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ABSTRACT: 
 
This paper discusses monitoring of slope deformations by vision metrology with a CCD camera. Reflective targets are placed over a 
slope, and their object coordinates is measured by a photogrammetric technique. Precision and sensitivity of slope deformation 
measurement using vision metrology are investigated. Deformation of targets placed on a slope was detected by measurement at two 
time epochs using hypothesis testing, and a series of equations is derived for the detection.  The strengths of the observation 
networks were evaluated from three view points, i.e. precision of target object coordinates, sensitivity of observations and reliability 
of observation.  Model experiments were carried out to verify the method’s validity.  A slope model of 1.1 m ×  0.5 m in size was 
constructed.  An reasonable exposure configuration is looked for, which is capable of detecting displacement of about 2 mm pro 30 
m. It is thus clarified that sufficient precision, sensitivity and reliability are achievable for practical use by a total of 12 exposures: 
four for each of three locations. 
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1. INTRODUCTION 

It is important to carry out periodic observations of slope 
deformations, both for disaster prevention during construction 
and for maintenance / management.  Methods for detecting 
slope deformation include measurement of object coordinates of 
targets placed in danger locations using GPS observation 
networks, measurement with observation networks of high 
precision total station, and installation of strain sensors such as 
optical fibers.  However, these methods have not been widely 
employed due to their long measurement time and/or high cost. 
This study proposes a method for measuring displacements with 
vision metrology using a digital camera (Fraser, 1984; Fraser, 
1985). 

In general it is hard to keep an ideal observation configuration 
for in-situ slope measurement, unlike for industrial 
measurements.   Network design seeks observation conditions 
that can give satisfactory measurement results.  However, it is 
difficult to obtain an analytical solution.  An observation 
configuration is often pre-determined by geographical 
observation constraints and prior knowledge of displacements.  
In this study a deformed location is assumed to be predictable in 
advance. And our purpose is to obtain an appropriate 
observation configuration to detect whether deformation has 
occurred on the slope.  From practical point of view, it is not 
assumed that any absolute control points are available, but 
assumed that a few of fixed points exist.  

 
 
2. DEFORMATION OBSERVATION MODELS AND 

DETECTION CAPABILITY CRITERIA  

 
 

Figure 1 shows a typical model of a slope and camera 
configuration.  The X, Y and Z axes are defined as horizontal, 
vertical and up-dipping directions against the sloping plane.  
Assuming that an unstable part of the slope is known, an 
environment for detecting whether Block B moved against the 
upper A region was considered.  In reality, there are many sites 
that are continuously monitored to determine whether or not 
existing cracks have extended.  It should be natural to place the 
targets in grid pattern both side of the boundary line as shown 
in Figure 1.  Because there is a limited number of photo taking 
positions on the road slope, it is assumed that a photo is taken 
from below the road looking up. 
In general, the following four points were taken into account in 
the deformation detection (Kiamehr, 2003;Benzao,1995). 
(1) Observation precision – This refers to the internal 

precision obtained from a variance-covariance matrix for 
the space coordinates.  The space coordinates need to 
satisfy the given precision requirements. 

(2) Deformation detection sensitivity – When object 
coordinates are measured with two epochs of time, the 
probability of first order and second order errors needs to 
be sufficiently low for the lower limit of the deformation to 
be detected. 

(3) Gross error detection reliability – When gross errors are 
included, observation networks need have enough 
redundancy to be able to detect and delete them.  Well 
known detection methods include the data snooping 
method, the balanced least square method and the robust 
estimate method (Koch, 1999a). 

(4) Observation cost – Although it is important, it is difficult 
to formulate so it is not take into account. 

 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. PRECISION OF TARGET COORDINATES 

Target number and object coordinates are expressed as 
P1(X1,Y1,Z1),P2(X2,Y2,Z2),,,.  Observation equations of bundle 
adjustment for the vision metrology at the two epochs of time 
(hereinafter expressed by suffix I and II) are shown below. 
 

