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ABSTRACT: 
 
Illegal oil spill discharges cause serious damage to marine ecosystems. Synthetic Aperture Radar (SAR) images are extensively used 
for the detection of oil spills in the marine environment, as they are not affected by local weather conditions and cloudiness. 
However, radar backscatter values for oil spills are very similar to backscatter values for very calm sea areas and other ocean 
phenomena because dampen capillary and short gravity waves is caused by the presence of an oil spill. Several studies aiming at oil 
spill detection have been conducted. Most of these studies rely on the detection of dark areas, which are objects with a high Bayesian 
probability of being oil-spills. The drawback of these methods is a complex process, because there are many non linearities involved. 
The use of Neural Networks (NNs) in remote sensing has increased significantly as NN can simultaneously handle non-linear data of 
a multidimensional input space. Furthermore, NN do not require an explicitly well-defined relationship between input and output as 
they determine their own relationships based on input/output values. In a previous study, the potential of the Multilayer Perceptron 
(MLP) neural network and different training algorithms for oil spill classification were investigated. In this paper another approach 
of NN use in oil spill detection is presented. The Radial Basis Function (RBF) neural network is investigated in order to be 
compared with the Multilayer Perceptron. For both networks, several topologies are examined and their performance is evaluated. 
MLPs appear to be superior than RBFs in detecting oil spills on SAR images.  
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1. INTRODUCTION 

Oil spills are seriously affecting the marine ecosystem and cause 
political and scientific concern since they have serious affect on 
fragile marine and coastal ecosystem. The amount of pollutant 
discharges and associated effects on the marine environment are 
important parameters in evaluating sea water quality. Satellite 
images can improve the possibilities for the detection of oil 
spills as they cover large areas and offer an economical and 
easier way of continuous coast areas patrolling. Synthetic 
Aperture Radar images have been widely used for oil spill 
detection. The presence of oil film on the sea surface damps the 
small waves and drastically reduces the measured backscatter 
energy, resulting in darker areas in SAR imagery (Martinez and 
Moreno, 1996; Pavlakis et al, 1996;  Kubat et al, 1998; Anne et 
al, 1999; Frate et al, 2000; Gade et al, 2000). However, dark 
areas may be also caused by other phenomena, like locally low 
winds, currents or natural sea slicks called ‘lookalikes’.  
 
Several studies aiming at semi-automatic or automatic oil spill 
detection can be found in literature (Martinez and Moreno, 
1996; Ziemke, 1996; Kubat et al, 1998; Anne et al, 1999; Frate 
et al, 2000 ; Gade et al, 2000, Benelli and Garzelli 1999; Lu, 
1999, Topouzelis et al, 2002). These studies first detect 
manually or with threshold filtering dark areas on the image 
which could be oil spills. If not supported by visual inspection 
(Lu et al, 1999; Frate et al, 2000), dark areas detection 
prerequires a threshold wind speed (Anne, 1999; Gade et al, 
2000) sufficient to generate the sea state (Frate et al, 2000). The 

extent of the sea state conditions is consequently included in the 
estimation of the strength of the contrast signal that an oil spill 
yields. When dark areas are detected, statistical classification 
methods (e.g. Bayesian) are applied to characterize the dark 
areas as oil spills or ‘lookalike’ objects. For this purpose, 
estimation of a number of spectral and spatial features of the 
dark areas (geometric, surrounding, backscattering, etc.) is 
prerequired. In relevant studies, classification methods are 
usually applied only on the dark areas, considering them as 
objects (Anne, 1999; Frate et al, 2000), whilst dark areas 
detection methods are based on pixel-basis processing. The 
transition from the detection step to the characterization one 
needs user interference in terms of masking, coding, and 
selecting the dark objects in order to proceed to classification 
processing (Topouzelis et al, 2002). 
 
Neural networks have been employed to process remote sensing 
images and have achieved improved accuracy compared to 
traditional statistical methods (Kanellopoulos, 1997; Kavzoglu 
and Mather, 2003). This success derives from neural network 
characteristics. A single neuron can be compared with a 
multivariance linear regression model, which works without any 
a priori assumptions concerning the statistical nature of the data 
set. The massive parallel work of several neurons gives further 
capabilities for solving complex problems in the remote sensing 
area. Moreover, NN are able to learn from existing examples, 
making the classification adaptive and objective 
(Kanellopoulos, 1997).  
 



