

Continuous Generalization for fast and smooth Visualization
on small Displays

Monika Sester & Claus Brenner

Institute for Cartography and Geoinformatics, University of Hanover, Appelstraße 9a, 30167 Hanover, Germany

monika.sester,claus.brenner@ikg.uni-hannover.de

Commission IV, WG IV/3

KEY WORDS: Cartography, Generalization, Mobile, Real-time, Visualisation

ABSTRACT:

With the increasing availability of small mobile computers, there is also an increasing demand for visualizing cartographic objects
on those devices. Prominent applications are location based services in general, and car and pedestrian navigation in particular. In
order to be able to offer both detail and overview of a spatial situation, the devices have to provide flexible zooming in and out in
real-time. The presentation of spatial data sets in different zoom levels or resolutions is usually achieved using generalization
operations. When larger scale steps have to be overcome, the shape of individual objects typically changes dramatically, also objects
may disappear or merge with others to form new objects. As theses steps typically are discrete in nature, this leads to “popping
effects” when going from one level of detail to the other.
In this paper, we will describe an approach to decompose generalization methods into elementary operations that can then be
implemented in a continuous way. For example in the case of displacement, an object will not simply jump from one position to the
other, but slowly shifted from its original position to the new one. In the case of simplification of building ground plans, the
elementary operations e.g. care for removing extrusions or intrusions of buildings, as well as offsets. In the paper we will identify
elementary generalization operations and also present their implementation as a continuous operations. We will apply these concepts
for line generalization, the generalization of building ground plans and for displacement.

1. INTRODUCTION AND OVERVIEW

The presentation of spatial data in different levels of detail is a
basic requirement in order to be able to fully understand spatial
processes. In cartography it has traditionally been accounted for
by the series of topographic maps (e.g. different scales from
1:10.000 to 1:1 Million). For their production, generalization
operations are being applied that generate a new representation
from the given detail data.

The need for presenting spatial data in different resolutions
recently came up again from a completely new domain: in order
to present spatial information on small mobile displays –
typically user location or navigation instructions – there is a
strong need for generalization, because on the small displays
only a reduced information content can be displayed at a time.
As the small display devices typically do not dispose of large
storage capabilities for storing digital data sets at different
resolutions, the need for efficiently transmitting the spatial
information arises.

This was the basis for this research, that aims at developing a
method for incrementally transmitting more and more
information in terms of object details to a small mobile device
through a possibly limited bandwidth channel by incremental
streaming. When a user inspects spatial data using a mobile
client, first only the coarsest information is transferred to give
an overall impression. Then, objects in the vicinity of the user
will be incrementally loaded, until – if the user wishes so – the
whole scene is given at the highest level of detail available.

The idea is to pre-compute a sequence of vector representations
at different levels of detail, which are then incrementally sent to
the client. These different representations, in our case, are
coded efficiently in terms of a set of simple operations. These
operations can be generated by appropriate adaptation of
existing generalization operations. The procedure provides
methods to visualize and animate these changes in a continuous
and streaming fashion.

The paper is organized as follows: After an analysis of demands
for progressive information transmission, a brief classification
of generalization algorithms is given. Then, the elementary
operations to code incremental changes of objects are presented.
Different generalization functions are adapted in order to
produce a representation in terms of those simple operations. A
summary concludes the paper.

2. RELATED WORK AND DEMANDS FOR
PROGRESSIVE INFORMATION TRANSMISSION

The basic demand for continuous generalization is that the
changes occurring when going from one representation to the
next are small enough in order not to be noticed. Thus, the user
is not disturbed by coarse visible changes like object parts
popping up or objects suddenly disappearing.

In order to provide such a smooth transition from one scale to
the next, incrementally representations with more and more
detail have to be visualized. This would imply that a very dense
series of different representations is generated and has to be
transmitted to the user while he/she is zooming in or out.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34

Besides high demands for the storage of those large number of
representations on the server, this also has high requirements
concerning the transmission of the data, as a large number of
potentially large data sets has to be transmitted. Due to the fact
that changes in the data occur only at selected places in the data
sets, potentially also highly redundant data is sent. Alternatives
are to provide only a limited set of representations, where large
changes occur – comparable to the map series of topographic
maps. The project GiMoDig aims at providing a combination of
on-line generalization and access to pre-generalized data
[Sarjakoski et al., 2002]. Bertolotto & Egenhofer [2001]
describe an approach for progressively transmitting vector data
by pre-computing a sequence of map representations at
different Levels of Detail (LoDs). Between adjacent scales,
appropriate interpolations or morphing operations can be done
([Cecconi et al., 2002], [van Kreveld 2002]).

