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ABSTRACT: 
 
The dynamics of pigment concentrations are related to vegetation photosynthetic potential and hence primary production, nutrient 
status, stress physiology and plant-environment interactions. Therefore, information about the spatial and temporal dynamics of 
pigments can provide important contributions to a range of scientific disciplines and environmental management endeavours, yet our 
current our capabilities for providing this information are limited. With the advent of airborne and spaceborne imaging 
spectrometers, there are now enhanced opportunities to acquire vegetation reflectance spectra and therefore quantify pigments over a 
wide range of spatial scales, repeatedly. However, of the spectral approaches that exist, none are sufficiently robust and remain 
sensitive to confounding factors and lack generality and extendibility. The present study examines the potential of wavelet 
decomposition for quantifying vegetation pigment concentrations from hyperspectral remotely-sensed data, using reflectance spectra 
and pigment data collected for a range of plant species at leaf and canopy scales. The research indicates that wavelet analysis holds 
promise for the accurate determination of chlorophyll a and b and the carotenoids, but work is needed to further test and refine the 
approach.  
 

1. INTRODUCTION 

Antenna pigments in leaf chloroplasts absorb solar radiation 
and the energy is transferred to the reaction centre pigments, 
which initiates the process of photosynthesis (Richardson et al., 
2002). Chlorophylls (Chls; chlorophyll a and b) are the most 
important of these pigments, a physiological parameter of 
significant interest. However, from an applied perspective, Chls 
concentration is important for several reasons: The amount of 
solar radiation absorbed by a leaf is largely a function of the 
Chls and low concentrations can directly limit photosynthetic 
potential and hence primary production; much of leaf nitrogen 
is incorporated in Chls, so quantifying their concentration gives 
an indirect measure of nutrient status; pigmentation can be 
directly related to stress physiology, Chls generally decrease 
under stress and during senescence; relative concentrations of 
Chl a and b change with abiotic factors such as light (e.g. sun 
leaves have a higher Chl a:b ratio) so quantifying these 
proportions gives information about plant-environment 
interactions (Gross, 1991).  

Carotenoids (Cars) are the second major group of plant 
pigments, composed of carotenes and xanthophylls. Cars can 
absorb incident radiation and contribute energy to 
photosynthesis. The fraction of photosynthetically active 
radiation absorbed by a plant canopy (APAR) has been related 
to net primary productivity as a function of a light use efficiency 
(LUE) coefficient defining the carbon fixed per unit radiation 
intercepted. Such studies assume that the contribution of each 
pigment to the energetics of photosynthesis is equal, but this is 
an insufficient interpretation, as the concentration of Chl a is 
the limiting factor in the utilisation of light for photosynthesis, 
because it receives energy absorbed by Chl b and Cars (Kim et 
al., 1994). Thus, the photosynthetic potential of two plants may 
differ even though their APAR is equal, depending upon the 
concentrations of individual pigments. Furthermore, when 
incident radiation exceeds that needed for photosynthesis, Cars 
that compose the xanthophyll cycle dissipate excess energy and 

protect the reaction centres. Thus, while changes in Chls are 
indicative of stress and phenological stage, Cars concentration 
provides much complementary information on vegetation 
physiological status (Young and Britton, 1990). 

Information about the spatial and temporal dynamics of plant 
pigments can, therefore, provide important contributions to 
scientific investigations and applied environmental / agricultural 
management, yet our current our capabilities for providing this 
information are limited. Traditional techniques for measuring 
foliar pigment concentrations involve extraction with a solvent 
and spectrophotometric analysis using standard procedures. 
This is possible because pigments have differing spectral 
absorption properties and even though the absorption features 
overlap, simple combinations of absorbance values at a number 
of wavelengths can be used to accurately determine individual 
pigment concentrations from mixed extracts. However, these 
wet laboratory techniques are time and labour-intensive thus for 
whole canopies pigments must be quantified by extrapolation 
from a limited number of samples, which introduces 
inaccuracies. Spectral absorbance properties of pigments are 
manifest in the reflectance spectra of leaves and this offers the 
opportunity of using measurements of reflected radiation as a 
non-destructive method for quantifying pigments. Moreover, 
with the advent of airborne (e.g. AVIRIS, CASI) and, more 
recently spaceborne imaging spectrometers (e.g. HYPERION), 
with high spectral and radiometric resolutions and signal:noise 
ratios, there are now enhanced opportunities to acquire 
vegetation reflectance spectra and therefore quantify pigments 
over a wide range of spatial scales, repeatedly.  
 
