
MATCHING CARTOGRAPHIC OBJECTS IN SPATIAL DATABASES

Daniela Mantel, Udo Lipeck

Database Group, Information Systems Institute, University of Hannover, Germany

KEY WORDS: Federated Databases, Matching Algorithms, Integration, Resolution

ABSTRACT:

Nowadays cartographic objects of different resolutions are hold in different coexisting databases. This implies an extensive amount
of work for updating an object in all resolutions. One way to reduce this is to build a multi-resolution database which holds and links
different representations of the real-world objects and allows to automatically pass updates to all linked representations (requiring
algorithms for propagation of updates). In order to ensure the autonomy of applications on the local databases, we propose the
architecture of a federated database for such a multi-resolution database.

A main requirement for setting up a multi-resolution database is to "identify" the different representations of real-world objects.
Therefore we propose a multistage procedure as follows:

- Semantic classification: Identify the sets of objects to compare with one another
- Compute geometrically possible matchings within these classes
- Postprocessing: Automatically select correct matchings from the set of possible matchings by applying prepared rules
- Manual select correct matchings for the remaining possible matchings, which were not automatically detected as correct or

incorrect

We present a framework for the needed semantic classification, a concept for rule-based selection as well as an algorithm to compute
possible matchings.

We have enhanced the formerly known buffer growing algorithm for computation of possible matchings and implemented it in
PL/SQL for use in spatial databases based on Oracle9i (with the spatial data cartridge). The enclosing object matching process is
supported by a graphical user interface utilizing stored database procedures for the mentioned steps and rules.

KURZFASSUNG:

Kartographische Objekte verschiedener Maßstäbe werden in unterschiedlichen voneinander unabhängigen Datenbanken gehalten.
Dies führt zu einem hohen Aufwand in der Fortführung. Um diesen Aufwand zu reduzieren, wird die automatische Übertragung von
Veränderungen von einem Maßstab in den nächsten in Betracht gezogen. Voraussetzung dafür ist, dass die Datenbestände
miteinander verknüpft sind. Dies kann in einer Multi-Resolution-Database (MRDB) abgebildet werden, die sowohl die
unterschiedlichen Datenbestände als auch die Verknüpfungen zwischen den Objekten, die das gleiche Real-Welt-Objekt
repräsentieren, speichert. Um hier die Autonomie der zugrunde liegenden Datenbestände zu gewährleisten, schlagen wir als
Architektur einer solchen MRDB eine föderierte Datenbank vor.

Beim Aufbau der MRDB ist die Objektidentifikation, das heißt das Bestimmen der Objektmengen, die jeweils das gleiche Real-Welt
Objekt beschreiben, ein Hauptproblem. Hierfür kann ein schrittweises Vorgehen gewählt werden:

- Semantische Klassifikation, das heißt Bestimmung der jeweils zu vergleichenden Objektmengen
- Geometrische Ermittlung von möglichen Zuordnungen innerhalb dieser Mengen
- Regelbasierte Auswahl von richtigen Zuordnungen aus der Menge der möglichen Zuordnungen
- Manuelle Auswahl für die möglichen Zuordnungen, die nicht automatisch bestätigt oder verworfen werden konnten.

In diesem Artikel stellen wir ein Vorgehen für die benötigte semantische Klassifikation sowie einen Algorithmus für die Ermittlung
der möglichen Zuordnungen und ein Konzept für die regelbasierte Auswahl vor.

Wir haben den bekannten Buffer Growing Algorithmus zur Ermittlung möglicher Zuordnungen auf symmetrische Matching-
Situationen und auf die mengenorientierte Verarbeitung in einer Datenbank angepasst und ihn in PL/SQL zur Verwendung in Oracle
9i (mit räumlicher Erweiterung) implementiert. Der gesamte Prozess der Objektidentifikation wird durch eine graphische
Benutzeroberfläche unterstützt, die mit Prozeduren der Datenbank arbeitet.

1. INTRODUCTION

1.1 Motivation

For many cartographic datamodels there are multiple databases
each representing part of earths surface in a specified resolution.
For example for the german ATKIS-model there exist
independently mapped datasets for the resolutions 1:25.000,
1:250.000 and 1:1.000.000. The necessity to update these
datasets causes an extensive amount of work, because every
single dataset has to be adjusted manually.

One way to reduce this is to automate part of the work, that is to
update only one resolution, the finest, and then propagate the
changes to all other resolutions. A prerequisite for this
procedure is, that the access from one object to all
corresponding representations of the same real world object is
possible. A concept for such a data structure is the multi-
resolution database.

Because cartographic objects often lack an explicit (and to the
represented real-world object related) identifier, a main issue in
the process of setting up a multi-resolution database is to
identify objects which represent the same real-world object.

