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ABSTRACT: 
 
With the increasing availability of small mobile computers, there is also an increasing demand for visualizing cartographic objects 
on those devices. Prominent applications are location based services in general, and car and pedestrian navigation in particular. In 
order to be able to offer both detail and overview of a spatial situation, the devices have to provide flexible zooming in and out in 
real-time. The presentation of spatial data sets in different zoom levels or resolutions is usually achieved using generalization 
operations. When larger scale steps have to be overcome, the shape of individual objects typically changes dramatically, also objects 
may disappear or merge with others to form new objects. As theses steps typically are discrete in nature, this leads to “popping 
effects” when going from one level of detail to the other.  
In this paper, we will describe an approach to decompose generalization methods into elementary operations that can then be 
implemented in a continuous way. For example in the case of displacement, an object will not simply jump from one position to the 
other, but slowly shifted from its original position to the new one. In the case of simplification of building ground plans, the 
elementary operations e.g. care for removing extrusions or intrusions of buildings, as well as offsets. In the paper we will identify 
elementary generalization operations and also present their implementation as a continuous operations. We will apply these concepts 
for line generalization, the generalization of building ground plans and for displacement.  
 

1. INTRODUCTION AND OVERVIEW 

The presentation of spatial data in different levels of detail is a 
basic requirement in order to be able to fully understand spatial 
processes. In cartography it has traditionally been accounted for 
by the series of topographic maps (e.g. different scales from 
1:10.000 to 1:1 Million). For their production, generalization 
operations are being applied that generate a new representation 
from the given detail data.  
 
The need for presenting spatial data in different resolutions 
recently came up again from a completely new domain: in order 
to present spatial information on small mobile displays – 
typically user location or navigation instructions – there is a 
strong need for generalization, because on the small displays 
only a reduced information content can be displayed at a time. 
As the small display devices typically do not dispose of large 
storage capabilities for storing digital data sets at different 
resolutions, the need for efficiently transmitting the spatial 
information arises.  
 
This was the basis for this research, that aims at developing a 
method for incrementally transmitting more and more 
information in terms of object details to a small mobile device 
through a possibly limited bandwidth channel by incremental 
streaming. When a user inspects spatial data using a mobile 
client, first only the coarsest information is transferred to give 
an overall impression. Then, objects in the vicinity of the user 
will be incrementally loaded, until – if the user wishes so – the 
whole scene is given at the highest level of detail available.  
 

The idea is to pre-compute a sequence of vector representations 
at different levels of detail, which are then incrementally sent to 
the client. These different representations, in our case, are 
coded efficiently in terms of a set of simple operations. These 
operations can be generated by appropriate adaptation of 
existing generalization operations. The procedure provides 
methods to visualize and animate these changes in a continuous 
and streaming fashion.  
 
The paper is organized as follows: After an analysis of demands 
for progressive information transmission, a brief classification 
of generalization algorithms is given. Then, the elementary 
operations to code incremental changes of objects are presented. 
Different generalization functions are adapted in order to 
produce a representation in terms of those simple operations. A 
summary concludes the paper. 
 

2. RELATED WORK AND DEMANDS FOR 
PROGRESSIVE INFORMATION TRANSMISSION 

The basic demand for continuous generalization is that the 
changes occurring when going from one representation to the 
next are small enough in order not to be noticed. Thus, the user 
is not disturbed by coarse visible changes like object parts 
popping up or objects suddenly disappearing.  
 
In order to provide such a smooth transition from one scale to 
the next, incrementally representations with more and more 
detail have to be visualized. This would imply that a very dense 
series of different representations is generated and has to be 
transmitted to the user while he/she is zooming in or out. 
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Besides high demands for the storage of those large number of 
representations on the server, this also has high requirements 
concerning the transmission of the data, as a large number of 
potentially large data sets has to be transmitted. Due to the fact 
that changes in the data occur only at selected places in the data 
sets, potentially also highly redundant data is sent. Alternatives 
are to provide only a limited set of representations, where large 
changes occur – comparable to the map series of topographic 
maps. The project GiMoDig aims at providing a combination of 
on-line generalization and access to pre-generalized data 
[Sarjakoski et al., 2002]. Bertolotto & Egenhofer [2001] 
describe an approach for progressively transmitting vector data 
by pre-computing a sequence of map representations at 
different Levels of Detail (LoDs). Between adjacent scales, 
appropriate interpolations or morphing operations can be done 
([Cecconi et al., 2002], [van Kreveld 2002]).  
 