1.1 Evaluation of previous spectral approaches 

To extract pigment information we must first account for the 
range of other factors which also influence vegetation 
reflectance spectra. The internal structure of leaves, with large 
numbers of refractive discontinuities between cell walls and 
intercellular air spaces, scatters incident radiation and allows a 
large proportion to pass back through the upper epidermis to be 



 

 

observed as reflected radiation. Pigments, water and other 
biochemicals absorb certain wavelengths of radiation which 
reduces reflectance in these regions. However, because of the 
overlapping absorption features of the pigments, it is difficult to 
relate reflectance at a single wavelength to the concentration of 
an individual pigment. Furthermore, leaf reflectance can vary 
independently of pigment concentrations due to differences in 
internal structure, surface characteristics (hairs/waxes) and 
moisture content. The reflectance spectrum of a whole canopy is 
subject to even more controlling factors, notably, effects of 
variations in number of leaf layers (leaf area index; LAI), 
orientation of leaves (leaf angle distribution; LAD), presence of 
non-leaf elements, areas of shadow and soil/litter surface 
reflectance. This range of factors, at leaf and canopy scales, 
obscures relationships between spectral reflectance and 
concentrations of individual pigments and there has been an 
increasing intensity of research aimed at overcoming these 
problems. Four groups of spectral variables have been identified 
as being of value:  

 (i) Reflectance in individual narrow wavebands have been 
employed (e.g. Fillela et al., 1995). While there is little 
agreement on the optimal wavelengths, there is good evidence 
that at wavelengths where absorption coefficients of pigments 
are high, reflectance is more sensitive to low concentrations, 
while spectral regions with low absorption are more sensitive to 
higher pigment concentrations (Carter and Knapp, 2001);  
 
(ii) Ratios of reflectance in narrow bands have been proposed as 
a means of solving the problems of the overlapping absorption 
spectra of different pigments and the effects of leaf structure, 
leaf surface interactions and canopy structure (Peñuelas et al., 
1995). Most workers propose pigment indices which employ 
ratios of narrow bands in the visible and near-infrared (e.g. 
Blackburn, 1998a), while some identify only visible 
wavelengths and others use combinations of narrow wavebands 
in the red edge region (e.g. Tarpley et al., 2000); 
 
(iii) Characteristics of first and second derivatives of reflectance 
spectra have been investigated. It has been suggested that 
spectral derivatives have important advantages over spectral 
reflectance, such as their ability to reduce variability due to 
changes in illumination or soil/litter reflectance. The majority of 
workers have used derivatives to define the wavelength position 
of the red edge (λRE) and illustrated relationships between λRE 
and total chlorophyll (Chl tot) concentration for both leaves and 
canopies. The amplitude of first and second derivatives of 
reflectance at particular wavelengths (and combinations of 
wavelengths) has also been found to be closely related to 
pigment concentrations as has the amplitude of the first 
derivative of pseudo absorbance (Blackburn, 1999); 
 
(iv) Measurements of absorption feature depths have been 
obtained by fitting a continuum to vegetation reflectance spectra 
(Kokaly and Clark, 1999). This approach was extended by 
normalising to the band depth at the centre and the area of the 
absorption feature and using stepwise regression to identify 
optimal combinations of band depths which were used to 
estimate accurately Chl tot, a and b in dried and ground pine 
needles (Curran et al., 2001). 

Most research has focussed on Chls and only recently has 
attention been paid to quantifying Cars and anthocyanins from 
reflectance spectra, using simple adaptations of the above 
approaches (Gitelson et al, 2002). Even for Chls, no single 
spectral approach is emerging as a generic solution. Often 

developers of spectral approaches do not test their methods on a 
range of vegetation types and this has lead to many species- or 
site-specific techniques. Recent literature suggests that of the 
spectral approaches that exist, none are sufficiently robust and 
remain sensitive to confounding factors such as variations in 
chlorophyll fluorescence, leaf surface reflectance, water stress 
and specific leaf mass. Moreover, studies testing many spectral 
approaches under a range of circumstances have reported a lack 
of generality and extendibility (Richardson et al., 2002) and 
even that hyperspectral approaches offer no improvements over 
traditional broadband indices for canopy Chl estimation (Broge 
and Mortenson, 2002). Indeed, recent work by the author 
(Blackburn, 2002) demonstrated limited applicability of 
approaches across leaf/canopy/stand scales. Within the same 
scale, there was a need for locally derived regression 
relationships (e.g. between λRE and Chl tot) and even these were 
not transferable between different vegetation types. 
Furthermore, papers claiming evidence of robust spectral 
approaches (Sims and Gamon, 2002) fail to identify methods to 
estimate independently Chl a and b, or Cars and only 
demonstrate convincing results for Chl tot at the leaf scale. 

