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ABSTRACT:  
 
Digital surface representation from a set of three-dimensional samples is an important issue of computer graphics that has applications in 
different areas of study such as engineering, geology, geography, meteorology, medicine, etc. The digital model allows important 
information to be stored and analyzed without the necessity of working directly with the real surface. In addition, we can integrate 
products from digital terrain model (DTM) and other data in a geospatial information system (GIS) environment.  
The objective of this work is to model surfaces from a set of scattered three dimensional samples. The basic structure used to represent the 
surface is the triangulated irregular network (TIN). Another goal of the paper is evaluation of the quality of digital terrain models for 
representing spatial variation. This work presents stochastic methods for triangular surface fitting. 
One of the most popular stochastic models to represent curves and surfaces are based on fractal concept. A fractal is a geometrical or 
physical structure having an irregular or fragmented shape at all scales of measurement. In addition, a fractal is based on self-similarity 
concept indicating that each part of its structure is similar to the whole. 
Brownian motion is the most popular model used to perform fractal interpolations from a set of samples. 
The Fractional Brownian motion (FBM), derived from Brownian motion, can be used to simulate topographic surfaces. FBM provides a 
method of generating irregular, self-similar surfaces that resemble topography and that have a known fractional dimension. 
Fractal concept has been used for optimum sampling in generating a digital terrain model. Results of the research have shown that the 
method can be successfully used in DTM generation. In addition fractals allow us to create realistic surfaces in shorter time than with 
exact calculations. Another advantage of the fractal concept is the possibility of computing surfaces to arbitrary levels of detail without 
increasing size of the database. 
 

1. INTRODUCTION 
 

So far we have assumed that sharp boundaries or smooth shapes 
exist for real entities. This assumption reflects a map model or 
geometric bias rather than an appropriate model to represent 
nature. 
Smoothed curves and surfaces are subjects of Euclidean 
geometry and are adequate to represent artificial shapes like 
parts of mechanical and aeronautical projects, furniture, toys, 
etc. Natural objects like clouds, coastlines and mountains have 
irregular or fragmented features. 
These are better represented by the Fractal geometry that was 
first formalized by Mandelbrot (1982). 
Fractal geometry has enough capability to represent more 
adequately than Euclidean geometry real world entities that are 
not smoothly formed, as in the case with most natural objects. 
The word fractal implies properties as in fraction or fragmented. 
In essence fractal geometry has ideas of fragmentation and self-
similarity (Laurini and Thompson 2002). 
Even though objects may be rough or irregular, there is 
fragmented, they may at the same time have some similar 
semblance of shape or pattern when viewed from different 
distance. Self-similarity is symmetry across different scales; 
there are patterns within patterns. Or, as Mandelbort says, 
fractals are geometric shapes that are equally complex in their 
details as in their overall form (Mandelbrot 1982). 

To better understand this concept we describe steps for 
producing the geometrical shape of natural objects like 
snowflake. Suppose that we have a triangle. By dividing each 
side to three parts and replacing the middle part with two equal 
parts a polygon with twelve sides will be generated. By 
repeating the above stage for each side, at step two there are 
forthy-eight sides. At each step, the number of sides are 
multiplied by four. So for an initiator perimeter of length l, the 

perimeter becomes ( )N
l 3

4 which number evidently tends to 

infinity, although the area tends to a finite limit. The self-

similarity ratio is
3
1  . 

Therefore, fractal geometry has promise for some of the 
requirements of spatial information systems. Two-dimensional 
stochastic interpolations are useful for terrain modeling 
(Felgueiras and Goodchild 1995; Goodchild and Mark 1987). 
One dimensional application use of fractal concept is for 
coastlines (Cheng et al 2001) or boundaries of entire continents. 
Fractals may also be used for image error analysis (Kolibal and 
Monde 1998), assigning color palette (Cheng and Qingmou 



2002), and land cover classification of forest (Blanco and 
Garcia 1997).     
In this paper we use fractal for optimum sampling in generating 
a digital terrain model (DTM). 
 

2. CONCEPT OF FRACTAL DIMENSION  
 
Recent advances in the area of fractal geometry have allowed us 
to model natural objects dimensionality. For example, the 
length of a coastline can vary depending on scale, ranging from 
an apparently infinitely high length to a very short distance if 
we highly generalize the shape. It is interesting that fractal 
geometry can give us measure of the dimensionality of objects 
that are different from Euclidian geometry. The fractal 
dimension tells us how densely a phenomenon occupies the 
space in which it is located. It is independent from the 
measurement units used or alteration of the space by stretching 
or condensing. 
The fractal dimension of many entities can be obtained by the 
Equation 1 or 2 (Laurini and Thompson 2002): 
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Where     n =number of pieces in the repetitor 
               r =self-similarity ratio 
               d=fractal dimension. 
 
