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ABSTRACT:

This paper presents an approach involving linear features for pose estimation. Here we are interesting in surveys mixing image and
laser scanning, for metrological applications. Since data need to be registered with the best accuracy, we are faced to a 2D-3D pose
estimation problem. In most cases, scenes contain numerous segments, which are good orientation clues. We use these segments to
find pose. Therefore, targets are less prevalent for location and orientation estimation purpose. This means less field operations during
data acquisition. Since some scenes with very few straight lines can leave insufficient spatial constraints, we reintroduce points. We can
deal with feature points to reinforce the system. Then, the algorithm simultaneously minimizes an energy function managing distances
between 3D points projection in images and image points, and distances on segments ends. Precise determination of primitives in 2D
and 3D data leads to fine orientation. Using subpixelar regression after an edge detection gives high-quality estimates for 2D segments.
In point clouds, 3D segments come from plane intersection. We discuss relative influence of features through uncertainty assessment.

1 INTRODUCTION

1.1 Context

Our research study deals with 3D reconstruction of terrestrial
scenes such as cultural heritage main buildings or industrial envi-
ronments. Combining laser data with image is supposed to ease
and automate surface reconstruction. We are betting on geomet-
rical complementarity of such heterogeneous data. Hence, our
goal is to reach a very precise orientation of data sets so as to
perform parallel segmentation of both data. We are presenting
here our work towards image pose estimation relative to a point
cloud involving metric distances between segments and between
points.

For many laser scanner systems nowadays available, a digital
video camera is interdependent with the scanner body. Thus, cal-
ibration is carried out only once (maybe regularly, if needed).
Yet, some of these cameras have got low resolution that gives
poor geometrical information and poor texture for final model.
Furthermore, ratio between image resolution and scan resolution
depends only on scan resolution. With a free camera, one can
choose higher image resolution than scan resolution, without al-
tering scan resolution. Moreover, it allows to take pictures from
different points of view, so to handle occlusions, by means of
convergent photogrammetry. We are also putting ourselves in this
way in a general context. Finally, this frame enables exact model
overlay, with high resolution image.

1.2 Related work

Many solutions have been studied in the pose estimation frame-
work from 2D-3D correspondences. Most of the methods coming
from the photogrammetry community use point matches. There
are direct solutions using three, four or six points (Wang and Jep-
son, 1994). More accurate results, when data present noise, come
from least-square resolution with a larger points set. Even in
computer vision, points correspondence remains the most com-
mon pose estimation technique (Haralick et al., 1994). In some
cases, fundamental matrix estimate drives to both intern and ex-
tern parameters compute. Thus, resolution needs more points,
minimum seven, eight for Hartley’s algorithm (Hartley, 1997).
One main problem with fundamental matrix estimate comes from
interdependence between intern and extern parameters. If camera
calibration is available, essential matrix estimate provides bet-
ter results. Here, we are considering rigid body digital cameras
which intern parameters are known and computed indepen-
dently. Focal length, principal points and radial distortion are
determined precisely by a calibration procedure on a target field.

As it has been pointed formerly in (Habib, 1999) where one can
find an overview of previous works about pose estimation, man-
made environments are rich in linear features. These features can
be found often on planar intersections. Earlier works (Dhome et
al., 1989) used three lines in the image corresponding to three
ridge lines on the object. (Hanek et al., 1999) have shown that
better results come from exploiting segments ends points rather
than lines. Other approaches (Van den Heuvel, 1999) use geomet-
ric constraints between features. Kumar and Hanson (Kumar and
Hanson, 1994) have studied two main models : one estimates dis-
tances between 3D segment ends projected on image plane and a
line extracted from image ; another minimizes distances between
2D segment ends and the line built on 3D segment ends projec-
tion into image plane. Second model performs better, regarding
to final solution. We have chosen this approach in this field ap-
plication case, in a (photogram)metric context.

