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ABSTRACT: 

Advances in sensor technology and computing capabilities and modalities are revolutionizing close-range image collection and 
analysis for geospatial applications. These advances create the need for new ways of handling and processing video datasets at quasi 
real time rates. In this paper we present an innovative two step orientation technique for ground level motion imagery using a 3 
dimensional virtual model as control information. In the first step few select anchor frames are orientated precisely via an image 
orientation-through-queries approach. In the second step, intermediate frames are orientated relatively to these anchor frames 
through an innovative analysis of building façade variations in them. Combined, these two steps comprise a complete approach to 
motion imagery orientation using a VR as control information. 
 

1. INTRODUCTION 

During the last years we are experiencing great advances in 
sensor technology and wireless communications. That progress 
created new data collection schemes, in which users can collect 
data roaming a scene with a GPS enabled digital camera or 
camcorder. These collection schemes create a vast amount of 
data that has to be stored and processed. As a result new 
techniques have to be developed that allow for fast processing 
of motion imagery, either offline or in a quasi real time manner. 
In the context of this paper we use the term motion imagery to 
refer to imagery collected at video rates, or even as select 
frames captured a few seconds (or even minutes) apart, using 
either a video or a still camera. Examples of such datasets 
include imagery collected by hand-held cameras captured while 
roaming an urban environment, or imagery collected by a 
network of fixed sensors (e.g. surveillance cameras) monitoring 
a scene. The computing capabilities of mobile devices are also 
improving with the advances in technology, creating the 
opportunity of location based computing. In order to be able to 
acquire modeling information from such data we have to use 
some kind of control information, the traditional techniques of 
acquiring control points are still time consuming. In addition 
research advances in the development of 3 dimensional virtual 
models of large scale complex urban scenes have resulted in the 
creation of impressive and complex VR models. These 
advances provide opportunities for the integration of such 
models in motion imagery analysis. The accuracy and 
complexity of these models provide an excellent use as control 
information for motion image processing. 
 
In this paper we present an approach for the recovery of sensor 
orientation and position information using a two-step 
procedure. We focus on the use of motion imagery datasets (at 
quasi-video rates) captured by sensors roaming an urban scene. 
In such a scenario the orientation variations among successive 
frames are small. The first step of our approach entails the 
comparison of object configurations depicted in a frame to 

corresponding configurations identified in the VR model. This 
provides excellent approximate values that are then refined 
(using precise matching) to provide the orientation parameters 
for that frame. This is a process that can be performed for few 
anchor frames (e.g. every few minutes) to provide accurate 
orientation information at these instances. For subsequent 
frames we estimate their orientation by determining their 
variation from the nearest anchor frames. To do so we use 2-D 
transformations of objects depicted in these frames, and 
orientation differences between the frames computed using 
vanishing points to translate these transformation parameters to 
orientation variations. Combined, these two steps comprise a 
novel process of progressive orientation recovery that meets the 
computational requirements of mobile mapping applications. 
Most of the known techniques for computing relative 
orientation need points in different planes. In [Simon and 
Berger, 2002] a similar approach is presented in which they 
estimate the orientation of an image using the previous image of 
known orientation and a planar homography between these two 
images. In another approach [Chia et al, 2002], compute the 
relative orientation based on one or two reference frames, 
exploiting epipolar geometry and using recursive methods. Our 
approach tries to solve this problem using points from only one 
plane, and using linear methods. Furthermore the information 
acquired during the orientation process can be used to update 
the existing virtual model. Such update procedure includes 
change detection both in geometric and radiometric content, in 
the existing objects and detection of new objects or deletion of 
objects in the model. In our paper we present the approach for 
the orientation estimation in the intermediate frames.   
 
The paper is organized as follows. In section 2 we present an 
overview of our navigation-through-virtual models approach. In 
Section 3 we present the indices we use for comparing the 
intermediate frames with anchor frames for orientation 
recovery. Experimental results in section 4 demonstrate the 
performance of our approach and conclude with future work 
plans in section 5. 



 

 
2. MOBILE IMAGE ORIENTATION: GENERAL 

OVERVIEW 

We assume that we have a GPS-enabled camera roaming a 
scene that is partially (or completely) covered in a 3D model 
database. Sensor imagery is tagged by a time stamp, while the 
GPS sensor allows us to tag each frame with approximate 
position information. Our objective is to determine the camera’s 
pose and update the sensor’s location. 
 