Another alternative is to sent only changes or differences in the
data set, which already can reduce the amount of data
considerably. This is e.g. well known from the progressive
transmission of GIF-images over the internet. Thiemann [2002]
proposes to use this method for the visualization of 3D building
data in different levels of detail. A further possibility is not to
send the changes as such, but a set of operations that describe
the object and the changes. This requires that on the client side
these instructions can be interpreted in order to correctly restore
the object. A basic requirement for the coding scheme is that
the amount of data to be transmitted should be less than that
would be needed to transmit the original data set.

In order to represent different levels of detail of vector
geometry, hierarchical schemes can be used. On example is the
GAP-tree for the coding of area partitionings in different levels
of detail [van Oosterom, 1995]. The BLG (binary line
generalization) tree hierarchically decomposes a line using e.g.
the Douglas-Peuker algorithm [Douglas & Peucker, 1973].

In our approach a set of elementary operations was defined that
allow for describing geometric and topologic changes in vector
data sets. Generalization operations can be decomposed into a
sequence of operations leading to a sequential reduction /
increase of detail. Thus data coded in a vocabulary of so called
Simple Operations (SO’s) can be sent to the client, where it is
restored again in order to be visualized.

3. GENERALIZATION OPERATIONS

Generalization operations can be characterized by changes
occurring to objects which are either discrete or continuous.
These changes can affect individual objects and groups of
objects, respectively. In the following examples for both types
of changes are given.

3.1

3.2

3.3

Discrete changes of individual objects

Changes of this kind can be characterized by the fact that the
topology and the geometry of the object changes. Examples for
this class of changes are operations like the simplification of
building ground plans or simplification of lines (point
reduction) using e.g. Douglas-Peuker filtering.

Continuous changes of individual objects

Continuous changes of objects occur when the topology
remains the same, however geometry changes by shifting either
the whole object or individual points of the object.

Displacement is a typical representative for such a change. Also
in the case of enlargement, only the position of object vertices
changes, not affecting the topological structure of the objects.

Discrete changes of groups of objects

These changes typically occur when larger scale changes have
to be traversed and thus the aggregation level and often the type
of object changes. An example is typification, where a group of
objects is represented by a new group consisting of less objects.

The following table gives a classification of the different
generalization operations into the different categories. Based on
this analysis examples for the implementation of the operations
are given. The operations highlighted in bold are described in
more detail.

Operation Discrete,

individual
(3.1)

Discrete,
group
(3.3)

Continuous
(3.2)

Simplification (e.g.
Gauss)

 X

Point reduction (e.g.
Douglas-Peuker)

X

Building
generalization

X

Displacement X
Typification X
Aggregation X X
Enhancement (e.g.
enlargement)

 X

4. DECOMPOSITION OF CHANGES INTO

ELEMENTARY OPERATIONS

The coding scheme has been developed for the generalization of
polygons, especially building ground plans. It is, however,
obvious, that the approach is generally applicable to all the
above mentioned generalization operations.

4.1 The Generalization Chain

Similar to the ideas introduced by Hoppe for triangulated
meshes [Hoppe 96], we define for a polygon consisting of n
vertices a minimal representation

P
mP , with vertices, and

a maximal representation
nm ≤

PP n ≡ , consisting of all original
vertices. The minimal representation is the one which is still
sensible from a cartographic viewpoint, for example in case of a
building a rectangle, 4=m , or the empty polygon.

During pre-processing, map generalization starts from polygon
nP , successively simplifying its representation using

generalization operations as described in Section 5.2, finally
yielding polygon mP . Assume that k generalization steps are
involved (each leading to one or more removed polygon
vertices), and the number of polygon vertices are numbered

ni =0 , , …, i1i mk = , then a sequence of generalized
polygons

mi
gg

i
g

in PPPPPP k

k
≡→→→≡≡

−11

1

0

0 ...
jg

jg

is obtained, where denotes the j-th generalization operation.