Alternatively, s, the scaling factor, the inverse of the self-
similarity ratio, can be thought of as the number of pieces that 
an entity is split into. In the case of the snowflake example 
already mentioned, n=4, r=1/3, giving d=1.2619.  
We can imagine a continuum where a value of d close to 0 
would mean an entity is close to a point, a value of 1 means a 
line, and if it is near 2, it is  an area. 
Similarly, a smooth line will have a dimensionality of 1, but an 
irregular line has a higher value, certainly greater than 1. For 
coastlines the mean fractal dimension is d=1.2, wherease for 
terrain, d is about 2.3     
           
Brownian motion is the most popular model used to perform 
fractal interpolations from a set of samples. Brownian motion, 
first observed by Robert Brown in 1827, is the motion of small 
particles caused by continual bombardment by other 
neighboring particles. Brown found that the distribution of the 
particle position is always Gaussian with a variance dependent 
only on the length of the time of the movement observation 
(Laurini and Thompson 2002). 
The Fractional Brownian motion (FBm), derived from 
Brownian motion, can be used to simulate topographic surfaces. 
FBm provides a method of generating irregular, self-similar 
surfaces that resemble topography and that have a known 
fractional dimension. 

The FBm functions can be characterized by variograms 
(graphic that plots the phenomenon variation against the spatial 
distance between two points) of the form (Felgueiras and 
Goodchild 1995): 
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where   E=statistical expectation 

             iz , jz =heights of the surface at the points i and j  

             ijd =spatial distance between these points 

              K=constant of proportionality 
              H=parameter in the range 0 to 1 
 
 K is also related to a vertical scale factor S that controls the 
roughness of the surface. H describes the relative smoothness at 
different scales and has a relation with the fractal dimension D 
as formulated in Equation 4 (Felgueiras and Goodchild 1995): 
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When H is 0.5 we get the pure Brownian motion. The smaller 
H, the larger D and the more irregular is the surface. On the 
contrary, the larger H, the smaller D and the smoother the 
surface. 
Fournier et al (1982) presented recursive procedures to render 
curves and surfaces based on stochastic models. They described 
two methods to construct two-dimensional fractal surface 
primitives. The first one is based on a subdivision of polygons 
to create fractal polygons while the second approach is based on 
the definition of stochastic parametric surfaces. 
 
The subdivision of polygons is based on the fractal poly line 
subdivision method. A fractal poly line subdivision is a 
recursive procedure that interpolates intermediate points of a 
poly line. The algorithm recursively subdivides the closest 
extreme intervals and generates a scalar value at the midpoint 
which is proportional to the current standard deviation σc times 

the scale or roughness factor S. So, the mz value of the middle 

point between two consecutive points, i and j , of a poly line is 
determined by the Equation 5 (Felgueiras and Goodchild 1995): 
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Where cσ varies according to Equation 5 and )1,0(N is a 

Gaussian random variable with zero mean and unit variance.  
The subdivision of polygons method is suitable to create 
stochastic surfaces based on TIN digital models. Each triangle 
of the TIN model can be subdivided into four smaller triangles 
by connecting the midpoints of the triangles. The z value of the 
midpoints is calculated by the fractal poly line subdivision 



method presented above. The subdivision can be continued 
until the area or a side of the current triangle reaches a 
predefined limit. So the original triangle is transformed into a 
fractal triangle whose irregular surface consists of many small 
triangular facets.  
As pointed out by Fournier and Goodchild (1995) , the 
presented methods for rendering curves and surfaces are 
satisfactory approximations of fractional Brownian motion. 
They allow us to create realistic surfaces in faster time than 
with exact calculations. Another advantage of these approaches 
is the possibility of computing surfaces to arbitrary levels of 
detail without increasing  size of the database. 
Figure 1 illustrates the behavior of fractal curves created using 
fractional Brownian motion, different values of H, and a 
constant vertical scale factor. The curves were rendered using 
the fractal poly line subdivision method. 
 
 

 
 
Figure 1.  Stochastic curves rendered for different values of the 

parameter H (Fournier and Goodchild 1995). 
 

