relationH12 ≡ H21 holds. In
many practical cases the roll angleγ equals zero, so that
nX = 0 holds and the homography (6) becomes

H ∼=


−1 0 0

0
Hn2

Y − Z

Z

cmHnY nZ

Z

0
HnY nZ

Zmc

Hn2
Z − Z

Z

 .

as a common specialization. In this case only the principal
distance or the scale factor is determinable.

2.2.2 Decomposition of H. Parameter estimation re-
quires approximation values for the unknown calibration
parameters. These values can be deduced by a direct es-
timation of the eight parameters of the common homogra-
phy (3), if a real-valued decomposition according to (5) is
available.

(1) Intrinsic camera parameters. From eq. (6) the prin-
cipal distance and the scale difference arec =

√
H13/H31

and m =
√

H21/H12,, but for the frequent case of the
roll angleγ = 0 the elementH31 becomes zero. In this
case the principal distance must be computed viac =√

H23/H32/m with the known scale factorm.

(2) Exterior orientation. Once the intrinsic parameters
c and, where applicable,m have been determined, the mo-
tion matrix M ∼= K−1HK can be computed withK =

Diag(c,mc, 1). The eigenvalue-eigenvector-decomposi-
tion of M has three real-valued eigenvectorsei, i = 1, 2, 3,
with two identical real-valued eigenvaluesλ2 = λ3 and an
individual eigenvalueλ1. The normal vector of the plane
results from the eigenvectors

n = e1 = N (e2 × e3)

and the ratio of camera and object height from the eigen-
values:

H

Z
=

λ1 − λ3

λ1
=

λ1 − λ2

λ1
.

Note that the solution is unambiguous except for a com-
mon sign ofc andnZ and the sign ofn. But the require-
mentnY > 0 is reasonable for most camera installations.
With the orientation parameters determined in this manner
we are able to measure the object height and position.

2.3 3D Object Measurement

Similar formulas for the computation of the height of an
object have been developed independently in (Criminisi,
2001) and (Renno et al., 2002, Jones et al., 2002) — on the
one hand geometric and on the other hand more algebraic.
Below the equivalence of both is shown.

We start from the formulation of the transformation (3) as
a condition

S(x′′i )Hx′i = 0. (7)

With the vertical vanishing pointv′ = Kn (the fixed point
of the transformation) and the horizon line (fixed line)l′ =
K−Tn (Hartley and Zisserman, 2000) in (5) the condition
(7) leads to the formula developed in (Criminisi, 2001)

Hi = − Z

l′
T

x′i
· ‖S(x′′i )x′i‖
‖S(x′′i )v′‖

.

by taking the norm of the condition. With the directions
mi = N(K−1x′i) the homography for directionsm′′

i
∼=

Mm′
i can be expressed

S(m′′
i )Mm′

i = 0

and for the object height the second expression results

Hi = − Z

nTm′
i

· ‖S(m′′
i )m′

i‖
‖S(m′′

i )n‖
. (8)

The position of the object on the plane results from sub-
stituting the angular distanceλ′i = −Z/(nTm′

i) from
the projection center to the foot pointX ′ into the point-
direction-form

X ′
i = (X ′, Y ′, Z ′)Ti = Z + λ′iR

Tm′
i (9)

for whichZ ′
i = 0 holds.

The formulas (8) and (9) provide the basis for the object
measurement. The calibration procedure is described in
the following section.



3 REALISATION

3.1 Calibration Procedure

The proposed calibration procedure consists of two stages:
After the initial calibration with objects of equal and
known heights, the parameters can be checked and — if
needed — updated in the continuous operation phase with
new objects of unknown height:

(1) Initial Calibration. After the installation of the cam-
era the foot and head points of the objects have to be mea-
sured. Depending on the specific calibration object this
can be done manually or with the help of feature extrac-
tion. The observed heights may not be arranged on a sin-
gle straight line in the object space (cf. section 3.3, de-
terminability of the parameters). While the height of the
objects has to be known, the height of the cameraZ may
be introduced as an unknown parameter or — if accessible
– as a measured quantity. Approximation values for the
unknown parameter can be determined as described below
or by a rough guess, e. g. for the roll angle zero is always
a good assumption.

(2) Parameter Update. For the continuous operation we
assume that the height of the camera does not change,
while the other parameters may vary due to environmen-
tal influences, for instance temperature. For every new
scenet an unknown heightHt is introduced into the ad-
justment procedure. Since the unknown object heightsHt

can vary, relinearisation with few iterations is advisable for
every new scene — slightly increasing the computing time.
At the same time the measurements yield the position and
height of the objects for each image. Furthermore, the ad-
justment provides the average height for every type of ob-
ject.