Every generalization step is tied to a certain value of a

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34

control parameter jε , which relates to the display scale and can
be – as discussed later – for example the length of the shortest
edge in the polygon. Thus, we can think of jε as the length of

the edge which was eliminated during generalization step or

alternatively as the length of the shortest edge in polygon

jg
jiP .

Since generalization proceeds using increasing edge lengths, the
sequence of jε is monotonically increasing. As a first
consequence of this, one can pre-compute and record all
operations , in order to derive quickly any desired
generalization level

jg
ε by the execution of all generalization

operations , …, , where 0g jg εεε ≤j,...,0 and εε >+1j

iP→ 0
1

.

1−
jg

 n
g

 −
0gk

→ −
−
1

2
...

gk
−

ik P≡→
−
1

1

ε

m

However, it is obvious that for most applications, the inverse
operations are more interesting, producing a more detailed
polygon from a generalized one. Thus, we have the sequence

im PPP k≡ −1

where again one can decide up to which point the polygon
modification should be carried out, characterized by the
corresponding parameter . This way, the inverse
generalization chain can be used for progressively transmitting
information over a limited bandwidth channel by transmitting
the minimal representation P followed by a sufficient number
of inverse generalization operations.

4.2 Encoding Elementary Generalization Operations

We call the generalization operations we introduced above
elementary generalization operations (EGO’s), because every
generalization chain will be made up of a combination of
EGO’s. Each EGO in turn consists of one or more simple
operations (SO’s) modifying the polygon. It is obvious that
there are operations which modify the topology of a polygon,
namely the insertion and removal of vertices, and operations
which affect the geometry only. Table 1 shows a list of simple
operations. This list is not minimal, since e.g. a “DV i"
operation is equivalent to “IV i,0”. However, for
convenience and for achieving a most compact encoding, the
operations might be defined redundantly. Knowing the
parameters of a simple operation allows to immediately give the
inverse operation except for the “remove vertex” operation for
which the inverse would require an additional parameter to
specify the location of the vertex to be inserted.

Opcode Description Parameters Inverse
Operation

IV Insert Vertex IV <edge id>
<rel. position>

RV <edge id +
1>

DV Duplicate
Vertex

DV <vertex id> RV <vertex id +
1>

MV Move Vertex MV <vertex id>
<dx> <dy>

MV <vertex id>
<-dx> <-dy>

RV Remove
Vertex

RV <vertex id> –

Table 1: Simple operations used to define more complex
EGO’s.

Figure 1 shows how SO’s combine to an inverse EGO, which
realizes the creation of an extrusion of a building annex.

Starting from the top left polygon consisting of a simple
rectangle, a number of SO’s is applied in order to obtain the
more complex L-shaped polygon to the lower right. It can be
observed that the numbering of the nodes and lines is
continuously adjusted in order to preserve the correct sequence.
Note that infinitely many combinations of SO’s can be used to
obtain the same EGO. As long as a sequence does not contain
remove vertex operations, it can be immediately reversed from
a stored history of operations.

e0
v1

v2
v3

v0

e1

e2

e3

 e0
v1

v2

v3

v0

e1

e2

e3

e4

v4

Initial polygon after
IV 1, 60%

e0
v1

v2

v4

v0

e1

e4
v5

, v3

e3

e5

e0
v1

v2

v5

v0

e1

e2e5

e3

e4

v3

v4

after
DV 2

after MV 3, 2, 0
and MV 4, 2, 0

Figure 1: Example for an inverse EGO, forming an L-shaped
building from a rectangular building. The EGO is
decomposed into four SO’s.

5. REALIZATION AND EXAMPLES

In the following, we will demonstrate how several
generalization operations can be adapted to generate a sequence
of simple operations described above in order to generate a
generalization chain that can incrementally be sent to a client.