This paper describes an architecture for a multi-resolution
database, that is based on the paradigm for federated databases,
and on a framework for the computation of object matchings.

1.2 Related Work

In (Walter, 1997) the buffer growing algorithm which we use
for parts of the geometric matching is described. That paper also
makes a suggestion for a selection process based on relational
quality of the set of chosen matchings and develops an
algorithm to find the “best” set of matchings.

(Sester et al., 1999) gives an overview of different approaches
for finding links between representations of real world objects.

(Kleiner et al., 2001) develops a system for the storage of
geographic objects in object-relational databases, which we use
for the component databases to be integrated in the multi-
resolution database.

(Conrad, 1997) gives an overview of the paradigm of federated
databases and methods to generate it. In particular different
methods for conflict resolution during integration of database
schemas are described.

2. STRUCTURE OF THE MULTI-RESOLUTION
DATABASE

2.1 Architecture and system structure

To maintain the cartographic quality of the different datasets, it
is useful to keep the original databases and separate the needed
integration from them. A reference architecture for such
purposes is the federated database (see Conrad, 1997). This
architecture guarantees a maximum of autonomy for the so-
called component databases, i. e. the databases to be integrated,
while enabling an integrated access to them for global
applications.

The principle structure of such an architecture is shown in
figure 1: The (unchanged) component databases still support
their local applications. They are integrated via a federation
layer, which offers the global access to them. The federation
layer maintains the links between correponding objects and
holds the meta data for the access and for processes, for
example for matching and generalization. Therefore the
database for the federation layer consists of the mentioned parts
as shown in figure 2.

2.2 Link structure

Real world objects often are represented as combinations of
more than one database object. For example street sections
between crossings can be broken into multiple segments with
respect to some attribute, say name of the street or their width.
If these criteria are different in the datasets to be integrated,
because of different datamodels or differing tresholds for data
capture or any other reason, the real world object may be
represented in sets of database objects, which cannot be
matched one by one. In figure 5 such a situation is shown. The
street section is represented by three objects in database A and
two objects in database B and there is no correspondence
between a pair of objects from database A and database B.

Therefore a structure for storing matchings has to deal with
matchings of cardinality many-to-many as well as cardinalities
one-to-one and one-to-many. Figure 3 shows a schema that

Registration

Linkstructure Process Meta Data

Semantic
Classification

Figure 2: The integration database

Figure 1: Architecture of a federated database system

satisfies this requirement. The sets of objects representing a
real-world object are modeled as aggregated objects, which are
associated via “Matching” to the aggregated object representing
the same real world object in the database to be linked. To
improve the performance of spatial queries the aggregated
geometry for each aggregated object is stored. The topological
relations between the single objects are modeled in the class
“Relation”.

3. MATCHING PROCESS

To find the links between corresponding objects representing
the same real world object we propose a stepwise process as
follows. First the input sets for the geometric algorithms should
be as small as possible without losing quality of results.
Therefore the first step is to divide the object sets into sets of
comparable object types, that is to accomplish a semantic
classification on the object sets in the component databases. The
details of this step are described in paragraph 3.1.

The next step is to find the geometrically possible matchings,
that is the pairs of object sets which are geometrically likely to
represent the same real world object, within the comparable
object types. An algorithm for this purpose is detailed in
paragraph 3.2.

The mentioned algorithm computes more than just the “correct”
links, so that subsets of “confirmed” (which means correct) and
“discarded” matchings need to be selected from the result set.
This should be widely automated, as suggested in paragraph
3.3.

After the automatic selection procedures there will remain some
matchings, which could not automatically be confirmed or
discarded. For such cases of doubt an interface is needed which
provides an operator with tools to manually handle this set. The
requirements for this interface are presented in paragraph 3.3.3.

3.1 Semantic classification

To reduce the necessary amount of computations filtering
should be done which defines the input for the following
matching algorithm. Such a filter should separate all object
classes which can never represent the same real-world object,
but must not exclude any possible n:m matching. Consider for
example the two database schemas in figure 4 a). In database A
traffic routes are modelled in the classes highway, street and
alley. The differentiation between streets and alleys is made by
the importance of the roads for transit traffic. In database B
traffic routes are modeled in the classes street and alley,
whereas the differentiation is made by means of paving, that is
streets have tramac, alleys not. An algorithm for determination

of possible matchings should obviously compare both streets
and highways of database A with the streets of database B as
well as the alleys of database A with the alleys of database B.
Furthermore the comparison must be drawn between the streets
of database A and the alleys of database B. In figure 4 b) all
direct comparisons are shown as associations between the
classes.