Another alternative is to sent only changes or differences in the 
data set, which already can reduce the amount of data 
considerably. This is e.g. well known from the progressive 
transmission of GIF-images over the internet. Thiemann [2002] 
proposes to use this method for the visualization of 3D building 
data in different levels of detail. A further possibility is not to 
send the changes as such, but a set of operations that describe 
the object and the changes. This requires that on the client side 
these instructions can be interpreted in order to correctly restore 
the object. A basic requirement for the coding scheme is that 
the amount of data to be transmitted should be less than that 
would be needed to transmit the original data set.  
 
In order to represent different levels of detail of vector 
geometry, hierarchical schemes can be used. On example is the 
GAP-tree for the coding of area partitionings in different levels 
of detail [van Oosterom, 1995]. The BLG (binary line 
generalization) tree hierarchically decomposes a line using e.g. 
the Douglas-Peuker algorithm [Douglas & Peucker, 1973]. 
 
In our approach a set of elementary operations was defined that 
allow for describing geometric and topologic changes in vector 
data sets. Generalization operations can be decomposed into a 
sequence of operations leading to a sequential reduction / 
increase of detail. Thus data coded in a vocabulary of so called 
Simple Operations (SO’s) can be sent to the client, where it is 
restored again in order to be visualized.  
 

3. GENERALIZATION OPERATIONS 

Generalization operations can be characterized by changes 
occurring to objects which are either discrete or continuous. 
These changes can affect individual objects and groups of 
objects, respectively. In the following examples for both types 
of changes are given.  
 
3.1 

3.2 

3.3 

Discrete changes of individual objects 

Changes of this kind can be characterized by the fact that the 
topology and the geometry of the object changes. Examples for 
this class of changes are operations like the simplification of 
building ground plans or simplification of lines (point 
reduction) using e.g. Douglas-Peuker filtering.  
 

Continuous changes of individual objects  

Continuous changes of objects occur when the topology 
remains the same, however geometry changes by shifting either 
the whole object or individual points of the object. 

Displacement is a typical representative for such a change. Also 
in the case of enlargement, only the position of object vertices 
changes, not affecting the topological structure of the objects.  
 

Discrete changes of groups of objects 

These changes typically occur when larger scale changes have 
to be traversed and thus the aggregation level and often the type 
of object changes. An example is typification, where a group of 
objects is represented by a new group consisting of less objects. 
 
The following table gives a classification of the different 
generalization operations into the different categories. Based on 
this analysis examples for the implementation of the operations 
are given. The operations highlighted in bold are described in 
more detail. 
 
Operation Discrete, 

individual 
(3.1)  

Discrete, 
group 
(3.3)  

Continuous 
(3.2) 

Simplification (e.g. 
Gauss) 

  X 

Point reduction (e.g. 
Douglas-Peuker) 

X   

Building 
generalization 

X   

Displacement   X 
Typification  X  
Aggregation  X X 
Enhancement (e.g. 
enlargement) 

  X 

 
4. DECOMPOSITION OF CHANGES INTO 

ELEMENTARY OPERATIONS 

The coding scheme has been developed for the generalization of 
polygons, especially building ground plans. It is, however, 
obvious, that the approach is generally applicable to all the 
above mentioned generalization operations.  
 
4.1 The Generalization Chain 

Similar to the ideas introduced by Hoppe for triangulated 
meshes [Hoppe 96], we define for a polygon  consisting of n 
vertices a minimal representation 

P
mP , with  vertices, and 

a maximal representation 
nm ≤

PP n ≡ , consisting of all original 
vertices. The minimal representation is the one which is still 
sensible from a cartographic viewpoint, for example in case of a 
building a rectangle, 4=m , or the empty polygon. 

During pre-processing, map generalization starts from polygon 
nP , successively simplifying its representation using 

generalization operations as described in Section 5.2, finally 
yielding polygon mP . Assume that k  generalization steps are 
involved (each leading to one or more removed polygon 
vertices), and the number of polygon vertices are numbered 

ni =0 , , …, i1i mk = , then a sequence of generalized 
polygons 
 

mi
gg
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g

in PPPPPP k

k
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jg
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is obtained, where  denotes the j-th generalization operation. 

Every generalization step  is tied to a certain value of a 
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control parameter jε , which relates to the display scale and can 
be – as discussed later – for example the length of the shortest 
edge in the polygon. Thus, we can think of jε  as the length of 

the edge which was eliminated during generalization step  or 

alternatively as the length of the shortest edge in polygon 

jg
jiP . 

Since generalization proceeds using increasing edge lengths, the 
sequence of jε  is monotonically increasing. As a first 
consequence of this, one can pre-compute and record all 
operations , in order to derive quickly any desired 
generalization level 

jg
ε  by the execution of all generalization 

operations , …, , where 0g jg εεε ≤j,...,0  and εε >+1j

iP→ 0
1

. 