1.3 Our approach

In this framework, segments matching avoids using targets. Till
now, we have been managing surveys with spheres and targets for
points correspondences. To get targets’ center fine position, high
resolution scan is needed, operation which is time-consuming :
much of field work is spent in scanning particular points which
may not be useful in reconstruction...

Moreover, targets can not always be spread correctly all over the
imaged overlaps and thus leads to imprecise geometrical deter-
mination. Thus identifying and matching scene invariants in the
data acquired is a real trend for automating and increasing the
quality of surveys through the quality of pose.

Although using segments reduces time waste, we are sometimes
faced with weak configurations where few segments are present
in the scene. Such scenes can leave indetermination because of
several straight lines in the same plane or in the same direction.
When scanning a facade, many segments lie on the same plane,
and most of them are parallel (vertical or horizontal). For a goth-
ical frontage(our example), they are mostly vertical. In other
cases, there are too few segments to highlight faults. For instance,
with industrial environments made of pipes, perspective avoids
matching on cylinders edges. To overcome these difficulties, we
have chosen to reintroduce points, but without extra field oper-
ation work (sphere or target high resolution scan). We can then
choose feature points where constraints coming from segments
are too weak.



2 DATA SETS

On the one side, we are dealing with a point cloud coming from
one station scan. Scan is performed by constant angle ray tilt-
ing in a vertical plane, followed by rotation around vertical axis.
Range measures present noise that can be reduced by multiple-
shots. Points coordinates are defined in the scanner reference
system.

On the other side, we have got a digital image and its optical
model, in an image coordinate system centered on camera point
of view. It is a conic projection where distortion is corrected.
Camera devices record 5 Mpixels color image, coded on 12 bits.

Figure 1: Point cloud, digital image (details).

3 SYSTEM FORMALIZATION

In this section, we develop the explicit system where orientation
and location unknowns are considered. It is a bundle adjustment
frame, where we look for translation and rotation between a ter-
rain reference system (the scanner one) and an image system.

3.1 Distance between segments.

Let us project the ends of a 3D segment into the image plane.~p1

and~p2 are the image projections of the segments ends. Expressed
in polar coordinates, in the image coordinate system, the straight
line passing through these points is defined by :

x · cos θ + y · sin θ = ρ (1)

with :

cos θ =
(p2 − p1)y

‖−−→p1p2‖ (2)

sin θ =
(p1 − p2)x

‖−−→p1p2‖ (3)

ρ =
p1xp2y − p2xp1y

‖−−→p1p2‖ (4)

The projection of a 3D point~P into image is given by :

px = f
R(~P − ~T )x

R(~P − ~T )z

py = f
R(~P − ~T )y

R(~P − ~T )z

(5)

where :

• R rotation between world system and image system

• ~T translation between world system and image system

• f the focal length.

Note ~P1, ~P2 the 3D segment ends in world coordinates. Con-
sidering a vector~n lying into the plane which contains the 3D

Figure 2: Distance between segments.

segment and the image projection center, and orthogonal to the
image plane, such as :

~n = R( ~P2 − ~T ) ∧ R( ~P1 − ~T ) (6)

Replacing equation (5) into relations (2), (3) and (4) gives :

cos θ =
~nx

‖~n‖ sin θ =
~ny

‖~n‖ ρ = −f
~nz

‖~n‖ (7)

A 2D segments end named~p = (Ix, Iy, f) lies on the projected
line ; this yields :

~n · ~p
‖~n‖ = 0 (8)

Left term in equation (8) is the distance between the ends of the
segment detected in images and the line supported by the 3D seg-
ment projection. This distance is associated as residual for each
segment.

3.2 Distance between points

On the same scheme, one can define distance between two
matched points : reaching least-square distance between the im-
age point and the 3D point projection amounts to minimize the
sum of squared distances on the X-axis and on the Y-axis.

