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ABSTRACT: 
 
The process chain in optical measurement techniques can be subdivided into four main components: the camera system, the object 
range, the network design and the analysis system. The included influences (e.g. camera geometry, illumination, algorithms for image 
measurement) cause remaining deviations on the results due to insufficiently known effects on the photogrammetric system. This 
article will introduce a simulation technique based on Monte-Carlo-Methods to analyse effects of camera geometry, object space, 
signalisation and illumination. First two topics will be discussed based on simulation results. It allows a closer look at single system 
components, their uncertainty and randomly distribution simultaneously to the estimation of their influence on the photogrammetric 
system. The described Monte-Carlo-Simulation provides an economical process where the effects can be separated and modelled 
within an acceptable period of time and amount of work. It enables the determination of optimal system components (e.g. 
signalisation, illumination, camera geometry, analysis) and, in addition, the estimation of their influences on the process chain due to 
given (fixed) system components. 
 
 

1. INTRODUCTION 

The process chain in optical measurement techniques can be 
subdivided into four main components: the camera system 
(camera geometry, illumination), the object range 
(configuration, complexity, signalisation), the network design  
(configuration, scales, control elements) and the analysis system 
(algorithms for image measurement, functional model for 
camera geometry and bundle adjustment). Caused by this 
complex process chain photogrammetric results include 
remaining deviations due to insufficiently known effects. 
 
Nowadays used digital high-resolution consumer cameras do 
not remain stable within an acceptable period of time, not 
within the period of image acquisition either. Therefore a new 
camera model was discussed and verified by Hastedt et al. 
(2002). An image-variant interior orientation is added to the 
functional model, which describes variation in principal 
distance and principal point. In order to compensate sensor 
based influences and remaining lens effects not considered 
within radial-symmetric lens distortion, a finite-elements sensor 
correction grid has been chosen. The mentioned camera model 
enables the use of instable digital high-resolution cameras for 
high precision purposes. 
 
Choosing the right object range for calibration and verification 
purposes, the German Guideline VDI/VDE 2634, 
recommending a special configuration, gives particular support. 
Rautenberg & Wiggenhagen (2002) discussed the verification 
of different optical measuring systems based on this guideline. 
Hastedt et al. (2002) followed up this verification concept and 
demonstrated remaining length dependent deviations within the 
length measuring error.  
 
In case of industrial measurement techniques retro-reflective 
material is used for signalisation combined with the use of ring-
lights. Dold (1997) demonstrated the problem of this material. 
In particular the marginal reflection is affected and does not 
meet the required exact reflection. The choice of the material is 

an important component of the photogrammetric process, 
particularly regarding the subsequent measuring algorithm.  
 
The optimization and specification of the network design has 
been discussed in several publications, e.g. Fraser (1984), 
Zinndorf (1986). Fraser (1984) explained the dependence on 
the Datum Problem (Zero-Order Design) and the Configuration 
Problem (First-Order Design). Regarding the optimization of 
the network design previous investigations and applied 
approaches have to be modified for recently used methods and 
new digital equipment and its advantages of flexible system 
components. One step towards this modification constitutes a 
simulation tool designed for special applications in crash-
techniques, which has been developed by Raguse & 
Wiggenhagen (2003). 
 
Having a closer look at the analysis system, two components are 
mainly influencing the systems result. First, belike one of the 
most important system parts, the algorithm (template matching, 
ellipse operator) measuring the centre of the imaged point mark 
has to be addressed. The importance of its influence is 
insufficiently known. Secondly the earlier described camera 
model. 
 
In order to gain the single forces of the described components 
in an economical process where the effects can be separated and 
modelled within an acceptable period of time and amount of 
work, a simulation technique based on Monte-Carlo-Methods 
has been developed and will be introduced by this article. The 
simulation method allows a closer look at single system 
components, their uncertainty and randomly distribution 
simultaneously to the estimation of their influence on the 
photogrammetric system. The analysis of the simulation results 
of this report will focus on the influence of the camera 
parameters and geometry as well as on the influence of the 
object space, herein the systems exterior. 
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2. MONTE-CARLO-METHOD 

The Monte-Carlo-Method (MCM) is a statistical simulation 
technique. Within the simulation process it generates a sample 
of non-interdependent variations of which the optimum will be 
chosen. The probability finding the absolute optimum increases 
with the number of simulation trials (Schmitt, 1977). Statistical 
simulation techniques are useful solving complicated linear 
systems. Furthermore the MCM can be used for solving 
problems, which focus on the evaluation of uncertainty and 
randomness of single system components, and additionally 
getting information about the whole systems behaviour, 
(Schwenke, 1999). Cox et al. (2001) divides the uncertainty 
evaluation process using MCM into two phases: Phase 1 
includes as formulation phase the declaration of the probability 
density function (pdf) (1) of the input quantities (2). 
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The pdf’s, together with the measurement model constitute the 
inputs to the calculation phase (Phase 2) for the Monte-Carlo-
Simulation process (Cox et al., 2001). Figure 1 shows the flow 
chart for a Monte-Carlo simulation process. 
 