5.1 Line simplification / Point reduction

Simplifying lines or polygon outlines can be accomplished
using filtering techniques or point reduction methods. For point
reduction, different algorithms have been developed that either
locally, regionally or globally investigate a line and decide
upon which point can be omitted. The most popular algorithm is
the globally acting Douglas-Peuker algorithm. In order
decompose the point reduction process into a sequence of
reversible elementary generalization operations, the following
considerations can be made. Similar to generating a BLG tree, a
scale dependent decomposition of a line, is generated by
recursively extending the levels of detail in a tree structure. At
the root of the tree is the most coarse line consisting of start and
endpoint (see Figure 2). The inner nodes represent intermediate
generalization levels specifying line sectors with an associated
generalization level, and the leaves, finally, contain the original
line elements (here, the associated generalization level is
obviously 0). The generalization level or scale in this case is
directly related to the distance of that point from the
corresponding base line. For example in sector AF, at scale
level c a split of the line into the two sectors AC and CF will be

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34

done. In order to present a certain level of detail, the tree has to
be traversed down to the given scale level.

AF,c

CF,eAC,b

CE,d EF, 0AB, 0 BC,0

CD, 0 DE, 0

AF,c

CF,eAC,b

CE,d EF, 0AB, 0 BC,0

CD, 0 DE, 0

A

B

C
D F

E

c

A

B

C
D F

E

c

Figure 2: Original line (left) and corresponding BLG-tree

(right); the scale levels are indicated in the nodes of
the tree. At the leaves, the scale levels are zero.

For the generation of the BLG-structure, the whole tree has to
be generated in order to give the full zooming from coarse to
fine. The transformation into the SO’s is straightforward (confer
Table 1): Starting point is a new line which appears at a certain
scale level EPS, that corresponds to the length of the line sAF.
The line is generated by creating point 0 at position A (NPR),
duplicating this point (DV) and moving it to the position F by
increments dxAF, dyAF. (MV). At scale level c a new point is
inserted (EPS c). This is accomplished by duplicating point A
(i.e. point 0 in the internal number scheme) and moving it to
position c by increments dxAC, dyAC. All this information is
directly coded in the tree. The only issue is an appropriate
sequencing of the insertion of the points, taking the respective
scale levels of the nodes into account.

POLY Create new object
EPS s(AF) scale level EPS = distance

between points A and F
NPR xA yA Create point 0 with

coordinates xA and yA
DV 0 Duplicate this point -> create

point 1
MV 1 (xF-xA) (yF-yA) Move point 1 by dx and dy ->

move it to point F
EPS c New event at distance c
DV 0 Create new point after point 0

by duplicating point 0
MV 1 (xC-xA) (yC-yA) Move this point by dx/dy to

point C
… …

Table 2: Coding Douglas-Peuker line simplification.

Figure 3 presents some screenshots of the successive refinement
of polygons using the SO-coding. The iterative refinement is
clearly visible; the user can control the level of detail with the
slider below. Furthermore, the transmission is organized in a
way that only data in the current view will be loaded and
refined.

Figure 3: Screenshots visualizing increasing refinement of the
polygon-visualization (from top left to lower right).

The following Figure 4 shows that the Douglas-Peuker
algorithm is not appropriate for the generalization of structured
objects such as buildings. Therefore, in the next section, an
algorithm for building generalization and the corresponding
decomposition into SO’s is presented.

Figure 4: Sequence of images of using DP-algorithm to building

generalization – which is obviously not suited for
the generalization of such structured objects.

5.2 Building simplification

Building simplification is a special case of a point reduction
method, where the specific properties of these objects are taken
into account. In this case the point reduction is more a structure
reduction, as properties like parallelism and rectangularity have
to be respected in the algorithm. Here, we used a method that
analyzes the shape of the building and defines appropriate
methods to eliminate too small parts of the ground plan, i.e. too
short façade elements (see [Sester 2000]). Three different kinds
of structures can be identified, for which appropriate reduction
methods are defined: extrusion or intrusion, offset, and corner
(see Figure 5).

sn

sn+1

sn-2

sn-1

sn+2

sn

sn+1

sn-2

sn-1

sn+2

sn-1

sn+1

sn

a) c)b)

sn

sn+1

sn-2

sn-1

sn+2

sn

sn+1

sn-2

sn-1

sn+2

sn-1

sn+1

sn

a) c)b)
Figure 5: Elimination of short facade sn: offset,

intrusion/extrusion and corner.
The decomposition of the changes in terms of SO’s is
straightforward. For the example of the offset it is the
following:
An offset consisting of 4 points is replaced by a straight line
consisting of 2 points (see Figure 5a). The reduction process –
which is done when eliminating or generalization this structure
– extends the longest edge adjacent to the short edge sn, in this
case it is line sn+1. A new point is created at the intersection of
the extended line and the predecessors predecessor line (in this
case between line sn+1 and line sn-2). In order to code this
process in terms of SO’s, it has to be inverted, i.e. we start from
the end situation with one line between points 1 and 4, then

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34

insert point 2 on this line at 33% of the line length, then
duplicate this point in order to get point 3. Moving points 1 and
3 new to their final position ends the process. In summary, the
EGO for an offset is the following:

…
IV 1 2 0.33
DV 2
MV 1 dx dy
MV 3 dx dy
….