PeXAxAv :++= 21                                (1) 
 
where v  is error vector; 1A and 2A are design matrices for size 
(m, q) and (m, n); x  is the vector for internal and external 
orientation, respectively; X is the space vector of the target; e 
is a discrepancy vector; and P  is a weight matrix.  This gives 
the weight of the observation for the image coordinate with unit.  
Observed values of image coordinates are assumed to be 
independent. 
By applying the least square method to Equation (1), and 
eliminating x , and equivalent observation equations are 
obtained as follows: 
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Because there are no absolute datum points, the rank of the 
observation equations decreases by 7.  Thus, constraints are 
added so that the mean variance of the space coordinates 
becomes a minimum.  The most probable value of space 
coordinates of the targets X̂ and variance-covariance matrix 

X̂Σ are given as: 
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where 2
0σ  is an observation variance of the unit weight.  2

0σ̂  is 

a posteriori estimate. The most probable value of object space 
coordinates should be at least smaller than the deformation 
criterion to be detected. 
 
 

4. SENSITIVITY OF DEFORMATION 
MEASUREMENT  

This paper adopts the simultaneous adjustment of object space 
coordinates of targets for epoch I and epoch II. Another 
alternative is to compare the coordinates of the targets by 
superposing the coordinates after independently adjusting the 
observations (Benzao). Because different cameras were used for 
the two epochs, internal orientation elements were set to be 
independent for each epoch.  The targets in Block A were 
common for the two epochs.  The targets in Block B are treated 
to different for each epoch and were tagged differently.  X  
denotes the common target coordinates, while IX and 

IIX denote the target coordinates numbered as different targets.  
The equation of the adjustment calculation is as follows: 
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A variance covariance matrix 
Ŷ

Σ of [ ]TT
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obtained in the same way as Equation (2) as follows: 
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To detect the deformation, the coordinate difference d is tested. 
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The variance covariance matrix dΣ  for d  is obtained as 

follows: 
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The relationship between the displacement vector d and the 
parameter used for the testing c  is given by: 
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If the number of points included in Block B is p and they have 
common deformation property, M  becomes a matrix of 3p x 3 
derived by gathering the p unit matrices. 
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A weight matrix MP is: 
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Figure 1. Model of slope and exposure configuration 
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The most probable value of c and its variance – covariance 
matrix are: 
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2
0σ  is a priori variance factor of unit weight obtained from 

Equation (1) or Equation (3).  Since the number of targets in 
Block B should be small, the postriori variance obtained from 
Equation (7) is not employed. 
To evaluate whether Block B was deformed, the null hypothesis 

00 =cH :  (No deformation occurring) 

is tested against the alternative hypothesis 

0ˆ: ≠= ccH a  (Deformation occurring) 

Assuming that the null hypothesis is correct, the tested 
statistical quantity is given with unknown 2

0σ  by: 
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where If and IIf  are f in Equation (2) for respective epochs or 

degrees of freedom of observations, and  cr  = rank ( cQˆ ) 

and ),( frF  means F-distribution with degree of freedom (r, f).  

if a value of T is larger than a value αT  at the level of 

significance α , the null hypothesis can be rejected. 
Secondly testing power is considered.  If the alternative 
hypothesis is correct, the tested statistics with unknown 
variance factor 2

0σ  becomes: 
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where F ′ is non-central F -distribution, and 2δ is a non-
centrality and is expressed as: 
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Because 2

0σ  is unknown, it is replaced by a priori variance.  A 

non-centrality 2
0δ  is determined so that the second kind error 

probability at αT equals 1- β for the given β .  Then, it is 

sufficient if the following is valid for every target. 
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5. RELIABILITY OF NETWORKS CAPABLE OF 
DETECTING GROSS ERROR  

The data snooping method tests whether there exists gross 
errors in the observations for Equation (1) in the object 

coordinates that the epoch of each time is tested with.  The 
symbol of epoch is omitted in the following equations.  It is not 
impossible to assume that there are multiple gross errors in a 
single set of observations.  However, here it is assumed that at 
most one gross error exists in the observations.  The following 
null hypothesis 
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is tested against the following alternative hypothesis. 
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where s∇  is magnitude of a gross error and a scalar.  kZ  is a 

(m, l) vector and denotes the location of the gross error.  The 
k -th element is set to 1 and the others to 0, if testing that there 
is a gross error in the k -th ( k  = 1, …., m) observation. 