1−
jg

 n
g

 −
0gk

→ −
−
1

2
...

gk
−

ik P≡→
−
1

1

ε

m

However, it is obvious that for most applications, the inverse 
operations  are more interesting, producing a more detailed 
polygon from a generalized one. Thus, we have the sequence 

im PPP k≡ −1

where again one can decide up to which point the polygon 
modification should be carried out, characterized by the 
corresponding parameter . This way, the inverse 
generalization chain can be used for progressively transmitting 
information over a limited bandwidth channel by transmitting 
the minimal representation P  followed by a sufficient number 
of inverse generalization operations. 

4.2 Encoding Elementary Generalization Operations 

We call the generalization operations we introduced above 
elementary generalization operations (EGO’s), because every 
generalization chain will be made up of a combination of 
EGO’s. Each EGO in turn consists of one or more simple 
operations (SO’s) modifying the polygon. It is obvious that 
there are operations which modify the topology of a polygon, 
namely the insertion and removal of vertices, and operations 
which affect the geometry only. Table 1 shows a list of simple 
operations. This list is not minimal, since e.g. a “DV i" 
operation is equivalent to “IV i,0”. However, for 
convenience and for achieving a most compact encoding, the 
operations might be defined redundantly. Knowing the 
parameters of a simple operation allows to immediately give the 
inverse operation except for the “remove vertex” operation for 
which the inverse would require an additional parameter to 
specify the location of the vertex to be inserted. 

Opcode Description Parameters Inverse 
Operation 

IV Insert Vertex IV <edge id> 
<rel. position> 

RV <edge id + 
1> 

DV Duplicate 
Vertex 

DV <vertex id> RV <vertex id + 
1> 

MV Move Vertex MV <vertex id> 
<dx> <dy> 

MV <vertex id> 
<-dx> <-dy> 

RV Remove 
Vertex 

RV <vertex id> – 

Table 1: Simple operations used to define more complex 
EGO’s. 

 
Figure 1 shows how SO’s combine to an inverse EGO, which 
realizes the creation of an extrusion of a building annex. 

Starting from the top left polygon consisting of a simple 
rectangle, a number of SO’s is applied in order to obtain the 
more complex L-shaped polygon to the lower right. It can be 
observed that the numbering of the nodes and lines is 
continuously adjusted in order to preserve the correct sequence. 
Note that infinitely many combinations of SO’s can be used to 
obtain the same EGO. As long as a sequence does not contain 
remove vertex operations, it can be immediately reversed from 
a stored history of operations. 

 

e0
v1

v2
v3

v0

e1

e2

e3

 e0
v1

v2

v3

v0

e1

e2

e3

e4

v4

 

Initial polygon after 
IV 1, 60% 

 

e0
v1

v2

v4

v0

e1

e4
v5

, v3

e3

e5

e0
v1

v2

v5

v0

e1

e2e5

e3

e4

v3

v4

after 
DV 2 

after MV 3, 2, 0 
and MV 4, 2, 0 

Figure 1: Example for an inverse EGO, forming an L-shaped 
building from a rectangular building. The EGO is 
decomposed into four SO’s. 

 
5. REALIZATION AND EXAMPLES 

In the following, we will demonstrate how several 
generalization operations can be adapted to generate a sequence 
of simple operations described above in order to generate a 
generalization chain that can incrementally be sent to a client. 
 
5.1 Line simplification / Point reduction 

Simplifying lines or polygon outlines can be accomplished 
using filtering techniques or point reduction methods. For point 
reduction, different algorithms have been developed that either 
locally, regionally or globally investigate a line and decide 
upon which point can be omitted. The most popular algorithm is 
the globally acting Douglas-Peuker algorithm. In order 
decompose the point reduction process into a sequence of 
reversible elementary generalization operations, the following 
considerations can be made. Similar to generating a BLG tree, a 
scale dependent decomposition of a line, is generated by 
recursively extending the levels of detail in a tree structure. At 
the root of the tree is the most coarse line consisting of start and 
endpoint (see Figure 2). The inner nodes represent intermediate 
generalization levels specifying line sectors with an associated 
generalization level, and the leaves, finally, contain the original 
line elements (here, the associated generalization level is 
obviously 0). The generalization level or scale in this case is 
directly related to the distance of that point from the 
corresponding base line. For example in sector AF, at scale 
level c a split of the line into the two sectors AC and CF will be 
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done. In order to present a certain level of detail, the tree has to 
be traversed down to the given scale level. 