Model Y=f(X) Probability density
functions g(X)

Number M of Monte
Carlo trials

M samples x1,...,xm
of X from g(X)

M model values
y = (y1,...,ym) = {f(x1),...,f(xm)}

M sorted model values
y(1),...,y(m)  

 
Figure 1. Flow chart of simulation process (Cox et al., 2001) 

 
After specifying the functional model to be simulated, an 
appropriate probability density function g(X) needs to be 
selected. In this case of simulating photogrammetric bundles a 
univariate normal distribution, known as Gaussian distribution, 
has been chosen. Using numerical pseudo-random number 
generators uniform distributed numbers within an [0,1]-interval 
are the basis for randomly controlled simulation processes 
(Schmitt, 1977). Most programming languages support the 
generation of uniform distributed random numbers, algorithms 
like Hill-Wichmann or Kiss are applicable, too. The Box-
Muller Algorithm (3) provides the generation of values from the 
standardized Gaussian distribution N(0,1) (Cox et al., 2001). If 
U1, U2 are independent and identically continuous uniform 
distributed ]1,0[U random values, the variables X1 and X2 

defined by 
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are then independent and identically univariate normal 
distributed ]1,0[N values (Robert & Casella, 2002). All normal 

density curves (Gaussian distribution curve, Fig. 2) satisfy the 
following property. 68.3% of the observations fall within 1 
standard deviation of the mean, 95.4% within 2 and 99.7% 
within 3 standard deviations of the mean for infinite random 
samples. Thus, for a normal distribution, almost all values lie 
within 3 standard deviations of the mean (Narasimhan, 1996). 
For finite-dimensional samples the normal distribution is 
replaced by the student’s distribution (Graf et al. 1998). 
 

 
Figure. 2 Gaussian distribution curve 

 
3. MODEL DEFINITION AND IMPLEMENTATION 

The simulation process is based on existing and evaluated 
image bundles (InputB) that are made for verification purposes 
of high-resolution digital cameras. Therefore the whole 
simulation process is based on the standard observation 
equations. In case of evaluating the simulation process 
considering the described extended camera model, the standard 
observation equation is extended by image-variant parameters, 
which is explicitly exposed at Hastedt et al. (2002). 
  
Due to many calculations caused by a high number of input 
values for one bundle adjustment, a step-by-step simulation is 
carried out. Caused by the definition of the C++ random 
number generator, all needed random numbers are first 
generated (Steps 1-2, Fig. 3). Dependent on the predefined 
number of Monte-Carlo trials (S), the process of data generation 
and calculation of the bundle adjustment will be executed S 
times. For each image I of one bundle the data generation will 
be executed as shown in Figure 3, Step 3.  
 
First, camera parameters to be modified are randomly changed 
within their standard deviation arisen from the input bundle. In 
order to be able to analyse single system components and their 
influence within their standard deviation, the random 
modification of the camera parameters is selectable. One 
parameter of interior orientation will then be recalculated (4). 
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with  )(rmp

 =  randomly modified parameter 

 )(ivp
 =  parameter’s input value of InputB 

 1nRNG  = normal distributed random value 

 ps
 = parameter's standard deviation of InputB 

 
Afterwards the image coordinates need to be recalculated. 
Using the standard observation equation the image coordinates 
will be generated from predefined object space to image space 
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considering the generated camera parameters and randomly 
modified itself within their a priori standard deviation (4). 
 

Starting point
(systems time)

srand()

Camera parameters
(ck, xh, yh, A1, A2, A3,

B1, B2, C1, C2)
to be modified in quoted order

RANDOM NUMBER GENERATOR
random value [0,Rand_MAX]: gmaxRNG1 = rand();

uniform random values [0,1]: gRNG1, gRNG2

BOX-MULLER Transformation
input: uniform distributed (gRNG1, gRNG2)
output: normal distributed (nRNG1, nRNG2)

Randomly modified (rm) camera parameter
e.g. ck(rm) = ck + (nRNG1 * sck)

Further camera
parameters to
be modified?