 

Neural networks differ from statistical approaches in four main 
aspects (Bishop, 1995; Kanellopoulos 1997): i) problem and 
model complexity: NN deal with large amounts of training data 
with higher complexities whereas statistical methods use much 
smaller training sets, ii) goal of modelling: when using neural 
networks, the main objective is the representation of 
complicated phenomena rather than explanation. iii) no 
assumption about data distribution: NN do not make any 
explicit a priori assumptions about the underlying distribution 
of the data, iv) robustness and quality of prediction estimation: 
NN methods appear more robust than statistical ones with 
respect to parameter tuning. 
 
The general objectives of this project have been to describe, 
demonstrate and test the potential of artificial neural networks 
(NNs) for oil spill detection using SAR satellite images. In this 
paper, we investigate two different NN architectures and 
compare their performances. Two well known NN models, 
Multilayer Perceptron (MLP) and Radial Basis Function (RBF) 
neural networks are examined in order to evaluate their 
performance in oil spill detection. The main difference between 
the two architectures lies in the nature of the input–output 
relations of their nodes. In a previous study (Topouzelis et al, 
2003) a first attempt to examine the efficiency of MLP-NN was 
performed.  MLP networks are based on nonlinear sigmoid 
functions and on combinations between them. RBF networks 
are three-layer networks, whose output nodes form a linear 
combination of the basis functions (usually of the Gaussian 
type) computed by the hidden layer nodes. The main aim of the 
present work is to detect the best topology for our network and 
the algorithm better fit to our classification problem. The term 
topology refers to the structure of the network as a whole, 
specifying how its input, output and hidden units are 
interconnected.  
 
The paper is organized in six sections. In next section (section 
2) we state the problem of oil spill detection from SAR images. 
Section 3 presents a brief summary of MLP and RBF neural 
network architectures and training algorithms. In Section 4 a 
dataset description is given, presenting SAR images and 
datasets derived from them. Results and conclusions follow is 
sections 5 and 6, respectively.   
 
 

2. PROBLEM DESCRIPTION 

In this section, we briefly state the problem of oil spill detection 
from remote sensing data acquired by active sensors. We start 
by defining the direct problem on oil slick detection. Then we 
describe the general methodology used and we compare it with 
the neural network approach.  
 
Oil is one of the major pollutants of the marine environment. It 
may be introduced in diverse ways, such as natural sources, 
offshore production, sea traffic, tanker accidents, atmospheric 
deposition, river run off and ocean dumping (Pavlakis 1996). 
The aim of the present work is to describe a methodology for 
monitoring illicit vessel discharges to the sea surface, including 
ballast water, tank washings and engine room effluent 
discharges.  
 
SAR systems are extensively used for the determination of oil 
spills in the marine environment, as they are not affected by 
local weather condition and cloudiness and occupy day to night. 
SAR systems detect spills on the sea surface indirectly, through 
the modification spills cause on the wind generated short 

gravity – capillary waves (Alpers et al, 1991).  Spills damp 
these waves which are the primary backscatter agents of the 
radar signals. For this reason, an oil spill appears dark on SAR 
imagery in contrast to the surrounding clean sea. Other 
phenomena which could cause dampen of short gravity-
capillary waves are (Alpers, 1991): organic film, grease ice, 
wind front areas, areas sheltered by land, rain cells, current 
shear zones, internal waves and upwelling zones. The existence 
of a light wind, sufficient to generate short gravity – capillary 
waves (Alpers et al, 1991) is necessary in order to detect spills. 
It is well known that oil spill detection by radar is limited by the 
sea state. Too low sea states (�2m/sec), as mentioned above, 
will not produce sufficient sea surface roughness in the 
surrounding area to contrast to the oil, and very high sea states 
(�12m/sec) will break up the oil spills, creating scatters 
sufficient to block detection. In their vast majority, the ships 
discharge their oily effluents en route, leaving back linear oil 
spills. This linearity is the most targeted feature by SAR image 
interpreters when they trace oil spills (Pavlakis, 2001).  
 
Several studies aiming at oil spill detection have been 
implemented (Martinez and Moreno, 1996; Ziemke, 1996; 
Kubat et al, 1998; Anne et al, 1999; Frate et al, 2000 ; Gade et 
al, 2000, Benelli and Garzelli 1999; Lu, 1999, Topouzelis et al, 
2002). Most of these studies rely on the detection of dark areas, 
which are objects with a high probability of being oil-spills. 
Once the dark areas are detected, classification methods based 
on Bayesian or other statistical methods are applied to 
characterize dark areas as oil spills or ‘lookalike’ objects. 
Characteristics (geometric, surrounding, backscattering, etc.) of 
spectral and spatial features of the dark area are used in order to 
feed the statistical model. The drawback of these methods is a 
complex process not fully understood, as it contains several 
nonlinear factors. The development of an inverse model to 
estimate such parameters turns out to be very difficult.  
 