AF,c

CF,eAC,b

CE,d EF, 0AB, 0 BC,0

CD, 0 DE, 0

AF,c

CF,eAC,b

CE,d EF, 0AB, 0 BC,0

CD, 0 DE, 0

A

B

C
D F

E

c

A

B

C
D F

E

c

 
Figure 2: Original line (left) and corresponding BLG-tree 

(right); the scale levels are indicated in the nodes of 
the tree. At the leaves, the scale levels are zero. 

 
For the generation of the BLG-structure, the whole tree has to 
be generated in order to give the full zooming from coarse to 
fine. The transformation into the SO’s is straightforward (confer 
Table 1): Starting point is a new line which appears at a certain 
scale level EPS, that corresponds to the length of the line sAF. 
The line is generated by creating point 0 at position A (NPR), 
duplicating this point (DV) and moving it to the position F by 
increments dxAF, dyAF. (MV). At scale level c a new point is 
inserted (EPS c). This is accomplished by duplicating point A 
(i.e. point 0 in the internal number scheme) and moving it to 
position c by increments dxAC, dyAC.  All this information is 
directly coded in the tree. The only issue is an appropriate 
sequencing of the insertion of the points, taking the respective 
scale levels of the nodes into account.  
 
POLY Create new object 
EPS s(AF) scale level EPS = distance 

between points A and F 
NPR xA yA Create point 0 with 

coordinates xA and yA 
DV 0 Duplicate this point -> create 

point 1 
MV 1 (xF-xA) (yF-yA) Move point 1 by dx and dy -> 

move it to point F 
EPS c New event at distance c 
DV 0  Create new point after point 0 

by duplicating point 0 
MV 1 (xC-xA) (yC-yA) Move this point by dx/dy to 

point C 
… … 

Table 2: Coding Douglas-Peuker line simplification. 
 

Figure 3 presents some screenshots of the successive refinement 
of polygons using the SO-coding. The iterative refinement is 
clearly visible; the user can control the level of detail with the 
slider below. Furthermore, the transmission is organized in a 
way that only data in the current view will be loaded and 
refined.  
 

 

Figure 3: Screenshots visualizing increasing refinement of the 
polygon-visualization (from top left to lower right). 

 
The following Figure 4 shows that the Douglas-Peuker 
algorithm is not appropriate for the generalization of structured 
objects such as buildings. Therefore, in the next section, an 
algorithm for building generalization and the corresponding 
decomposition into SO’s is presented.  
 

  
Figure 4: Sequence of images of using DP-algorithm to building 

generalization – which is obviously not suited for 
the generalization of such structured objects. 

 
5.2 Building simplification 

Building simplification is a special case of a point reduction 
method, where the specific properties of these objects are taken 
into account. In this case the point reduction is more a structure 
reduction, as properties like parallelism and rectangularity have 
to be respected in the algorithm. Here, we used a method that 
analyzes the shape of the building and defines appropriate 
methods to eliminate too small parts of the ground plan, i.e. too 
short façade elements (see [Sester 2000]). Three different kinds 
of structures can be identified, for which appropriate reduction 
methods are defined: extrusion or intrusion, offset, and corner 
(see Figure 5).  

sn
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sn-2

sn-1

sn+2

sn

sn+1
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sn-1

sn+2

sn-1

sn+1
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a) c)b)
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sn+1

sn-2

sn-1

sn+2

sn

sn+1

sn-2

sn-1

sn+2

sn-1

sn+1

sn

a) c)b)  
Figure 5: Elimination of short facade sn: offset, 

intrusion/extrusion and corner. 
The decomposition of the changes in terms of SO’s is 
straightforward. For the example of the offset it is the 
following:  
An offset consisting of 4 points is replaced by a straight line 
consisting of 2 points (see Figure 5a). The reduction process – 
which is done when eliminating or generalization this structure 
– extends the longest edge adjacent to the short edge sn, in this 
case it is line sn+1.  A new point is created at the intersection of 
the extended line and the predecessors predecessor line (in this 
case between line sn+1 and line sn-2). In order to code this 
process in terms of SO’s, it has to be inverted, i.e. we start from 
the end situation with one line between points 1 and 4, then 
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insert point 2 on this line at 33% of the line length, then 
duplicate this point in order to get point 3. Moving points 1 and 
3 new to their final position ends the process. In summary, the 
EGO for an offset is the following: 

… 
IV 1 2 0.33 
DV 2 
MV 1 dx dy 
MV 3 dx dy 
…. 

In a similar way also the generalization operations for the other 
two events can be coded (for more details see [Brenner & 
Sester, 2003]). Figure 6 shows an example for the successive 
presentation of more and more details for four buildings 
(compare to Figure 4, where not appropriate Douglas-Peuker 
algorithm was used). Figure 7 shows some screenshots of a 
larger area of a city. 
 