Expected distance annulation along X-axis gives :

Ix − f
R(~P − ~T )x

R(~P − ~T )z

= 0 (9)

Along Y-axis :

Iy − f
R(~P − ~T )y

R(~P − ~T )z

= 0 (10)

3.3 Global energy function

For segments, energy function is derived from (4) :

E1 =

N1∑

l=1

(
~nl · ~pl

‖~nl‖
)2

(11)

E1 =

N1∑

l=1

(
1

‖~nl‖
T R~nl(~P2 − ~T ) ∧ (~P1 − ~T )

)2

(12)



For points, corresponding energy is :

E2 =

N2∑
p=1

(
Ix − f

R(~Pp − ~T )x

R(~Pp − ~T )z

)2

+

(
Iy − f

R(~Pp − ~T )y

R(~Pp − ~T )z

)2

(13)

Finally, expression to minimize will be :

E =
1

σ2
1

E1 +
1

σ2
2

E2 (14)

σ1 andσ2 express expected standard deviation on estimation of
segments and points. They balance relative importance between
points and segments during compensation.

4 SYSTEM RESOLUTION

It is quite clear that equations (8), (9) and (10) are non-linear
with respect to R and T. This entails linearization , which is done
with a formal calculator, and iterative estimation. At each itera-
tion stage, global energyE in equation 14 is minimized through
Gauss-Newton algorithm.

Equation (5) is applied to each 2D segment end. So, one matching
gives two constraints. To solve the system for R and T, e.g. seven
unknowns( we use quaternion representation for rotation), with-
out points, four segments minimum are necessary. Of course, in
most cases, four segments are not enough : they could be copla-
nar or/and parallel.

4.1 Approximate solution

Classically, resolution by linearization requires to find an ini-
tial estimate close to function global minimum. Approximate
solution is achieved by space resection on three or more well-
distributed matched points.

Visualizing clouds under an image topology The perception
of objects structures and limits from point cloud is difficult and
not very appropriate in a 3D viewer, even if the operator is well
trained. A way of representing the 3D points acquired from one
laser scanner station is an image topology. Indeed, scans are an-
gular resolution constant. This representation has major advan-
tages, e.g. ability of visualization of huge clouds, but the one
among all is the easiness of interpretation.

Image topology is recovered from scan angular resolution : from
points in Cartesian coordinates, we need to go to spherical co-
ordinates to produce a range image. We estimate scan angular
resolution looking for couples of consecutive points.

Then, we can plot points into this image, where each pixel cor-
responds to a 3D point. As for each scanned point, we have got
on top of coordinates, retro-diffusion information (coming from
the laser beam signal) and radiometry (coming from the low res-
olution camera), we can create clearer images (see Figure 3) and
select points into these images. From geometry, we can also com-
pute images more understandable, such as normal image, shaded
range image or distance to principal plane. Small 3D details are
perfectly highlighted in the range image by shading the surface.
The retro-diffusion image also provides complementary very de-
tailed information. We can then switch over different layers to
choose point position.

Accuracy of points plotted into these images obviously depend on
scan resolution. As system converges well from initial estimate
rather far from final solution (Kumar and Hanson, 1994), the
problem of finding approximate solution is not so crucial. Nev-
ertheless, initial solution remains important for matching reasons.

Figure 3: Laser data in image topology : retro-diffusion image.

4.2 Points matching

We carry out points matches by correlation between retro-
diffusion image and intensity image. Since we have got approx-
imate solution, we can project laser points into image and com-
pute a new image holding radiometry RGB mean value. We call
it intensity image. A pixel from intensity image points at 3D co-
ordinates. The same pixel in retro-diffusion image points at the
same 3D coordinates.

Feature points extraction in intensity image is then achieved using
Harris detector (Harris and Stephens, 1988). Generally, far too
much corners are extracted. Since for some scenes most of the
”strongest” corners are located in the same area, this scheme is
refined further to ensure that in every part of the image a sufficient
number of features is found. To achieve this, image is divided into
a regular grid. For each area, the corner with the maximum value
is selected. The number of areas can be tuned to yield the desired
number of features.