Beyond this, if a situation like in figure 5 occurs on the object
level, one cannot set aside the indirect associations (shown with
dashed lines in figure 4 b)) between highways in database A
and alleys in database B. Therefore the filter should in the first
step only separate such classes, that are not even indirectly
associated with one another, e. g. Such aggregated streets from
(maybe aggregated) railroad lines. We call the result of this step
coarse class matching, the considered object sets in the
databases coarse compare sets.

In the next step, it has to be examined, wether there is an
attribute in both coarse compare sets dividing these sets into
disjoint comparable sets, in our example say an attribute which
says if the traffic route is inside an urban area or out of town.
The classes within the coarse compare sets can be divided into
smaller, disjoint sets. And the corresponding coarse compare
sets and the coarse class matching can be divided by direct
derivation from these without the risk to lose an essential input
for the matching algorithm. We call such characterizing
attributes “partitioning attributes”. When all partitioning
attributes are applied, the resulting sets are called (fine) class
matching and compare sets respectively. The subsets of classes
forming the compare sets are called object types.

The description of the semantic classification is stored in the
integration database according to the schema in figure 6.

Figure 5

highway street alley

street alley
Database B:

Database A:

Figure 3: Link structure

Aggregated Object A

Objects A Objects B

Aggregated Object B

Relation

Matching

0..1

1

1 1

1..*

1

0..1

1 1

1..*

* *

Figure 4: Semantically corresponding
classes

Highway

Street

Alley
Alley

Street

Database A

Highway

Street

Alley
Alley

Street

b)

3.2 Buffer growing

An algorithm to compute possible matchings between line-
objects is "buffer growing" (see Walter, 1997). It acts on the
assumption that representations of the same real-world object
have similar locations (after possibly necessary coordinate
transformations). In the cited paper the algorithm is described in
a purely iterative way prioritising one of the two datasets that
should be matched. We have made it symmetric for use with
respect to two datasets on a par, and we have adapted it for the
more set oriented process in a database system.

The algorithm executes as follows: A buffer is built around
every object, and all objects of the other dataset which are
totally inside this buffer as well as all geometrically possible
aggregations of them are identified as possible matching
partners as shown in figure 7 b) for the objects b0 and b1. If two

buffers are intersecting with the same object, like a1 intersecting
the buffers around b0 and b1 in our example, the corresponding
objects of the buffers are aggregated (if possible) and the
aggregated object is treated like a single object, that is, another
buffer is built around this new object to find possible matching
partners, for example in figure 7 c) the matchings containing
object b. To avoid duplicate aggregated objects, new
aggregations are only built, if they contain the intersecting
object. Matchings, which are just extensions of another
matching (e. g. b0b1 � a0 is an extension of b0 � a0 in our
example) are not stored as a possible matching.

In this way the algorithm computes all possible matchings of
cardinalities one-to-one, one-to-many and many-to-many. Of
course, it depends on parameters like the buffer distance which
have to be tuned for the datasets at hands.

3.3 Selection

The set of possible matchings does not only contain correct
matchings, but some incorrect suggestions too. Therefore the
elements of the set have to be subdivided into confirmed and
discarded matchings as mentioned above.

3.3.1 Conflicts

If the same object is part of two or more aggregated objects
involved in different possible matchings, no two of these
matchings can be simultaneously correct. The matchings are
said to be in conflict with one another. Therefore, if a possible
matching is confirmed, all possible matchings, that are
conflicting with it, have to be discarded.

On the other hand, if a possible matching is "good enough", that
is, it fulfills all quality criteria (see below), and is not
conflicting with any other still possible matching, it can be
confirmed.

3.3.2 Automatic Selection

Automatic selection of matchings, that is confirming or
discarding of them, can be controled by rules. A special type of
rules are rules for checking quality criteria. Quality criteria are
measures for the resemblance of a single aspect of the matched
objects, e. g. length of matched lines, similarity of names etc..

There are different approaches to use quality criteria for
automatic selection of correct matchings.

One can compute all the measures of each criterion for all
possible matchings and then compute the "best combination" of
matching, that is the combination with the highest sum of
measures. This problem is equivalent to searching the best
complete subgraph (clique) in a graph with weighted vertices.

Another approach is to define a treshold value and discard all
matchings, with quality measure below the treshold. After
discarding, all remaining possible matchings, which are not in
conflict with any other any more, can be confirmed.