Most research in this field has used individual leaves, 
collections of leaves or small plants growing in the laboratory 
under controlled conditions. Canopy scale studies have either 
derived statistical relationships between ground-measured 
pigment data and canopy-measured reflectance, or applied leaf-
scale relationships between optical indices and pigment content 
directly to canopy-measured reflectance. Relatively few studies 
have examined the applicability of different spectral approaches 
as we move from individual leaves to whole plant canopies and 
stands. Empirical work by the author on vegetation with a 
relatively simple or spatially homogenous canopy architecture 
has indicated that some spectral variables are robust predictors 
of pigment concentrations from leaf to stand level (Blackburn, 
1998b), however, such variables are unsuitable for vegetation 
with a more complex structure (Blackburn and Steele, 1999). 
Recent work using coupled leaf and canopy radiative transfer 
(RT) models has examined the predictive capabilities and 
robustness of different spectral approaches for quantifying 
canopy Chl tot (Haboudane et al., 2002). While these scaling-
up studies are able to identify spectral indices that are 
insensitive to factors such as canopy structure, illumination 
geometry and soil/litter reflectance, there is little consensus on 
the optimal spectral approaches for estimation of Chl tot. The 
numerical inversion of RT models based on measured 
reflectance spectra has been used to quantify leaf and canopy 
Chl tot (Weiss et al., 2000). Such models afford greater insight 
into the underlying functionality of reflectance-based pigment 
quantification and the inversion approach promises greater 
generality, however, parameterisation of RT models requires 
considerable a priori knowledge of the leaves and canopies 
under investigation which can render this approach impractical 
for operational use. Nevertheless, a technique that offers greater 
potential for extendibility combines the rigour of 
(bio)physically-based RT models with the normalising 
capabilities and pigment-specificity of a hyperspectral index 
which is used as the merit function in the inversion (Zarco-
Tejada et al., 2001). However, there is a need to substantially 
improve the predictive accuracy of this approach and to test it 
over a range of vegetation types. In summary, hyperspectral 
remote sensing has the potential to satisfy the increasing 
demand for information on plant pigments over a range of 
spatial scales, yet, a standard analytical approach remains 
absent. 



 

 

 

1.2 Potential for a new approach 

The limitations of previous methods call for the evaluation of 
novel spectral analytical approaches. Within laboratory 
spectroscopy methods for decomposing spectra and modelling 
component absorption features have recently emerged which 
hold considerable promise for quantifying plant pigments. One 
approach that appears to be particularly appropriate is wavelet 
analysis (WA). 

WA was developed independently in several scientific fields but 
interchanges between these during the last decade have led to a 
diverse range of applications of this signal processing 
technique. The potential of WA in image processing has been 
recognised with new techniques in image compression, 
classification, archiving and enhancement. Recent studies in 
laboratory spectroscopy have shown that WA offers several 
advantages over previous spectral approaches. Wavelets are 
functions that satisfy certain mathematical requirements and are 
used in representing data or other functions. Approximation 
using superposition of functions is the basis of Fourier Analysis 
(FA), however, in WA data is processed data at different scales 
or resolutions. Observing a spectrum through a large ‘window’ 
identifies gross features and through a small ‘window’ small 
features. The sines and cosines of FA are, by definition, non-
local and poor at approximating spectra with sharp 
discontinuities (such as vegetation reflectance). WA is able to 
use more appropriate functions to capture local spectral features 
as it can decompose into components that are well localised in 
both time and frequency domains, while FA can only 
characterise frequency information (Strang and Nguyen, 1996). 
WA of a spectrum yields a vector of wavelet coefficients that 
are assigned to different frequency bands. Each band expands 
over the complete wavelength domain and responds to a certain 
frequency range of the spectrum. By selecting appropriate 
wavelet coefficients a spectral model can be established by 
regression of the coefficients against component chemical 
concentrations. 