3. METODOLGY 
 
This section describes the methodology used to analyze surface 
fitting on TIN models. 
The first step for modeling surfaces is the definition of the input 
sample set that will be used to construct the surface. This 
sample set must be representative of the phenomenon to be 
modeled. 
The next step involves the use of the sample set to construct the 
basic structure of the DTM model. Here the input samples were 
transformed on the vertices of the triangles of a TIN model. 
Our case study was in two parts of Hamedan city in Iran (rough, 
smooth) that sample set has been extracted from a map at a 
scale of 1:25000 and then TIN model was constructed (Figure 
2, 3).  
 
 

 
Figure 2. TIN model of one rough land in Hamedan, Iran. 

Units are in meter. 
 
   

 
Figure 3. TIN model of one smooth land in Hamedan, Iran. 

Units are in meter. 
 
 
After this stage we use fractal concept for interpolation. This 
method used to estimate the z values of the rectangular grid, 
which was based on the polygon subdivision approach 
presented in Felgueiras and Goodchiled (1995). The method 

begins finding the current triangle cT , of the original TIN 

model, that contains the grid point ),,( iiii zyxP . Then the 

triangle cT  is subdivided recursively in four smaller triangles 

by connecting the midpoints of its sides. The z values of these 
midpoints are defined by a fractal poly line subdivision 

approach described in section 2.  A new triangle cT , that 

contains the point iP , is chosen among the four smaller 

triangles. The subdivisions continue until the point iP  is within 

a defined proximity criterion of one of the vertices of the 

triangle cT . When the proximity is reached, one can define 

iz equal to the z of this vertex. In this paper, sample points of 

the map were condensed with fractals up to contour interval of 
5 meters (Figure 4, 5) 
 



 
Figure 4. TIN model of Figure 2 that is condensed with fractals 

H=0.8, units are in meter. 
 

 
 
 

 

 
Table 1, Residuals on check points for smooth and rough region 

(m) 
 

 
 
 
 
 
 
 
Table 2, standard deviation of the error function for smooth and 

rough region (m) 

 
In order to perform a quantitative analysis of the surfaces 
rendered by the fractal interpolator approaches, we compared 
the results with the real surfaces. So 15-20 check points was 
selected for each region. Then for each point error function that 
defined as the difference between the real elevation and the 
estimated elevation was computed. Table 1 shows the residuals 
on the check points for the rough and smoothed region. 
In addition for H=0.1-0.9 with increment 0.1, standard 
deviation of the error function was computed that results have 
shown that the best H for irregular and regular surfaces are 0.3 
and 0.8 respectively (Table 2) .It means that irregular surface 
has fractal dimension 2.7 while regular surface has fractal 
dimension 2.2. 
 
 
 
 
 
 
 
 
 

 
 

H 

standard deviation 
of the error 
function for 

smooth region 

standard deviation 
of the error 

function for rough 
region 

0.1 2.675 0.419 
0.2 2.680 0.425 
0.3 2.682 0.404 
0.4 2.713 0.435 
0.5 2.676 0.465 
0.6 2.666 0.550 
0.7 2.789 0.598 
0.8 2.618 0.626 
0.9 2.888 1.283 

 
 

4. CONCLUSION 
 
Fractal methods can be successfully used when the real surface 
represents a natural phenomenon like elevation. The major 
problem seems to be the definition of the appropriate 
parameters H and S (H is relative smoothness at different scales 
and S is scale or roughness factor) to best represent the 
variations of the real surface. 

Point number Residuals on check 
points for smooth 

region (m) 

Residuals on check 
points for rough 

region (m) 
1 -0.090 0.340 
2 0.100 0.280 
3 0.060 0.210 
4 -0.332 0.726 
5 -0.381 -1.196 
6 1.159 0.141 
7 0.066 0.267 
8 -0.016 6.262 
9 0.037 -1.364 

10 0.558 6.763 
11 0.164 1.726 
12 0.121 -0.056 
13 -0.423 0.570 
14 -0.045 -2.015 
15 -0.890 -3.635 
16 0.041 -0.088 
17 -0.357  
18 0.010  
19 0.427  
20 0.022  

Figure 5. TIN model of Figure 3 that is 
condensed with fractals H=0.3, units are in 

meter. 



Fractal interpolation is recommended for modeling natural 
terrain surfaces when interest lies in visualization, and when the 
parameters of the fractal interpolation can be adjusted to create 
a realistic-looking representation. 
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