Recent work has demonstrated that neural networks (NNs) 
represent an efficient tool for modelling a variety of nonlinear 
discriminant problems. NNs may be viewed as a mathematical 
model composed of several non-linear computational elements 
called neurons, operating in parallel and massively connected 
by links characterized by different weights (Bishop, 1995; 
Ziemke, 1996; Kanellopoulos et al, 1997; Frate et al, 2000). 
NNs have been successfully used for remote sensing 
applications (Bishop, 1995; Kanellopoulos et al, 1997; Frate et 
al, 2000; Kavzoglou and Mather 2003; Uiu and Jensen, 2004) 
 
For oil spill detection NNs have been used (Zimke and Athley, 
1995; Ziemke, 1996; Frate et al, 2000) in different perspective 
from the present work; one using airborne data (SLAR) and 
another for dark object classification. The innovation of the 
present study is the use of the original SAR image and some 
features derived from it as inputs to NN. The network is called 
to determine if the image contains an oil spill or not. 
 
 

3. NEURAL NETWORK ARCHITECTURE AND 
TRAINING ALGORITHMS 

In the present study two different networks are tested in order to 
evaluate the one most suitable for oil spill detection: Multilayer 
Perceptron (MLP) and Radial Basis Function (RBF) networks. 
Both of them belong to the feed-forward networks where there 
is no feedback connection between layers and no connections 
between units in the same layer. Moreover, both work in a 
supervised manner, are very good in classification and inversion 
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problems, easy to use, work as universal approximators, have 
very good nonlinearity capabilities and are the most used in the 
feed forward network family.  
 
3.1 MLP neural networks 

The most popular class of multilayer feedforward networks is 
multilayer perceptron. MPL usually comprises one input layer, 
one or two hidden layers and one output layer. As an example, a 
four-layer network with two hidden layers can be seen in Figure 
1. In the present study, input nodes correspond to bands of 
imagery, hidden layers are used for computations and output 
layers correspond to the classes to be recognised. Each 
individual neuron is the elemental unit of each layer. It 
computes the weighted sum of its inputs, adds a bias term and 
drives the result thought a generally nonlinear activation 
function to produce a single output. The most common 
activation function is the sigmoid activation function, also used 
in the present study. There are several training algorithms for 
MLP. In a previous study (Topouzelis et al, 2003), four 
algorithms of the gradient decent family were examined: 
Backpropagation (BP), Conjugate Gradient (CG), Resilient 
back propagation (Rprop) and Quick Backpropagation 
(Quickprop). A hybrid algorithm of backpropagation algorithm 
and conjugate gradient found to work fast and reliably 
(Topouzelis et al, 2003) was selected for the present study.  
 

 Figure 1.  An example of MLP network 
 
3.2 RBF neural networks 

The Radial Basis Function neural network, which has three 
layers, can be seen as a special class of multilayer feed-forward 
networks. Each unit in the hidden layer employs a radial basis 
function, such as Gaussian Kernel, as the activation function. 
The output units implement a weighted sum of hidden unit 
outputs. The input into a RBF network is nonlinear. The output 
is linear. The radial basis function (or Kernel) function is 
centered at the point specified by the weight vector associated 
with the unit. Both the positions and the widths of these kernels 
are learned from training patterns. Each output unit implements 
a linear combination of these radial basis functions. Figure 2 
illustrates the architecture of RBF network. Coefficients �ji 
represents the centers of radial basis and wkj are the weighting 
coefficients of the linear combination.  
 
There are a variety of training algorithms for the RBF networks. 
In the present study, Dynamic Decay Adjustment (DDA) 
Algorithm is used. DDA algorithm uses constructive training 
where new RBF nodes are added whenever necessary. It is 
characterized by fast training (because a few epochs are needed 

to complete training) and guaranteed convergence (SNNS 
1998). The main characteristic of the algorithm is that when a 
training pattern is misclassified, either a new RBF unit 
introduced or the weight of an existing RBF is incremented.  
 