3.2 Approximation Values

Minimizing algebraic distances. The transformation
parameters can possibly be determined without the knowl-
edge of approximation values (Hartley and Zisserman,
2000). With the projective transformationx′′i ∼= Hx′i writ-
ten in homogeneous coordinates u′′

v′′

w′′

 =

 a b c
d e f
g h i

  u′

v′

w′


with x′ = (u′, v′, w′)T ∼= (x′b, y

′
b, 1)T and x′′ =

(u′′, v′′, w′′)T ∼= (x′t, y
′
t, 1)T we first of all get the con-

straints between the image coordinates and the homogra-
phy elements

u′′i (gu′i +hv′i +i)−w′′
i (au′i +bv′i +cw′

i) = 0 (10)

v′′i (gu′i +hv′i +i)−w′′
i (du′i +ev′i +fw′

i) = 0. (11)

In compact formaT
1ih=0 andaT

2ih=0 with the 9-vectors

aT
1i = (−w′′

i x′i
T
, 0T,−u′′i x′i

T)

aT
2i = ( 0T,−w′′

i x′i
T
, v′′i x′i

T)

and the unknown parametersh = (a, b, c, d, e, f, g, h, i)T
we get the homogeneous equation systemAh = 0. The
right eigenvector ofA for the smallest eigenvalueλl is a
good estimation forh. With the singular value decomposi-
tion A =UDVT the solution is

hk = Vkl, with k=1, . . . , 9 (12)

For numerical reasons a conditioning of the problem is ad-
visable.

Enforcing the homology constraints. The estimation
(12) ofH does not possess the properties of a planar homo-
logy presented in section 2.2.1. Therefore, a least squares
adjustment can be done assuming the elementsh=vec(H)
as i. i. d. observations. The explicit model of this observa-
tion process reads

h = f(c, α, γ, Z) with Σ(0)
hh = σ2

0 I9 (13)

with the a priori covariance matrixΣ(0)
hh of the observa-

tions and the unknown variance factorσ2
0 . The solution

Ĥ minimizes the Frobenius norm‖H− Ĥ‖. Approxima-
tion values are taken from the decomposition explained in
section 2.2.2.

Although the solution̂h fulfills the constraints of the pla-
nar homology, it is still an approximation since potential
individual weights of the observations have not been taken
into consideration. Therefore, a subsequent stringent ad-
justment is necessary.

3.3 Parameter Estimation

Determinability of the Parameters. If the pitch angleα
is zero or90◦ — i. e. the viewing direction is horizontal or
towards the nadir — the elementnZ of the normal vector
(1) becomes zero. In this case the 2D-homography (6) de-
generates to a 1D-homography and the principal distancec
is not determinable. If the pitch angle is approximate zero
or π, the determination of the parameters is very weak. In
this case prior information about the parameters has to be
provided. This can easily be done by introducing these
values as additional, fictitious observations into the adjust-
ment process explained in the following.

One critical arrangement of the calibrating objects can be
observed: if the foot and head points in the image are
collinear, the homography degenerates and the parameters
are not determinable. Thus not all objects may be situated
on a single straight line.

Adjustment Model. For the calibration phases (initial
and update) the general non-linear model

g(l,p) = 0 with Σ(0)
ll = σ2

0P−1
ll (14)

with the constraints between the observationsl, the param-
etersp and the a priori covariance matrix of the observa-
tions Σ(0)

ll is arranged, cf. for instance (Mikhail, 1976).
The constraints of the model are the eqs. (10) and (11).
For technical convenience withp = (c, α, γ, Z, H)T five



parameters have been introduced although just the fraction
H/Z is determinable. Depending on the actual calibration
phase (initial or update) eitherH or Z have to be fixed
by prior information. Because of the assumption of i. i. d.
observation groups the normal equation system for the ad-
justment model (14) can be built-up sequentially.

To make sure, that the necessary prior information has a
constant contribution to the solution, the relative weighting
between the observations and the prior information can be
controlled by a regularization factorλ. An ad-hoc solution
is λ = tr(N)/tr(Ppp) (Press et al., 1992) with the traces
of the normal equation matrixN and the prior weightsPpp

for the ’observed’ parameters. Again, a conditioning of
the problem is advisable by a translation and scaling of the
image quantities and the principal distance respectively.

Kalman Filter. The sequential build-up of the normal
equation system offers the possibility of introducing a dis-
crete Kalman filter (Welch and Bishop, 2002) for the cali-
bration update phase. This is equivalent to a recursive pa-
rameter estimation process. To prevent a numerical over-
flow and the solution to bite, amemory lengthtermk can
be introduced, which controls the amount of memory used
for the actual solution. Withk = 0.9 for instance, 90 % of
the past observations will be used at the present time. Af-
ter every evaluation step the normal equation matrix, the
right-hand-side vector, the sum of squared residuals and
the number of conditions have to be updated. The latter
becomes real-valued which is as yet practically irrelevant.
The parameterk may not affect the unknown object heights
Ht as this parameter can vary from scene to scene.