In a similar way also the generalization operations for the other
two events can be coded (for more details see [Brenner &
Sester, 2003]). Figure 6 shows an example for the successive
presentation of more and more details for four buildings
(compare to Figure 4, where not appropriate Douglas-Peuker
algorithm was used). Figure 7 shows some screenshots of a
larger area of a city.

Figure 6: Presentation of four buildings in different levels of

detail.

Figure 7: Two screenshots with different generalization levels

of buildings in city.
5.3

5.4

Typification

Typification involves that a group of objects is replaced by a
new group with less objects. This means, that extreme changes
occur between the different representations, as objects are
eliminated and replaced by new ones. Coding this process in
terms of EGO’s is simple: an object collapses and a new object
emerges. This involves that a new geometry is created.

Displacement

The coding of the displacement operation in terms of SO’s is
very simple, as it only consists of move-operations (MV) of the

original points to their new positions. We use a least squares
adjustment based approach for calculating the displacement
between all objects in a scene ([Sester 2004]). Figure 8 shows
an example for a spatial situation before and after displacement:
it is obvious, that only in case where conflicts occur (red areas),
the objects change both position and also (partly) their shape
(this is indicated in different shades of green in Figure 8). The
resulting translations in the individual objects are coded in
terms of SO’s.

Figure 8: Displacement: Overlay of original objects in conflict
(top) and solution after automatic displacement.

5.5 Coding efficiency

In order to compare the storage requirements of the coding in
terms of EGO’s with the full presentation of several generalized
instances of the object, the following estimation can be made. It
is done in detail for the case of point reduction, but can be
extended to the other operations mentioned here as well.

A line consisting of n points is reduced to 1 point and then
vanishes, or vice versa it comes into existence with 1 point and
then iteratively is refined by including new points until its
detailed structure is achieved. This means, that in the original
representation n double values (x and y) have to be stored.
Transmitting all the possible n representations would require

1 + 2 + 3 + … + n-1 + n = ½ n (n+1) Points
or twice the number of double values in terms of coordinates.
Thus, the amount of data to be transmitted is in the order of n2.

Storing this information in terms of SO’s requires two
operations for each intermediate point (DV <int>, MV <float>
<float>), which requires

n points or 2*n coordinate differences
In this case, float values can be used, as the coordinate
differences <dx,dy>-values are typically small. In addition to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34

the points, also the operation codes (IV, DV, …) together with
integer values indicating point id’s have to be coded.
Altogether, this is in the order of n which basically means that
all representations of an object can be transmitted for the price
of transmitting one.

Coding displacement is more demanding concerning the data
volume, as it requires the same number of coordinates, as the
points are only moved. However, the numbers are small, as the
movements of the points are typically very small compared to
the large coordinate values, that need double precision values.
Furthermore, as only changes are encoded, not the whole data
set has to be transferred in all scale-steps. Finally, also an
operation could be defined, that encodes the movement of an
object as a whole. During typification the objects are replaced
by new objects, i.e. completely new objects are created. Thus,
no incremental change from the old situation to the new one can
be done, which has the consequence that the full object
representation has to be created and hardly a reduction in
volume can be achieved.

6. CONTINUOUS GENERALIZATION

When a map representation is switched due to generalization,
this usually leads to a visible “popping” effect. Compared to
switching between different, fixed levels of detail, the use of
EGO’s is already an improvement, since it gradually modifies
the polygon rather than just replacing it as a whole.

However, one can still improve on this. Intermediate states can
be defined which continuously change the object in response to
an EGO. For example, a “collapse extrusion” EGO (see Figure
5b) would be interpreted as “move extrusion until in coincides
with the main part, then change the topology accordingly”. We
term this approach continuous generalization as it effectively
allows to morph the object continuously from its coarsest to its
finest representation. It is realized by decomposing the
movement into a number of intermediate steps that give the
impression of smooth changes. For more details see [Brenner &
Sester, 2003].