Our approach can be characterized as a two step procedure:  
− the first step is the use of an image query-based scheme 
to determine the approximate location and orientation of few 
select anchor frames, and  
− the second step entails the relative orientation of the 
remaining frames (relative to the anchor frames) 

Thus we proceed by determining directly the precise orientation 
parameters of few anchor frames, and then determine minor 
corrections to these parameters in order to express the 
orientation of the intermediate frames. This is visualized in Fig. 
1. Anchor frames may be selected in pre-determined temporal 
intervals (e.g. once every a couple of minutes), or at pre-
determined spatial intervals (e.g. once every 50 meters).  
 

 
Figure 1 Proposed two step approach scheme  

 
As we can see the proposed scheme has a similarity with the 
MPEG compression standards. In MPEG compression few 
frames in the video sequence are chosen to act as anchor 
frames, and they are compressed as JPEG files. For the rest of 
the frames the MPEG compression scheme saves only changes 
between consecutive frames. Drawing from this MPEG 
philosophy we proceed by computing directly accurate sensor 
position information in few select instances (the equivalent of 
anchor frames). The orientation of intermediate frames is 
recovered by analyzing changes in image content (location, and 
size of object facades in them).  
 
In figure 2 we can identify the main algorithmic steps of our 
approach. We can identify two clusters of processes, 
corresponding to anchor frame processing (left) and 
intermediate frame pose estimation (right). Our work on anchor 
frame orientation estimation through image queries has been 
presented in some extent in [Georgiadis C. et al, 2002]. Briefly, 
we should mention here that our innovative approach integrates 
image queries with image registration and sensor orientation. 
Classic image queries have as a goal to retrieve images from a 
database based on certain image characteristics. In our approach 
we use image queries to recover sensor orientation information 

by comparing abstract metrics of a scene configuration in an 
image to the corresponding configuration in a geospatial 
database. This is complemented by an adjustment of co-
linearity equations to determine sensor position. Thus we 
integrate image retrieval and orientation estimation in a single 
step.  
 
The advantage of this orientation-by-queries approach to anchor 
frame orientation is that it produces very accurate results, while 
its drawback is that it requires good approximate values in order 
to initialize it. However, this is in accordance with our overall 
assumed modus operandi. As we assume the use of a GPS-
enabled camera in an urban environment, it is realistic to 
consider that the accuracy of the initial approximations of 
sensor locations is in the order of 3-10 meters. This is 
visualized in Fig., 3, with the big red sphere representing the 
uncertainty of the approximation (the actual location can be 
anywhere within this sphere).  
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Figure 2 Approach outline 
 

We already have approximate values for the position of the 
camera by using the GPS sensor, but we don’t have any 
information about the rotation angles. The nature of the 
problem (close range applications) makes the whole system 
sensitive to the rotation angles and noise. We assume that the 
rotation of the camera axis will be near to zero so our problem 
is to find the approximate value just for one rotation angle, 
specifically the rotation angle around the Z axis in a world 
reference system, which basically the azimuth the angle 
between the true north and where our camera is looking. 



 

 
Figure 3 Visualization of initial sensor position and orientation 

uncertainty 
 
In order to estimate this angle we use a queries scheme instead 
of classical photogrammetric techniques in the pixel level. The 
query scheme is a two-part process, one part using single object 
query scheme while the second part processes a multi object 
configuration. For further information on our single query 
approach the reader can refer to [Stefanidis A. et al, 2003], 
while for the multi object queries [Stefanidis A. et al, 2002]. 
After the estimation of the parameters we run a least squares 
adjustment and produce accurate coordinates for the camera 
position and rotation. 
 

 
Figure 4 Representation of the anchor frame procedure 

 
In figure 4 we can see a representation of how the anchor frame 
orientation scheme works. The top image is the one captured by 
our sensor, in the middle image we can see the panorama 
created with the help of the virtual model. The highlighted 
portion of the middle image depicts the position of the captured 
image as computed using the single and multi object queries. 
Finally the bottom image shows the sensor’s location and 
orientation after precise matching is performed in the query 
results.  
 
In intermediate frame orientation, which is the focus of this 
paper, we aim to recover the orientation of intermediate frames 
by orienting them relative to the nearest anchor frames. In order 
to accomplish this goal we developed a framework to translate 
object representation variations (i.e. changes in an object’s size, 
location, and orientation within an image frame relative to the 

same object’s image in an anchor frame) into orientation 
variations (i.e. changes in the orientation parameters of the 
corresponding frame relative to the anchor frame). Thus we 
develop a dynamic image orientation scheme that allows us to 
recover image orientation for every frame in our feed using 
few, select oriented anchor frames. The nature of our data 
collection modus operandi (sensors roaming urban scenes) 
implies that small differences will occur in sensor location and 
rotation between consecutive frames.  
 