Assuming that homologous point should lie near from its
counterpart in intensity image, because of the fine approximate
solution calculated, we look at it in retro-diffusion image in
a window centered on the Harris’ point. Correlation value is
calculated for each window’s pixel. The maximum correlation
score position is considered as the matched point. To get a better
estimate of this position, interpolation in the correlation window
would bring matched point’s subpixelar position.

Figure 4: Gradient on digital and retro-diffusion image (right).



Since radiometry variations in two images cannot be compared,
because of the difference between captors responses, correlation
is done in gradient images (see Figure 4). Correlation scores on
15x15 windows present various aspects (see Figure 5). Some
edges and multiple peaks appear. They should be filtered to keep
only unique sharp peaks.

Figure 5: Correlation windows on gradient images on Harris
edges.

This approach is fully automatic and leads to comparable results
to interactive points matching.

4.3 Segments extraction

3D segments : Segments extraction in point cloud is fulfilled
by planes intersection. Planes are extracted using region growing
in the range image. Seeds are chosen by click into the retro-
diffusion image overlayed by range image. They could also be
chosen at random, or on a regular grid, on the same scheme as
for points. Single value decomposition on the 3D points set leads
to plane’s parameters. For the growing process, an aggregation
criterion is put on distance to the plane, which removes outliers.
This threshold t is set according to the noise of measure(t = 3σ).
Noise on data is integrated so on by robust estimate on numerous
points.

2D segments : We are using Canny-Deriche edge detector (De-
riche, 1987). So, we are handling the alpha parameter and a
compromise between localization and sensitivity to noise. Then,
comes a hysteresis threshold, chaining and pixel chains polygo-
nisation by split and merge algorithm. At last, to increase edge
localization quality, a subpixelar estimate on the pixel chains is
performed by least-square fitting.

Figure 6: Repartition of the segments.

At the moment, segments matching is interactive. Automation
should be easy, since we can predict segments’ position in image
with a simple projection from approximate pose estimate.

5 STATISTICS

The approach presented in this paper uses rigorous least-squares
adjustment at three stages : edge fitting, plane fitting and global
system minimization. For each case, residuals are normalized.
This representation allows error propagation and thus, assessment
of the quality of pose results.

The covariance matrix on pose parameters results from propa-
gation of the covariance matrix of the observations, which can
be determined by propagation of the variance of the measures.
Formalization of error propagation for linear and non-linear sys-
tems is described by Hartley and Zisserman (Hartley and Zisser-
man, 2000). For more details about uncertainty propagation, see
(Förstner, 2004) for single view geometry and (Jung and Boldo,
2004), where the same mathematical model is studied for bundle
adjustment. Therefore, error propagation has been used at three
stages of our study.

5.1 Primitives consistency.

Error propagation needs prior estimation of error for observations
on each primitive.

Points

• Two cases have been tested to find 2D points.

– Points are plotted into digital images. Here, we con-
sider that accuracy is ranging about 1 pixel.

– Points are extracted by Harris detector. Since detec-
tion is followed by correlation, this method provides
subpixelar accuracy on localization.

If targets have been placed into the scene, their center would
be recovered with a precision from 0.1 to 0.01 pixel (de-
pending on the image quality).

• 3D points have direct relation with laser scanner measure.
We are using scanner with range measure standard deviation
of 6 mm. As we perform multiple-shots measures, standard
deviation is reduced :σn = σ1/

√
(n) For instance, we use

four measures for each points. This leads toσ4 = 3 mm.
In first approximation, we consider homogeneous standard
deviation around point.

Segments As linear features come from least-square estimate,
we can predict their respective variance from the variance of data
measures.

• 2D segments are fitted on edge points detected by the
Canny-Deriche operator. The line parameters are re-
trieved by regression (Taillandier and Deriche, 2002). The
variance-covariance matrix of these parameters are esti-
mated from variance on pixels, which depends on signal to
noise ratio in image.