7. SUMMARY

An approach was presented to decompose changes in object
geometry into a small set of simple operations. These
operations can express the creation of objects as well as
iterative refinement of their shapes. This coding scheme was
used to represent different generalization levels of objects
efficiently. For different generalization operations it could be
shown, how this representation was generated. A comparison
concerning the storage and coding demands with respect to
representing the full geometry was made and it was shown that
a reduction in the amount of data to be transmitted by
approximately the factor n can be achieved. Besides
incrementally presenting the iterative changes in the geometry,
it was also shown that the changes can be animated, leading to
nearly invisible changes between the different representations
when changing the scale.

8. REFERENCES

Bertolotto, M., and Egenhofer, M., [2001], Progressive
Transmission of Vector Map Data over the World Wide Web,
GeoInformatica - An International Journal on Advances of
Computer Science for Geographic Information Systems, Vol. 5
(4), Kluwer Academic Publishers, pp.345-373

Brenner, C. and Sester, M. [2003]: Continuous Generalization
for Small Mobile Displays, International Workshop on Next
Generation Geospatial Information, October 19-21, 2003,
Cambridge (Boston), Massachusetts, USA.

Cecconi, A., Weibel, R. & Barrault, M., [2002]. Improving
automated generalization for on-demand web mapping by
multiscale databases. 10th International Symposium on Spatial
Data Handling, Ottawa, Canada.

Douglas, D. H. & Peucker, T. K., [1973]. Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. The Canadian Cartographer,10,
pp. 112-22.

Hoppe, H. [1996], Progressive Meshes. Proceedings of
SIGGRAPH 96 (New Orleans, LA, August 4-9, 1996). In
Computer Graphics Proceedings, Annual Conference Series,
1996, ACM SIGGRAPH, pp. 99 – 108.

Kreveld, M. van [2001], Smooth Generalization for Continuous
Zooming, Proceedings of the ICC, Beijing, China, 2001.

Oosterom, P. van [1995]: “On-the-Fly” Map Generalization of
an Area Partitioning. In: GIS and Generalization, Methodology
and Practice. Editors J.C. Müller, J.P. Lagrange and R. Weibel.
Taylor & Francis, London, pages 120-132, 1995.

Sarjakoski, T, L.T Sarjakoski, L. Lehto, M. Sester, A. Illert, F.
Nissen, R. Rystedt, and R. Ruotsalainen [2002]: Geospatial
Info-mobility Services - a Challenge for National Mapping
Agencies. Proceedings of the Joint International Symposium on
"GeoSpatial Theory, Processing and Applications"
(ISPRS/Commission IV/SDH2002), Ottawa, Canada, July 8-12,
2002, 5p, CD-ROM.

Sester, M. [2000], Generalization Based on Least Squares
Adjustment. In: International Archives of Photogrammetry and
Remote Sensing, Amsterdam, Netherlands, Vol. XXXIII, Part
B4, pp. 931-938.

Sester [2004]: Optimizing Approaches for Generalization and
Data Abstraction, accepted for publication in: International
Journal of Geographic Information Science.

Thiemann, F. [2002], Generalization of 3D building data,
IAPRS Vol. 34, Part 4, “GeoSpatial Theory, Processing and
Applications”, Ottawa, Canada.

ACKNOWLEDGEMENT

This research is part of the GiMoDig project, funded by the
European Union, IST 2000, 30090, and the
VolkswagenStiftung.

	INTRODUCTION AND OVERVIEW
	RELATED WORK AND DEMANDS FOR PROGRESSIVE INFORMATION TRANSMISSION
	GENERALIZATION OPERATIONS
	Discrete changes of individual objects
	Continuous changes of individual objects
	Discrete changes of groups of objects

	DECOMPOSITION OF CHANGES INTO ELEMENTARY OPERATIONS
	The Generalization Chain
	Encoding Elementary Generalization Operations

	REALIZATION AND EXAMPLES
	Line simplification / Point reduction
	Building simplification
	Typification
	Displacement
	Coding efficiency

	CONTINUOUS GENERALIZATION
	SUMMARY
	REFERENCES