YES

NO

Calculation of image coordinates of one
image (standard observation equation)

Randomly
allowance with

respect to r’

Randomly allowance of image
coordinate x’,y’ = f(sx,y)

Allowance of image
coordinate due to
higher spread of

rad.sym. dist. for r’

NO

YES

Generation of Random Numbers as a
pre-process for simulation

For each image of the Input bundle for one simulation

Step 1

Step 2

Step 3

 
 

Figure 3. Flow chart of simulation data generation for one 
image I of one simulation process S 

 
Consideration of higher deviation of radial-symmetric 
distortion with respect to radial distance 
 
The radial-symmetric lens distortion A1, A2, A3 considers the 
highest influence of the distortion parameters. Due to its 
functional definition (5) 
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= radial-symmetric distortion 

 
the standard deviation resp. its influence increases with the 
radial distance like graphically shown in Figure 4 for the 
following example (Table 1). 

 
Kodak DCS 645 M – 35mm lens  

Sensor format: 36.648 x 36.648 mm² 
ck -35.6637 sck 0.0005 
xh -0.0993 sxh 0.0007 
yh 0.4083 syh 0.0007 
A1 -9.01E-05 sA1 1.56E-07 
A2 6.23E-08 sA2 6.88E-10 
A3 -1.48E-11 sA3 9.20E-13 
B1 2.37E-06 sB1 2.23E-07 
B2 -1.46E-07 sB2 2.21E-07 
C1 1.06E-04 sC1 3.30E-06 
C2 -1.04E-05 sC2 3.17E-06 

 
Table 1. Example camera paramter 

 

 
 

Figure 4. Standard deviation of radial-symmetric lens distortion 
 
Applying this effect to the simulation process, an additive is 
calculated for the concerning image coordinate. In order to 
pursue the effect of the modified lens distortion with respect to 
the superior input bundle parameter, the additive’s sign is 
generated of the difference of these two functional models. In 
the following this modification is called RADVAR-
modification. 
 

4. SIMULATION RESULTS AND ANALYSIS 

The results and analyses are based on free-net bundle 
adjustments (free camera geometry), restrictively with three 
fixed scales placed to the coordinate systems axes. Because of 
the random generation of data sets, different blunder might 
appear due to an instable new data bundle. Modern bundle 
programs like BUNDY (own development of our institute), 
which is used for this simulation process, have integrated and 
non-changeable blunder detection algorithms. Strictly speaking 
the simulation results are based on different object geometry. 
The importance of this effect does mainly appear when scale 
points are eliminated within the calculation process, which 
causes different scales in object space. Concerning the 
following results and analyses these false-scaled bundle results 
are eliminated. In the following the expression input value 
defines the randomly modified values of the simulation process. 
 
4.1 Camera geometry 

4.1.1 Input values: With respect to the example of the 
Kodak DCS 645 M (Table 1) the normal distributed input 
values for principal distance and principal point result as shown 
in the diagrams (Fig. 5,6). The principal distance input values 
span from 36.66187mm to 36.66556mm. Regarding its standard 
deviation sck = 0.0005mm, 0.4% of all values (200 simulations * 
60 images per bundle) lie outside the triple standard deviation, 
equally 0.4% of all values for the y-direction of the principal 
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point, which spans between –0.10194mm and –0.09664mm 
with reference to the standard deviation of sxh,yh = 0.0007mm. 
Due to a value range from 0.40561mm to 0.41106mm of the x-
direction of the principal point, 0.2% of all random values lie 
outside 3σ. The values of the principal point resulting inside 3σ 
are framed in the space of the rectangle of Figure 6. 
 

 
 

Figure 5. Deviation of principal distance of simulation process 
 

 
 

Figure 6. Variation of principal point of simulation process 
 
The distortion curve of the input values of one simulation 
(hence 60 input values due to 60 images per bundle) results in 
Figure 7. The variation of distortion for large radial distances 
yield to ±70µm for one simulated bundle (Fig. 8). Due to the 
random modified parameters A1, A2, A3 the distortion of 
maximum radial distance rmax = 26mm varies up to 80 µm 
regarding all simulated values (Fig. 9). Comparatively the 
variation of dr’ for a radial distance of 9mm yields to 6µm. 
 
The consideration of this effect for the affected image 
coordinates seems to be significant. In particular regarding 
higher deviation of radial symmetric lens distortion with respect 
to the radial distance, the consideration of this variation is 
essential. With regard to the distortion of the InputB value for 
dr’(rmax) = -0.4115mm the deviation of ±40µm has significant 
influence on the image coordinates. 
 
4.1.2 Output values of bundle adjustments: A closer look 
at the output values of the bundle adjustment with respect to the 
corresponding input values of the camera parameters 
demonstrates that the mean of the output values result in the 
InputB value for random modification (with reference to the 
example xh = -0.0993mm and Fig. 10). A generated random 
input value (4) with (6) 
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on the average results in a positive value for the difference of 
output and input value, vice versa to a negative value like 
illustrated in Figure 10. Ideally a straight line with a gradient of 
1 would be obtained if no interacting effects would be 
considered within the functional model, herein the standard 
observation equations. 
 