Figure 2.  An example of RBF network 
 

Because of the combination of their non-linear characteristics, 
RBF networks are commonly used in complex applications and 
are considered superior to perceptrons networks. In complicated 
cases perceptrons require many neurons, computational power 
and time in order to calculate the hyperplanes which distinguish 
the classes wanted. The main difference in the way that the two 
neuron network models try to solve a classification problem is 
illustrated in figure 3. MLP calculates hyperplanes in order to 
separate classes while RBF uses kernels to group pixels from 
the same class. To our knowledge, comparisons of different 
neural network models for the problem of oil spill detection are 
not available in the literature. In this paper, we present a 
comparison between the two commonly used neural network 
models, RBF and MLP neural networks.   
 

Figure 3.  MLP and RBF classification approach 
 
 
 

4. SAR IMAGES AND DATASET DESCRIPTION    

4.1 General overview 

The method developed was applied on an ERS 1 image 
captured on 1/6/1992 (orbit 4589, frame 2961). The image 
represents a rough sea surface, efficient to produce a strong 
contrast signal in the presence of oil spills. It also contains 
lookalikes in the left part, caused by different sea state (local 
wind falls in a big swell wave). In the experiments 
implemented, it was observed that the number of inputs 
significantly affects the computational time, due to the 
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increased size and complexity of the neural network. An ERS 
scene (120Mb approximately) requires 5 hours for processing 
while an image window of 4-16Mb size, requires 2-5 minutes. 
The method was applied on image windows of 4-16Mb, to test 
its performance in terms of time requirements and result quality. 
 
The main aspects considered for oil spill detection using neural 
networks were data preparation, network architecture decision, 
parameters estimation and network performance accession. The 
general overflow of the method developed for both networks 
(MLP and RBF) is illustrated in Figure 4.  
 
In a previous study, a detailed examination of the features 
contribution to oil spill detection has been performed 
(Topouzelis et al, 2002). Features, which have been led to 
successful oil spill detection, were extracted from the SAR 
image. A preparation was necessary in order these features to be 
functional to neural network. Moreover, an initial network was 
chosen and trained for each network. Image results were 
compared with reference data to assess method accuracy. 
Network architecture continuously changed, adding a node 
(input layer or neuron) and re-evaluating the method. Figure 5 
presents the methodology used.  
 

 
Figure 4.  Methodology used 

 
 
4.2 Preparing the data 

Preparing the data involves feature extraction and normalize the 
data into a certain interval (for example [0,1]) according to the 
minimum and maximum values of the feature. The purpose of 
feature extraction is to map the image to a feature space that 
could serve as the basis for further processing (Kanellopoulos 
1997). In order the neural network to be functional and the 
classification procedure to be simple, the inputs of the neural 
network were images. Thus, several images were generated 
from the original SAR, each one presenting a texture or 

geometry key-feature. Five images were selected according to 
their performance in oil spill classification (Topouzelis et al, 
2002): the original SAR image, the shape texture, the 
asymmetry, the mean difference to neighbours and the power to 
mean images (Figure 5). Shape texture image is referred to the 
texture which is based on spectral information provided by the 
original image layer and calculated as the standard deviation of 
the different mean values of image objects already produced. 
Asymmetry can be expressed as the ratio of the lengths of minor 
and major axes of an ellipse which can be approximated for 
image objects. Mean difference to neighbours can be expressed 
as the mean difference for each neighbouring object multiplied 
by the shared border length of the object concerned. Power to 
mean ratio is defined as the ratio of the standard deviation and 
the mean value of the objects. 
 

 
Figure 5.  Inputs to Neural Networks 

 
 
4.3 Network Topology 

For both MPL and RBF neural networks an initial network 
topology was selected. The selection of the best suited topology 
for each NN was designed through the hill-climbing approach, 
which for a search point uses a solution created from a previous 
topology. The contractive algorithm was used, in which initial 
topology was the simplest one and nodes were added 
afterwards. The performance of each topology was evaluated 
and the process was repeated iteratively until a predetermined 
stopping criterion was achieved. Constructive algorithm was 
chosen among other hill-climbing algorithms (e.g. pruning) 
because it was very easy to specify the initial NN topology and 
it was significantly faster in terms of training time.  
 
In the present study, was chosen a layer with one input node - 
the original SAR image - and one output node as initial network 
topology for MLP. The process continued until a complicated 
network with five input nodes, two hidden layers with five and 
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four neurons respectively and an output layer with one neuron 
were created. The nature of RBF network requires a strictly 
three-layer network. A two input initial network was selected 
but without luck as the training algorithm had relatively good 
performance with 14 RBFs, which makes the classification 
procedure very complex. Three input topology was better suited 
as initial network with the hidden layer of 3 RBFs and 2 output 
nodes. From the process, a complicated network with 13 RBFs 
was constructed. Network performances can be viewed to next 
session of the paper.  
 