This process is visualized in figure 5 where we see a portion of 
a 3-dimensional virtual model of an urban scene. Using anchor 
frame orientation in an orientation-through-queries process we 
have already determined the orientation of the sensor in 
position A. using the second step we will determine the 
orientation in position B. In figure 6 we can see the two 
captured images, left image captured in position A, and right 
image captured in position B. Our objective in this case is to 
compute a relative orientation between the two captured images 
and using the orientation information about position A to 
compute the new position B. 

 
Figure 5   Portion of 3 dimensional Virtual model 

 

           
 

Figure 6 Consecutive frames captured from sensor, with the 
façade of a building delineated in them. 

 
   3. PROPOSED APPROACH 

In this section we are going to analyze the procedure that allows 
the computing of relative orientation between two consecutive 
frames. For that procedure we assume that we have absolute 
orientation information for the first image and also that in the 
first image we know the real world coordinates for the objects 
that appear in it. We also assume that we for each building 
façade we know their corner points in both images. Our 
observations are object facades, which we consider to be planar 
elements.  We are going to follow a two step procedure. The 
first step is to compute the rotation angles between the two 
sensor positions, while the second one will allow us to compute 
the translation between the two sensors. 
 



 

For the computation of the rotation angles in each image we use 
vanishing points. The advantage of using vanishing points is 
that can work with only on object in the image and in the worst 
case scenario with only a portion of a building façade provided 
that we can find lines parallel to the outline of the building. We 
assume a local coordinate system in which the X axis of the 
image is the X axis in the building façade (width of the façade), 
the Y axis of the image is parallel to the Y axis in the building 
façade (height of the façade) and the Z axis is the distance from 
the sensor position. The two coordinate systems are shown in 
figure 7. 
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if we name the denominator of equation 5 A and the 
denominator of equation 6 B, and take the ratio of the two 
equations we have: 
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Using equation 7 we can compute the range of the second 
image knowing the range of image 1, the coordinates for a 
known line segment in both images, and the rotation angles of 
the images. From these equations we are able to derive the DZ 
component in our local coordinate system. 
 
We proceed by creating a quasi rectified version of the two 
images using the rotation angles. In order for the image to be 
fully rectified we have to use the projective transformation. In 
our case we use the rotation angles to rotate the image points in 
plane parallel to the plane of the façade. As a result the two 
quasi rectified images have the same orientation. In figure 10 
we can see the procedure, in the left image we have the two 
sensor position and the rotation angles as recovered from the 
vanishing points, while in the right image we can the system 
after the quasi rectification procedure. We will use these two 
images to compute the translation of the sensor along the X and 
Y axis of our coordinate system. 

Figure 7 The two coordinate systems 
 
As shown in [Petsa E, Patias P., 1994] we are able to calculate 
the three rotation angles in a local coordinate system parallel to 
the object using only two directions on the image plane. In 
figure 8 we can see the determination of the vanishing points. 
The rotation angles and focal length can be computed with the 
following equations: 
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Where Z-Z0 is the range of the image in our local coordinate 
system and refers to DZ. Computing the scale of the four points 
in the two images we can compute a mean scale for each image 
and furthermore to compute a relative scale between the two 
images. In order to compute the DY, and DX we will use the 
translation of the points from the quasi rectified images, and the 
scale factor between the two images and the scale of the known 
orientation image. 

 
Figure 9 Vanishing Points computation 

 
 After the determination of the rotation angles we proceed in the 

computation of the translation. In order to achieve this task we 
use the previous information of the rotation angles. From the 
rotation angles and a known line segment in one image we can 
compute the new distance of the sensor from the object. 

ijiSij dxScRDX
ij

**=  (10) 

ijiSij dyScRDY
ij
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Where RSij is the relative scale between the two images, Sci is 
the scale of image i and dxij, dyij is the translation of the points 
in the quasi rectified images. 
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4. EXPERIMENTS  

In order to test our approach we contacted a series of 
experiments. In this setup we only used just a plane object in 
our image. We created a simulated dataset for 16 different 
sensor positions. For each position we have the coordinates in 
real space and the supposed rotation angles. In figure 11 we can 
see a top view of the setup and how an image is viewed in 
station 7, while in table 1 we can see the orientation values for 
each station in the local coordinate system. In this setup we 
only processed the bold façade of the building. 
 

 
 

Figure 11 Simulation dataset setup. 
 