• 3D Segments Assuming that range measures follow a Gaus-
sian law, the forward error propagation frame enables to cal-
culate the variance-covariance matrix of the parameters of
the normal to the plane. We may then spread variance to
cross product, considering the Jacobian matrix of the appli-
cation. This part of our work is still under development.

5.2 Pose quality evaluation

In this paragraph, uncertainty on location and orientation has
been investigated for pose analysis.

Experiments have been performed on sets of 15 segments and 15
points. 20 random sampling/trials of n segments amongst 15 have
been proceeded. We have also randomly sampled 3 and 12 points
amongst 15 points. Configuration with 3 points corresponds to
the minimum number of points needed for space resection.



Mean values have been computed on three outputs :

• residuals on points (see Figure 7)

• residuals on segments (see Figure 8)

• main axis of orientation error ellipsoid (see Figure 9)

We do not present location error ellipsoid parameters, since bad
spatial configurations, especially occurring with few segments
and points, returned wrong values. With few observations, our
approximation which enables error propagation is not valid any-
more.

Mean residuals on points goes down to less than 0.4 pixel. Resid-
uals on segments are also satisfactory. There is still a weighting
between primitives issue, which is not yet overcome.

Figure 7: Image residuals on points.

Figure 8: Image residuals on segments.

First results show that using few segments (less than 6) is quite
dangerous (it is a little bit obvious). Much interesting is the fact
that combining 3 points with segments seems to be quite equiva-
lent to taking 12 points with segments (even if the scale represen-
tation in y axis is good).

Some results are presented through figure (10) and (11). Here,
each 3D point is drawn with its corresponding image radiometry.
These 3D views highlight pose accuracy, especially on radiomet-
ric discontinuities.

Figure 9: Relative effects of features on orientation estimate.

Figure 10: Results on the Vincennes castle chapel. Here, we show
the point cloud, where each point has been assigned its image
corresponding RGB pixel.



Figure 11: Results (detail).

6 CONCLUSION

We have proposed an approach for pose estimation using points
and segments features for a special case : range and digital im-
age recording. Points allow to constrain geometry, filling gaps
in region of space where there are too few segments. Thus, even
though segments are geometrically very constraining, to ensure
a high quality of the geometrical determination, points and seg-
ments have both to be considered. It has been shown that very
few observations can bring reasonable results.

Segments should be used with cautiousness. Indeed, rectilinear
features are straight to a certain extent. The longer the segments
the higher the risk of reality being far from straightness hypothe-
ses. Anyway a very easy solution to this problem is to split linear
features in smaller parts.

Error propagation will enable to predict if an a priori expected ac-
curacy on pose estimation is reached. Error will be also estimated
on primitives to qualify 3D reconstruction.

This approach can be easily extended to solve 3D to 3D registra-
tion, simulating image projection from station point of view. It
has already been extended to aerial and terrestrial bundle adjust-
ment (Jung and Boldo, 2004).

Further evaluations should be carried out. First of all, we should
look to ground control primitives which do not play any role dur-
ing compensation. Besides, we will compare more precisely re-
sults provided by correlation points. We would like also to exam-
ine distortions in scanner data.

Further improvements should be done towards automation. Ap-
proximate solution could be recovered automatically by vanish-
ing points detection in the image (Van den Heuvel, 1998) and by
finding horizontal and vertical directions in points cloud.

To improve reliability of adjustment, residuals should be com-
pared to a threshold at each iteration. This threshold should be
tuned thanks to expected precision of pose estimation, in relation
with primitives variance. Through process, segments and points
would be disabled or activated, depending on their residuals.

Finally, further extensions should pay attention for spatial repar-
tition of matched primitives. Spatial repartition should take into
account the fact that points and segments have not the same geo-
metric influence on the global system.
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