 With the unknown variance of unit weight 2
0σ , the following 

series of equations hold for the alternative hypothesis (Koch, 
1999b).    
By specifying 7)( 2 −== nrArank A . 
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where ŝ∇ is the most probable value of s∇ , 

VQ ˆ  is a co-factor 

matrix of residuals, and Ω  is a sum of a square of 
discrepancies when there is no gross error, R  is the sum of a 
square of discrepancies accounted for by a gross error when 

there is a gross  error.  1Ω decreases, if there is a gross error, 

and hence T  increases, then the hypothesis is rejected (it is 
interpreted that there was a gross error.) 

The lower limit of non-centrality 2
0δ that satisfies the testing 

power β for a level of significance α is evaluated for a gross 
error to be detected.  After examining the network reliability 
against the individual observation j (j = 1, …., m), it is judged 
sufficient if the following is valid. 
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6. EXPERIMENTS   

6.1 Experimental environment  

To examine (1) precision, (2) sensitivity and (3) reliability for a 
typical slope measurement, a slope model of 1,100mm wide and 
500m high was made.  This was about 1/30 scale of a typical 
construction site of a slope along a highway.  Figure 2 shows 
one of images exposed in the following experiment displayed 
on the authors’ measurement system named “SUBARU”.  
A total of 34targets of 5 mm in diameter were placed at 200mm 
intervals.  This interval is a standard one between anchor bolts 
on road and tunnel slopes.  Three points are placed on a board 
at the central part, displacement of which is controllable.  The 
other 31 points were stationary.  A fixture in the right centre is a 
special device for automatic orientation (Hattori 2002). 
It is usually sufficient if a 2 mm displacement is detected over a 
30 m in width.  Thus, the object coordinate precision of 
0.050mm is envisaged to be at least necessary as practical to 
satisfy the other criteria.  The experiments were conducted for 
the case of no displacements and for the case where the board 
was shifted by 0.050mm in the Y direction (downward in Figure 
3).  The camera used was a Nikon D100 (3K ×  2K pixels) with 
a 20 mm lens.  A total of 20 images were taken.  Four were 
taken at each of five stations at a distance of 1,000 mm, as 
shown in Figure 1.  The four images were taken by rotating the 
camera by 90 degrees around the optical axis.  This set of 
images is called Set 20.  The set without displacements is called 
Set 20_00, while one with displacements is called Set 20_50.  
Similarly the set of 12 images taken at three stations, i.e. left, 
center and right is called Set 12.  And the set of eight images 
exposed at two stations, i.e. left and right is called Set 8.  
Magnitude of the displacement is denoted by _00 and _50 in the 
same way.  There were no differences in lighting or other 
physical conditions in these sets.  
The most probable values of interior orientation parameters and 
their variance-covariance matrices used through experiments are 
values obtained for simultaneous adjustment of Set 20_00 and 
Set 20_50. 
 
6.2 Precision of coordinate measurements   

The precision (standard deviation) obtained from the adjustment 
calculations for Sets 20_00, 12_00 and 8_00 are shown in Table 
1.  The increasing tendency of standard deviation almost 
satisfies the error propagation law.  The standard deviation for 
the image coordinates of the targets was about 0.0003 mm.  
However, an empirical value would be about 0.0005 mm even 
under good photo-taking conditions such as exposure, etc., 
based on the authors’ experiences.  Thus, it is thought difficult 
to achieve higher precision from the actual measurements.   
Furthermore, an ideal value obtained from the self-calibration 
was used for the prior calibration value of the Camera’s internal 
orientation element.  Thus, the results shown below should be 
discounted and regarded to be about two to three times higher.  
However, even so, Set 8 would ensure 1 mm precision at real 
scale. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 

 
 

 

Set 20_00 Set12_00   Set 8_00 
X (mm) 0.0050 0.0006 0.0078 
Y (mm) 0.0048 0.0058 0.0072 
Z (mm) 0.0148 0.0163 0.0179 
Average (mm) 0.0095 0.0106 0.0120 

 101 102 103 
X (mm) -0.0054 -0.0080 -0.0019 
Y (mm) 0.0340 0.0438 0.0353 
Z (mm) 0.0042 0.0053 0.0127 

 T  αT (95%) 0δ  δ for
βT ′ (20%) 

101 8.93 2.61 2.29 3.3 
101,102 10.08 2.10 3.18 3.7 
101,102,103 6.04 1.89 2.45 4.0 

 T  αT (95%) 0δ  δ for
βT ′ (20%) 

101 8.93 2.61 2.99 3.3 
101,102 10.08 2.10 3.18 3.7 
101,102,103 9.54 1.89 3.09 4.0 