 A classified image identifying the presence of oil spill was 
produced for every network topology. For each image produced 
a comparison with a reference dataset was made. The reference 
dataset was produced by photo-interpretation methods and 
techniques  (Topouzelis et al, 2002). A comparison was made 
using confusion matrices. For each image produced the 
confusion matrix and overall accuracy were calculated. Overall 
accuracy was calculated by dividing the total number of the 
pixels correctly classified by the total number of the pixels of a 
sample. 

 
 

5. EXPERIMENTAL RESULTS 

Figures 6 and 7 show results of different network topologies in 
terms of input nodes for MLP and RBF respectively. For MLP 
it can be seen that topologies with one (original SAR image) or 
with two input nodes do not classify the image correctly. On the 
contary, topologies using more than two input nodes have much 
better performance. If we concentrate in the latter, we can see 
that there is a special performance to topologies containing 7 
nodes. Also, if we investigate the performance of accuracy due 
to neurons we can assume that the topologies having the better 
performance are 3:3:1, 4:2:1, 5:1:1 (Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Best network accuracies 
 

Due to the fact that for each input node the size of the original 
data increases  by 20% and the needs of computational time and 
power are significantly increased, the topology that is proposed 
is 4:2:1. The accuracy of this topology is strongly connected 
with the specific inputs as these are presented in paragraph 4.2. 
Four input nodes topology, where the inputs were the 
predetermined images, was proved the appropriate topology for 
classifying the oil spill very accurately. Looking at the five 
input nodes topology in details, we can see that the information 
in the borders of the oil spill was lost. Furthermore, more 
computational power and training time were needed. 
 
For RBF we observe that their performance is poorer than MPL. 
It starts nearly from 45% while only four topologies can be 
compared with the majority of MLP, which are above 95% 

(small window in Figure 8 – Table 1). Topology with 3 input 
units is the only with relative stability close to 98.5 and is 
bounded from 7 to 9 nodes (3:2:2, 3:3:2, 3:4:2, 4:2:2). Better 
performance was observed for 4:2:2 topology with 99.08% 
while the performance of all the other topologies is under 99%. 
From the above it can be concluded that the MLP network has 
better performance in oil spill detection than the RBF network.   
 

Figure 6.  MLP overall accuracy according to nodes 

 

 Figure 7.  RBF overall accuracy according to nodes 
 

For evaluation reasons, the method was tested on a broader 
area. Figure 8 contains a SAR image window with several oil 
spills. Oil spills can easily be identified but it is extremely 
difficult, even for an expert, to specify the border of oil spill and 
sea. Classification was performed using the MLP – 4:2:1 
topology. The classification total accuracy was 99,291%. There 
was a very good discrimination between sea and oil spill but 
some of the linearities were lost, especially in cases that oil spill 
covers very thin areas.   
 

 
6. CONCLUSIONS 

In this study a neural network approach for oil spill 
identification was investigated using SAR images. Two types of 
neural network were used: the feed forward Multilayer 
Perceptron and Radial Basis Function. Original images and 
other images generated from them were used as inputs to a 
neural network. The method was tested on SAR image 
windows, containing oil spills and lookalikes. 
 
In general, RBF networks work faster than LMP. RBF almost 
guarantee convergence while MLP some times stick in local 
minima. The use of a hybrid algorithm of backpropagation and 
conjugate gradient seems to solve this problem. Moreover, MLP 
has smaller memory requirements for the classification and has 
better generalization than the RBF. 
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b) Classified image 

a) Original SAR image 

 
From the two neural network models examined MLP works 
more reliably than RBF for oil spill detection. The mean 
performance for all RBF topologies examined was 77.62% 
while for MPL 98.98%. Several topologies were examined 
using the constructive method. The topology best suited for the 
classification procedure was the MLP 4:2:1 according to 
specific inputs. Classification accuracy was 99.433% for the 
above topology. The high performance of neural networks as 
classifiers was confirmed by producing accuracy 99,29 – 
99,60% when applied to other images, which contain oil spills 
and are captured under the same wind conditions. For RBF, the 
best performance achieved was 99.08% with 4:4:2 topology but 
the more reliable topology was topology with 3 inputs (3:3:2, 
3:4:2, 3:5:2) with a mean performance of 98.37%. 
 
Further examination is needed using images containing different 
sea states and different types of oils spills. Moreover, the 
performance of other neural network types like Support Vector 
Machines (SVM) and Recurrent networks (like Hopfield) need 
to be investigated.  
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Figure 8.  Image result of the developed method 