4 EXPERIMENTAL RESULTS

4.1 Observations and Reference Calibration

Observations. For the evaluation of the approach an im-
age of a lecture room was recorded, showing a seating ar-
rangement of chairs of indentical heights (cf. fig. 3). The
camera used has an image format of960×1280 picture el-
ements. The image measurement of the foot points of the
chair legs and the top points of the chair backs was done
by an operator.

Reference Calibration. For the evaluation of the ap-
proach a reference calibration has been carried out for the
intrinsic camera parameters as well as for the exterior ori-
entation.

After the recording of the image a calibration field has im-
mediately been captured on location. The intrinsic param-
eters are then taken from a bundle adjustment. Table 1
summarizes the results of the parameter estimation for the
intrinsic parameters.

For the determination of the exterior camera orientation the
image points representing the corners of the tables have
been measured. Together with the world coordinates of
the corresponding points 0.74 m above the ground plane

Figure 3: shows the observed corresponding foot and head
points as well as the estimated horizon line, its point of
gravity and its hyperbolic error band (3σ intervals).

and the interior orientation given in table 1 a spatial resec-
tion has been accomplished assuming a standard deviation
of 0.02 m for the object coordinates and 2 pel for the im-
ages coordinates. From the estimated matrix for the rota-
tion from the object to the camera coordinate system the
roll and pitch angle result from (1) and(2). The estimated
accuracies result from error propagation and are listed in
table 2. The estimated height of the camera above ground
has been verified with the help of a measuring tape.

parameter estimation estim. std. dev.
principal dist.c 1328.86 pel 2.577 pel
scale factorm 0.9962 3.377·10−4

principal pt.∆x′0 -1.35 pel 1.458 pel
principal pt.∆y′0 -4.90 pel 1.389 pel

Table 1: summarizes the results from the intrinsic camera
calibration with a test field.

parameter estimation estim. std. dev.
pitch angleα 31.2324 deg 0.4479 deg
roll angleγ 0.4847 deg 0.5341 deg
camera positionX 3.0611 m 0.0961 m
camera positionY -2.2095 m 0.0397 m
camera heightZ 2.5583 m 0.0830 m

Table 2: summarizes the results of the exterior reference
calibration.

4.2 Calibration Results

A height of H = 0.77 m have been determined for the
chairs in the scene. The results of the direct solution (12)
and of the constrained advancement with (13) are summa-
rized in table 3.

For the following calibrations prior information has to be
used in order to introduce metric information. For the



parameter direct sol. constrained
principal dist.c 1157.8 pel pel 1160.5 pel
pitch angleα +29.99 deg +30.01 deg
roll angleγ -2.52 deg +0.08 deg
camera heightZ 2.49 m 2.49 m

Table 3: shows the results of the direct solution and its
constrained add-on.

height of the chairsH = 0.77 m, σH = 0.02 m has
been introduced. Table 4 summarizes the results of the
initial calibration with a redundancy of 38. The pro-
cess converged after four iterations. The estimated factor
σ̂0 = 3.75 lies in the expected magnitude for the precisions
of the image points. Figure 3 shows the results qualitative.
Drawn in the image is the estimated horizon line with its
hyperbolic error band. The position and orientation of the
horizon line can be easily checked by visual inspection of
the vanishing lines.

parameter estim. est. std. dev.
principal dist.c 1196.8 pel 32.3 pel
pitch angleα +29.37 deg 0.48 deg
roll angleγ -1.96 deg 0.37 deg
camera heightZ 2.53 m 0.05 m

Table 4: shows the results of the initial calibration.

4.3 Object Measurement

The observed and measured chair legs are illustrated in
fig. 4 in an upright projection, together with the projection
center, the footprint of the principal point and the projec-
tion of an image raster. The positions and heights of new,
unknown objects can be determined by (8) and (9).
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Figure 4: shows the footprints of a image raster and the
positions (×) of the chair legs on the ground plane.

5 CONCLUSIONS AND OUTLOOK

Conclusions. An easy camera calibration procedure has
been presented for the observation of objects of equal
heights on a ground plane. The procedure uses a minimal
parametrization for the camera itself and its exterior orien-
tation. Few efforts are associated with the installation; the
foot and head points of the objects serve as observations.
After an initialization phase with a first scene the approach

allows within the continuous operation a parameter check
and update if necessary. For the calibration results the sin-
gle parameter values are less important than the specific
parameter combination; the change of one parameter can
to some degree be compensated by the others. Due to the
sequential build-up of the normal equations, the demand
of storage space is minimal. For the set-up of the camera
system a pitch angle> 20◦ and a large aperture angle (or
small principal distance) are advisable. Otherwise prior
information has be be introduced to cope with the weak
geometric configuration. The prior information guarantees
but also dominates the solution. The height of the camera
should be measured wherever possible in order to impose
more geometric constraints onto the solution.

Outlook. In order to eliminate the influence of gross ob-
servational errors, a robust estimation is desirable. Fur-
thermore, the integration of other easily available measure-
ments — such as distances in the object space — is advan-
tageous, depending on the precise location to be recorded.
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