 

 Table 1 Station Orientation Information 
 
In Table 2 we can se he results for the recovery of the rotation 
angles using the vanishing points approach. we can see that the 
angles ω, κ were recovered very accurate while for the rotation 
φ the highest error in the recovered accuracy was around 2 
degrees, which is accurate enough for our applications. We also 
run the full algorithm in a different dataset created using the 
same stations but only φ, and κ rotation angles. The results are 

presented in Table 3. We can see that for a total traveled 
distance of 130 meters the errors are in the neighborhood of 
centimeters.  
 

Table 2 Accuracy in rotation recovery 

 Errors 
 φ deg ω deg κ deg 
Station 1 -0.054689 0.000071 -0.000001 
Station 2 -0.283546 -0.000084 -0.000002 
Station 3 -0.769276 -0.000021 0.000000 
Station 4 -1.566688 0.000032 0.000005 
Station 5 -2.689448 -0.000085 0.000001 
Station 6 -1.763289 -0.000073 0.000003 
Station 7 -0.992982 -0.000091 -0.000002 
Station 8 -0.431297 0.000083 -0.000001 
Station 9 -0.102587 -0.000026 -0.000003 
Station 10 -0.000005 -0.000054 0.000000 
Station 11 -0.083557 -0.000070 -0.000002 
Station 12 -0.280196 -0.000008 0.000001 
Station 13 -0.489229 -0.000007 -0.000002 
Station 14 -0.591965 -0.000010 0.000002 
Station 15 -0.466409 -0.000102 -0.000002 
Station 16 0.000000 0.000000 0.000000 
Std 0.731904 0.000055 0.000002 

 
 

 Errors X m Errors Z m Errors Y m 
    
Station15 0.049373 0.000000 -0.000012 
Station14 0.095555 0.000000 -0.000401 
Station13 0.740550 -1.163700 0.067356 
Station12 0.080210 -0.000100 -0.014127 
Station11 0.106520 -0.000100 -0.016784 
Station10 0.123070 -0.000100 -0.021921 
Station9 0.129600 -0.000200 -0.027239 
Station8 0.126160 -0.000200 -0.029113 
Station7 0.113720 -0.000300 -0.030154 
Station6 0.093610 -0.000300 -0.030232 
Station5 0.067760 -0.000400 -0.029265 
Station4 0.038540 -0.000500 -0.027232 
Station3 0.008150 -0.000500 -0.024185 
Station2 -0.020780 -0.000600 -0.030226 
Station1 -0.046070 -0.000700 -0.036643 
    
Std 0.175498 0.290207 0.024736 

 X0 (m) Z0 (m) 
Y0 
(m) 

φ 
deg 

ω 
deg 

κ 
deg 

Station 1 -83.8307 -29.5928 4 -75 5 30 
Station 2 -81.2074 -37.9129 5 -70 10 25 
Station 3 -77.8689 -45.9727 6 -65 15 20 
Station 4 -73.8407 -53.7109 7 -60 20 15 
Station 5 -69.1533 -61.0685 8 -55 25 10 
Station 6 -63.8426 -67.9896 6 -50 20 5 
Station 7 -57.9488 -74.4216 5 -45 15 0 
Station 8 -51.5169 -80.3153 4 -40 10 -5 
Station 9 -44.5958 -85.6261 3 -35 5 -10 
Station 10 -37.2381 -90.3134 2 -30 0 -15 
Station 11 -29.5 -94.3417 1 -25 -5 -20 
Station 12 -21.4402 -97.6801 0 -20 -10 -25 
Station 13 -13.12 -100.3035 -1 -15 -15 -30 
Station 14 -4.603 -102.1916 -2 -10 -20 15 
Station 15 4.013 -103.3303 -1 -5 -25 45 
Station 16 12.7619 -103.7109 0 0 0 0 

Table 3 Accuracy in Position recovery 
 

5. FUTURE WORK 

In this paper we presented a method for the recovery of 
orientation between two consecutive frames using a method that 
first determines the rotation angles and proceeds to determine 
the translation between the two frames. Using the presented 
approach we achieved very good results for the recovery of the 
rotation angles but we used very accurate measurements in the 
image points. We also achieved very good results in position 
recovery, but we took into account only two of the three 
rotation angles in the creation of our dataset. Another aspect of 
the created dataset is that we only used one object (building 
façade) in our approach. We are planning to further examine the 
behavior of algorithm by creating datasets with different cases 
of pathways. We will also like to examine how the algorithm 
works with the addition of noise in image measurements, so we 
will introduce noisy images and different kind of lens distortion 
in our model, and the interior orientation parameters. Finally we 
would like to explore the behavior of the algorithm when 



 

multiple objects are present in the image and how the 
combinations of multiple solutions each for a different object 
affect the accuracy of the results. 
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