  

  
Figure 6: Presentation of four buildings in different levels of 

detail. 

 
Figure 7: Two screenshots with different generalization levels 

of buildings in city. 
5.3 

5.4 

Typification 

Typification involves that a group of objects is replaced by a 
new group with less objects. This means, that extreme changes 
occur between the different representations, as objects are 
eliminated and replaced by new ones. Coding this process in 
terms of EGO’s is simple: an object collapses and a new object 
emerges. This involves that a new geometry is created.  
 

Displacement 

The coding of the displacement operation in terms of SO’s is 
very simple, as it only consists of move-operations (MV) of the 

original points to their new positions. We use a least squares 
adjustment based approach for calculating the displacement 
between all objects in a scene ([Sester 2004]). Figure 8 shows 
an example for a spatial situation before and after displacement: 
it is obvious, that only in case where conflicts occur (red areas), 
the objects change both position and also (partly) their shape 
(this is indicated in different shades of green in Figure 8). The 
resulting translations in the individual objects are coded in 
terms of SO’s.  

Figure 8: Displacement: Overlay of original objects in conflict 
(top) and solution after automatic displacement. 

 
5.5 Coding efficiency 

In order to compare the storage requirements of the coding in 
terms of EGO’s with the full presentation of several generalized 
instances of the object, the following estimation can be made. It 
is done in detail for the case of point reduction, but can be 
extended to the other operations mentioned here as well.  
 
A line consisting of n points is reduced to 1 point and then 
vanishes, or vice versa it comes into existence with 1 point and 
then iteratively is refined by including new points until its 
detailed structure is achieved. This means, that in the original 
representation n double values (x and y) have to be stored. 
Transmitting all the possible n representations would require  

1 + 2 + 3 + … + n-1 + n = ½ n (n+1) Points 
or twice the number of double values in terms of coordinates. 
Thus, the amount of data to be transmitted is in the order of n2. 
 
Storing this information in terms of SO’s requires two 
operations for each intermediate point (DV <int>, MV <float> 
<float>), which requires  

n points or 2*n coordinate differences 
In this case, float values can be used, as the coordinate 
differences <dx,dy>-values are typically small. In addition to 
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the points, also the operation codes (IV, DV, …) together with 
integer values indicating point id’s have to be coded. 
Altogether, this is in the order of n which basically means that 
all representations of an object can be transmitted for the price 
of transmitting one. 
 
Coding displacement is more demanding concerning the data 
volume, as it requires the same number of coordinates, as the 
points are only moved. However, the numbers are small, as the 
movements of the points are typically very small compared to 
the large coordinate values, that need double precision values. 
Furthermore, as only changes are encoded, not the whole data 
set has to be transferred in all scale-steps. Finally, also an 
operation could be defined, that encodes the movement of an 
object as a whole. During typification the objects are replaced 
by new objects, i.e. completely new objects are created. Thus, 
no incremental change from the old situation to the new one can 
be done, which has the consequence that the full object 
representation has to be created and hardly a reduction in 
volume can be achieved.  
 

6. CONTINUOUS GENERALIZATION 

When a map representation is switched due to generalization, 
this usually leads to a visible “popping” effect. Compared to 
switching between different, fixed levels of detail, the use of 
EGO’s is already an improvement, since it gradually modifies 
the polygon rather than just replacing it as a whole. 

However, one can still improve on this. Intermediate states can 
be defined which continuously change the object in response to 
an EGO. For example, a “collapse extrusion” EGO (see Figure 
5b) would be interpreted as “move extrusion until in coincides 
with the main part, then change the topology accordingly”. We 
term this approach continuous generalization as it effectively 
allows to morph the object continuously from its coarsest to its 
finest representation. It is realized by decomposing the 
movement into a number of intermediate steps that give the 
impression of smooth changes. For more details see [Brenner & 
Sester, 2003]. 
 

7. SUMMARY  

An approach was presented to decompose changes in object 
geometry into a small set of simple operations. These 
operations can express the creation of objects as well as 
iterative refinement of their shapes. This coding scheme was 
used to represent different generalization levels of objects 
efficiently. For different generalization operations it could be 
shown, how this representation was generated. A comparison 
concerning the storage and coding demands with respect to 
representing the full geometry was made and it was shown that 
a reduction in the amount of data to be transmitted by 
approximately the factor n can be achieved. Besides 
incrementally presenting the iterative changes in the geometry, 
it was also shown that the changes can be animated, leading to 
nearly invisible changes between the different representations 
when changing the scale.  
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