 T  αT (95%) 0δ  δ for
βT ′ (20%) 

101 13.1 2.61 3.62 3.3 
101,102 16.4 2.10 4.05 3.7 
101,102,103 14.7 1.89 3.84 4.0 

 

Figure 2. Model a slope displayed on a screen of the 
measurement system “SUBARU” 

Table 1. Measurement precision of object coordinates for   
three exposure configurations 

Table 3. F-test for displacement monitoring 
(Set 8_00- Set 8_50) 

(Set 20_00- Set 20_50) 

Table 2. Measurement movement of the three points  
(Set20_00 and Set20_50) 

(Set 12_00- Set 12_50) 



 

6.3 Sensitivity of deformation detection 

Set 20, 12 and Set 8 were examined to check whether or not 
0.050 mm displacement could be detected.  Table 2 shows the 
measured movement of the three points, i.e. Points 101, 102 and 
103, in Block B obtained in the test to check whether the three 
points moved for Sets 20_00 and 20_50. Because there are no 
absolute datum points, the scale of these figures is approximate.  
The three points include not only parallel displacement but also 
rotational displacement.  
F value of Equation (12) was obtained to check whether or not 
the three Points 101, 102 and 103 had moved. The results are 
shown in Table 3.  F was calculated for the case where only 
Point 101 was tested and for the cases where two points and 
three points were tested. Testing capability decreased due to the 
rotational movement of the three points.  Table 3 shows F value 

αT  (95%) at α = 5%, square root of non-centrality 
0δ , and 

square root of non-centrality δ  that gives β = 80% at α = 5%.   
The following are found from Table 3. 
�  Sensitivity decreased when three points were used, because 

there were rotational components.  It is better in practice use 
to avoid assuming rigid body displacement of multiple points.  
Thus, testing should be conducted for each point..  

�   If the testing capability of β = 20% is required, observations 
of three points are necessary for Set 12. 

�  Even if testing capability is reduced, the same number of 
observations as Set 12 is necessary for testing each point. 

�  When three points are usable, there is sufficient sensitivity for 
Set 8. 

 
6.4 Detection of gross errors  

Results of F testing by the data snooping for Set 20_00 are 
shown in Figure 3. One gross error is detected.  An image of the 
gross error is shown in Figure 4.  The point where α = 5% for 

),( 11 −− ArmF  had about αT (5%) = 4, so the T  value 
of the detected gross error is sufficiently large. 
The distribution of the square root of non-centrality is 
investigated for Set 20_00, Set 12_00 and Set 8_00, assuming 
that a standard deviation of image coordinates three times as 
large as a priori value with unit weight, 0.0005 3× = 0.0015mm 
is provided to discrepancies.  Figure 5 shows an example of Set 
12_00.  Although the non-centrality slightly increases at both 
ends of the model, the mean, minimum and maximum figures 
are shown in Table 4. The effect of variations of camera 
configuration to the non-centrality is slow to react. A square 
root of non-centrality 2δ  for β =20% at the point where α = 
5%, is about 2.8. This is less than all values of every Set, so a 
sufficiently reliability is confirmed in any three sets. 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Set Mean Minimum Maximum 
Set 20_00              3.27 3.12 3.66 
Set 12_00   3.36 3.17 3.78 
Set 8_00    3.50 3.25 3.96 

Table 4. The square root of non-central  values (δ )     
for three exposure configurations 

 
Figure 3. Results of F testing for Set 20_00 

Figure 5. Distribution of square root of non-centrality; 
Distribution of non-centrality δ  when the square 
root of pre-variance of error sigma 3× = 
0.0015mm is set to every observed values for Set 
12_00. 

Figure 4. Image of target with gross error (Center 
of target is slightly deviated) 



 

7. CONCLUSIONS AND FUTURE ISSUES TO BE 
TACKLED  

This paper showed a procedure for detecting the displacement 
of slopes with vision metrology using a single digital camera.  
Assuming that targets were placed on the head of lock bolts 
applied to a slope along a typical highway with standard 
interval 600mm, an appropriate camera configuration, where 2 
mm displacement could be detected in 30m length, was 
investigated.  As a result, a total of 12 images or four images 
taken at each of three locations were shown to be clear the 
requirements in terms of measurement precision, sensitivity of 
displacement detection and reliability.   
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