WA was initially applied in laboratory spectroscopy for 
quantifying glucose concentrations in solutions of varying 
protein (present in larger quantities with more dominant 
absorption features than glucose) and temperature (McNulty 
and Mauze, 1998). The results were comparable to Partial Least 
Squares regression (PLS) when calibration and prediction data 
sets contained the same protein concentration, but WA 
outperformed PLS when protein concentrations differed. The 
study highlighted the potential of WA to quantify 
concentrations based on localised absorption features from a 
mixture of compounds and that the approach is extendible 
beyond the calibration data set. It also showed how appropriate 
wavelet basis functions (or ‘mother wavelets’) can be selected 
from the multitude available based the correspondence between 
their shape and that of absorption features of components of 
interest, this gives the procedure a sound physical basis and 
chemical (pigment) specificity. The ability of WA to remove the 
effects of background spectral variation when quantifying 
concentrations of components with fine absorption from 
mixtures has also been demonstrated (Mittermayr et al., 2001). 
This offers potential for removing the effects of broader 
absorption features from the narrower features of specific 
pigments and for dealing with factors which affect broader 
regions of vegetation reflectance spectra such as leaf or canopy 
structure and soil/litter response. Importantly, the resilience of 

WA to low frequency background noise can be tuned by 
choosing the appropriate number of vanishing moments in the 
wavelets and WA can deal with difficult situation where 
background varies between calibration and prediction data sets 
(Mittermayr et al., 2001). Furthermore, due to the localisation 
of wavelets, the wavelet coefficient can be chosen by chemical 
knowledge, e.g. the position and width of absorption bands. 
Conversely chemical knowledge can be discovered by selecting 
wavelet coefficients according to statistical measures (e.g. 
correlation, prediction errors etc.) and the localisation of 
coefficients indicate wavelength regions related to the analyte 
under investigation (Mittermayr et al., 2001). This is important 
in the context of plant pigments which display differing 
absorption spectra in vivo and in vitro. 

Further evidence of the robustness of the approach is provided 
by spectroscopic studies that have used WA to remove 
background signals, noise and specular reflectance to produce 
accurate estimates of chemical concentrations by preserving fine 
spectral features of components, unlike other 
filtering/smoothing algorithms which attenuate and distort the 
absorption features of interest (Cai et al., 2001). The capacity of 
WA for noise suppression and insensitivity to background 
spectral variations has recently been exploited in quantitative 
remote sensing for the extraction of significant spectral features 
in AVIRIS data for vegetation type discrimination and the 
selection of width of smoothing and operator used for 
calculating spectral derivatives (Bruce and Li, 2001). Moreover, 
work on the classification of canopy reflectance spectra to 
discriminate crops and weeds has shown that WA is accurate 
and robust with respect to variations in % canopy cover and 
soil/litter properties (Huang et al., 2001).  

 
1.3 Aims 

The work reported in this paper forms part of a wider project 
aimed at developing a generic technique for quantifying 
vegetation pigment concentrations from hyperspectral remotely-
sensed data. Specifically, the research will investigate the ability 
of WA to provide a method that is able to determine accurately 
Chl a  and b, and  Cars. 

2. METHODS 

The initial evaluation reported here, focussed on the application 
of  WA to data sets collected by the author for previously 
published research – thereby facilitating a comparison with 
previous spectral approaches. 
 
2.1 Data sets used 

The data sets used were acquired using a common set of 
principles. Reflectance spectra of leaves and canopies were 
acquired with a spectroradiometer then immediately after the 
pigment determinations were conducted by extraction using an 
organic solvent followed by spectrophotometric analysis. In the 
case of canopies, pigment concentrations obtained from leaf 
samples were scaled up to the canopy level using leaf area index 
data collected in situ. The vegetation types used were 
broadleaved deciduous tree leaves (and stacks thereof) at 
various stages of senescence (see Blackburn, 1998a + 1999), 
bracken canopies (Blackburn, 1998b) and matorrral bushland 
canopies (Blackburn and Steele, 1999). Details of the methods 
and instrumentation used can be found in these papers.    
 



 

 

2.2 Analytical methods 

WA was implemented within Matlab 6.1 using the Wavelet 
Toolbox (v.2.1). Multilevel 1-D wavelet decompositions were 
performed on reflectance spectra using the range of different 
wavelet basis functions available in this package. 
Approximation and detail coefficients were extracted for each 
spectrum and a stepwise multiple linear regression was 
performed on the wavelet coefficients and pigment 
concentrations of the leaves and canopies under investigation. A 
95% confidence interval was used in the stepwise procedure 
and up to 9 terms were permitted in the regression model 
(however, in most cases the number of terms selected ranged 
between 3 and 6). The predictive capabilities of the regression 
model were evaluated by calculating the coefficient of 
determination for prediction - the averaged coefficient of 
determination with one observation removed from the model 
(leave-one-out cross validation).  
 