 
 

Figure 7. Lens distortion curve of one simulation 
 

 
 

Figure 8. Lens distortion for large radial distance 
 

 
 

Figure 9. Variation of dr’ for rmax of 200 simulations 
 

 
 

Figure 10. Differences of output and input value 
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4.2 Object space 

Due to simulated systems with non-real values the evaluation of 
the systems interior and exterior accuracy is based on the 
assumption that the simulated values vary within their standard 
deviation and therefore each random modified bundle 
represents a possible real bundle configuration. The systems 
exterior accuracy is represented by the error of length 
measurement (LME) of distances with respect to calibrated 
reference scales. The particular characteristics of the LME 
concerning the verification of optical 3D-measurement systems 
are described at VDI/VDE (2000). With respect to the example 
bundles, which are used for the simulation process and the 
analyses, the following LME are based on the reference testfield 
of our institute (Figure 11, interior cube).  
 

 
 

Figure 11. Photogrammetric testfield 
 
The cube contains within a range of approx. 1m³ 14 reference 
targets, which are calibrated by a CMM, therefore 92 reference 
scales for analysing purposes. The accuracy of the reference 
scales represented by 3D-coordinates XYZ resulted in 
RMS(XYZ)[Ref] = 0.015mm. With respect to the used camera 
system (Kodak DCS 645 M, example Table 1) and the network 
design an interior accuracy of one bundle can be expected as 
RMS(XYZ)[ObSp] = 0.040mm (7).  
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Because LME are influenced by both uncertainties, this results 
to an expected range of LME of ±60µm for 1σ, ±120µm for 2σ, 
±180µm for 3σ. 
 

 
 

Figure 12. LME of 196 simulations 
 

 
 

Figure 13. LME for 195 simulations (RADVAR-modification) 
 

 
 

Figure 14. LME of 2 results and overlaid InputB LME 
 
Figure 12 shows the resulting LME for 196 successful random 
bundles of each 60 images. The remaining LME result within a 
range of ±100µm. Regarding the simulated bundles considering 
RADVAR-modification (Chapter 3) the LME result in a range 
of ±150 µm (Fig. 13). Due to a high number of LME values the 
differentiation and analysis within one comparative diagram 
cause difficulties. Therefore 2 results (crosses) are exemplarily 
illustrated in Figure 14. These two diagrams are overlaid by the 
LME of the input bundle (InputB) that are displayed with dark 
dots. 
 
Summarizing the output values of the reference scales to a 
histogram, subdivided into 7 equal classes, the distribution 
results in an approximation of Gaussian distribution curves 
(Fig. 15).  
 

 
 

Figure 15. Histogram of reference scales  
 
Due to the normal distributed input values this resulting 
distribution was expected. Hence the simulation process works 
properly for normal distributed random modified bundles. This 
effect is confirmed by resulting normal distributed output 
values for reference points with respect to the point of origin. 
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5. CONCLUSIONS 

The simulation process introduced by this article allows the 
random modification of predefined input bundles. The 
generation of normal distributed values for the simulation 
process provides a defined number of photogrammetric 
bundles, which represent possible real bundle configurations. 
The results of the simulation process based on different input 
bundles show the successful implementation of the described 
simulation routine. The presented results are basis for further 
investigations, which are explicitly possible due to the 
simulation process. The Monte-Carlo-Method provides an 
economical process where the effects can be separated and 
modelled within an acceptable period of time an amount of 
work. 
 
As a result of the successful simulation method for 
photogrammetric bundles, single effects of the different systems 
components can separately be changed. The advantage of this 
method is implied in the possibility to modify specific 
parameters. For instance, systematic effects can be applied and 
the influence can be modelled for analysing purposes. The 
separation of the effects included to the process chain of optical 
measurement techniques can therefore be controlled under 
laboratory investigations and be supported by practical 
experiments. The bundles are only influenced by one single 
effect whose impact can then be determined of the bundle 
adjustments results.  
 

6. FURTHER INVESTIGATIONS 

Due to finite-dimensional samples first the student’s 
distribution will be applied to the simulation process. Likewise 
the distribution of image measurements need to be verified 
within practical trials and investigations of different 
illumination, signalization and image measurement techniques. 
The distribution of image coordinates is not dependent on the 
coordinate directions (x,y), but dependent on the imaging angle 
ω (Fig. 16). 
 

 
 

Figure 16. Imaging angle 
 
The practical experiments and investigations will be linked to 
the simulation process in order to separate the influences. 
 
Additionally the research will focus on the availability of high 
precise reference coordinates with regard to the verification 
concerning the German Guideline VDI/VDE 2634 for optical 
3D measurement systems and their process chain component 
specifications. 
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