The latter approach can be refined to an iterative method, by
starting the selection with a high treshold value and then
decrease it stepwise until a minimum treshold value is reached.
In every step all matchings with quality measure below the
treshold are "temporarily" discarded and non-conflicting
matchings are confirmed. When confirming a matching, all

Figure 6: Schema for semantic integration

ObjectClass

ObjectType PartitioningAttribute

AttributeType

CompareSet

ClassMatching

Object DB A

Belongs
to

1..*

DB A DB B

Object DB A

Belongs
to

1..*

1

1

1 1
1

1 1

*

*
*

1..*

*

Figure 7: Buffer Growing

a0 a1 a2

b0 b1

Matchings:
 b0 � a0
 b1 � a2

Intersections:
 b0, a1
 b1, a1

a)

b)

Matchings:
 b = b0b1 � c = a0a1
 b = b0b1 � d = a1a2
 b = b0 b1 � a = a0a1a2

Intersections:

c)

temporarily discarded matchings, which are in conflict with it,
have to be definitely discarded.

For line objects this iterative approach leads to good results for
the criterion “similarity of length”, which means that a treshold
is defined for the maximum of the two quotients of the length.

3.3.3 Manual Selection

The automatic selection procedure leaves a set of possible
matchings which cannot automatically be confirmed or
discarded. These are, for example, pairs of matchings, which
hold the given set of quality tresholds and are in conflict with
each other. In such cases the decision for confirming or
discarding must be left to a human operator.

The operator must be provided with an interface, which helps
him making a decision. Therefore a graphical user interface is
needed, which shows the uncertain matchings in their context
and lets the user confirm or discard.

We have implemented an extension for the visualizer
GISVisual, which was formerly developed at our institute,
which provides the user with these features and an interface for
administration of the federated database. The interface provides
firstly a graphical user interface for capturing and changing the
needed meta data and parameters, for example for the semantic
classification. Then there is the possibility to register and
parameterize procedures for finding possible matchings (as an
alternative to the buffer growing) as well as for the selection
procedures. These are procedures implemented in PL/SQL.

For the manual selection the functions for marking pairs of
objects, in this context the matching pairs, and calling database
procedures on this pair, were implemented. The operator
therefore can choose one or more pairs and afterwards discard
or confirm them with respect to the conflict rules. If configured
by the operator, the process of confirmation of non-conflicting
matchings, will start after each manual confirmation.

4. FUTURE WORK

Now, that we have a framework for generating a multi-
resolution database and some methods to match line objects, we
are focussing on tuning the matching process and augmenting
the degree of automation in the selection process, which means
to experiment with different parameterizations for the existing
procedures as well as developing new procedures.

Another focus has to be set on the development of region
matching algorithm respectively the integration of exiisting
ones.

5. REFERENCES

Conrad, S., 1997. Föderierte Datenbanksysteme. Springer
Verlag, Berlin.

Devogele, T., Parent, C., Spaccapietra, S., 1998. On Spatial
Database Integration. International Journal of Geographical
Information Science, 12(4), pp. 335-352.

Kleiner, C., Lipeck, U.W., 2001. Enabling Geographic Data
with Object-Relational Databases. In: A. Heuer et al.,

Datenbanksysteme in Büro, Technik und Wissenschaft – 9. GI-
Fachtagung BTW 2001, Springer Verlag, Berlin, pp. 127-143.

Lipeck, U.W., Mantel, D., 2004. Datenbankgestütztes Matching
von Kartenobjekten. To appear in: Mitteilungen des
Bundesamtes für Kartographie und Geodäsie, Bundesamt für
Kartographie und Geodäsie, Frankfurt am Main.

Mantel, D., 2002. Konzeption eines Föderierungsdienstes für
geographische Datenbanken. Master Thesis, University of
Hannover, Germany.

Sester, M., Anders, K.-H., Walter, V., 1999. Linking Objects of
Different Spatial Datasets by Integration and Aggregation.
GeoInformatica, 2(4), pp. 335-358.

Sester, M., 2000. Maßstabsabhängige Darstellungen in
digitalen räumlichen Datenbeständen. Habilitation Thesis,
University of Stuttgart, Germany.

Tiedge M., Lipeck, U. and Mantel, D., 2004. Design of a
Database System for Linking Geoscientific Data.
Geotechnologien Science Report "Information Systems in Earth
Management", No. 4, Koordinierungsbüro Geotechnologien,
Potsdam, 2004, pp. 83-87.

Walter, V., 1997. Zuordnung von raumbezogenen Daten – am
Beispiel der Datenmodelle ATKIS und GDF. Ph.D. Thesis,
University of Stuttgart, Germany.

6. ACKNOWLEDGEMENTS

This work is funded by the German Federal Agency for
Cartography and Geodesy as part of the WiPKA (Wissens-
basierter Photogrammetrisch-Kartographischer Arbeitsplatz)
project and by the Federal Ministry for Education and Research
(BMBF) and the German Council (DFG) as part of the
Geotechnologien project under contract no. 30F0374A.