3. RESULTS  

For all leaves and canopies sampled a number of wavelet basis 
functions (wavelet families) produced coefficients from which 
multiple regression models could be derived that were 
correlated with pigment concentrations: Daubechies wavelets 
(shortened to 'db' subsequently); Symlets ('sym'); Coiflets 
('coif'); Biorthogonal wavelets ('bior'); and, Reverse 
biorthogonal wavelets ('rbio'). Generally the higher order 
wavelets within each family produced the highest correlation 
with pigments– hence the results for these wavelets are 
displayed below.   
 
3.1 Individual leaves and stacks of leaves. 

The range of pigment concentrations generated using the 
individual leaves and leaf stacks was large: 13 to 3235 mg.m-2 
for Chl a, 8 to 2168 mg.m-2 for Chl b and 80 to 1447 mg.m-2 for 
Cars. Even over this large range of concentrations the multiple 
regression models derived from wavelet decomposition of 
reflectance spectra displayed high correlation with pigment 
concentrations. 
 

 sym8 db8 coif5 bior6.8 rbio6.8 

Chla 0.863 0.935 0.925 0.899 0.872 
      

Chlb 0.863 0.863 0.891 0.886 0.847 
      

Cars 0.637 0.743 0.486 0.761 0.715 
      

Chltot 0.863 0.908 0.903 0.892 0.865 
Table 1. R2 values for multiple regression models, 
deciduous broadleaves. 

 
Table 1. shows the coefficients of determination derived from 
multiple regression models based upon spectral decomposition 
using five particular wavelets. In all cases the coefficient of 
determination for prediction was slightly lower than the values 
depicted in the table. Other wavelets within each family 
produced lower correlations. As the table, for most wavelets, 
there were lower correlations for Cars than for the chlorophylls 
– this concurs with previous findings in investigations of other 
spectral approaches. 
 

3.2 Bracken canopies 

Table 2. demonstrates that for bracken canopies the wavelet 
decomposition can produce regression models with high 
correlations with pigments. Again, correlations are lower for 
Cars than Chls.  
 

 sym8 db8 coif5 bior6.8 rbio6.8 

Chla 0.910 0.915 0.901 0.809 0.782 
      

Chlb 0.902 0.873 0.882 0.812 0.798 
      

Cars 0.686 0.732 0.505 0.675 0.701 
      

Chltot 0.905 0.908 0.891 0.810 0.791 
Table 2. R2 values for multiple regression models, 
bracken canopies. 

 
3.3 Matorral canopies 

As table 3 demonstrates, correlations derived for the matorrral 
canopies are lower than those for bracken and deciduous 
broadleaves. 
 

 sym8 db8 coif5 bior6.8 rbio6.8 

Chla 0.760 0.785 0.801 0.695 0.608 
      

Chlb 0.755 0.764 0.789 0.687 0.599 
      

Cars 0.656 0.710 0.678 0.600 0.502 
      

Chltot 0.758 0.772 0.792 0.692 0.600 
Table 3. R2 values for multiple regression models, matorral 

canopies. 
 

4. CONCLUSIONS. 

This initial investigation of wavelet decomposition has revealed 
that this technique can produce results that are comparable with, 
and in some cases superior to, existing spectral approaches to 
pigment quantification from reflectance spectra. This provides 
support for further work on the technique, particularly in the 
context of testing the robustness and extendibility of the 
approach. In the first instance this can be done by combining 
the data sets of the various leaf and canopy samples used in the 
present study, then by employing additional data sets pertaining 
to a wider range of vegetation types. Radiative transfer models 
will be of particular value in providing an experimental 
platform to investigate issues which are difficult to address 
comprehensively in lab or field investigations – notably, the 
effects of viewing and illumination geometry and canopy 
architecture (i.e. LAD) on the robustness of the wavelet 
decomposition techniques, together with the consequences and 
emergent properties of many different combinations of 
biochemical and biophysical leaf and canopy characteristics, 
differing sensor characteristics and atmospheric effects. 
Refinements to the wavelet decomposition technique will be 
made through the development of automated approaches for the 
selection of appropriate wavelet basis functions, application of 



 

 

the technique to spectral derivatives and for quantifying other 
plant biochemicals in addition to photosynthetic pigments. 
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