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ABSTRACT:  
 
Hyperspectral images contain rich and fine spectral information, an improvement of land use/cover classification accuracy is 
expected from the use of such images. However, the classification methods that have been successfully applied to multispectral data 
in the past are not as effective as to hyperspectral data. The major cause is that the size of training data set does not correspond to the 
increase of dimensionality of hyperspectral data. Actually, the problem of the “curse of dimensionality” emerges when a statistic-
based classification method is applied to the hyperspectral data. A simpler, but sometimes very effective way of dealing with 
hyperspectral data is to reduce the number of dimensionality. This can be done by feature extraction that a small number of salient 
features are extracted from the hyperspectral data when confronted with a limited set of training samples. In this paper, we tested 
some proposed feature extraction methods based on the wavelet transform to reduce the high dimensionality without losing much 
discriminating power in the new feature space. In addition, a new feature extraction method based on the matching pursuit with 
wavelet packet is used to extract useful features for classification. An AVIRIS data set was tested to illustrate the classification 
performance of the new method and be compared with the existing wavelet-based methods of feature extraction. 
 
 

1. INTRODUCTION 

Since the mid 1980s, the new technology of imaging 
spectrometer with two-dimensional area arrays of detector 
elements was developed to collect spectral data with a large 
number of bands simultaneously (Goetz et al., 1985). The value 
of this technique lies in the ability to construct an effectively 
continuous reflectance spectrum for each pixel of the sense. 
Because of the large number of spectral bands, the images 
acquired with imaging spectrometers are also referred to as 
hyperspectral images which are distinguished from the 
multispectral images with only three to ten bands. The rich and 
detailed spectral information provided by hyperspectral images 
can be used to identify and quantify a large range of surface 
materials which cannot be identified by multispectral images. 
By means of the solar reflected spectrum measured by imaging 
spectrometers, a wide range of scientific researches and 
applications have being proposed based on the spectral analysis 
(Lillesand and Kiffer, 2000). 
 
1.1 Curse of Dimensionality 

Seemingly the high dimensionality of hyperspectral data should 
increase the abilities and effectiveness in classifying land 
use/cover types. However, the classification methods that have 
been successfully applied to multispectral data in the past are 
not as effective as to hyperspectral data. The major cause is that 
the size of training data set does not adapt to the increasing 
dimensionality of hyperspectral data. If the training samples are 
insufficient for the needs, which is common for the 
hyperspectral case, the estimation of statistical parameters 
becomes inaccurate and unreliable. As the dimensionality 
increases with the number of bands, the number of training 
samples needed for training a specific classifier should be 
increased exponentially as well. The rapid increase in training 

samples size for density estimation has been termed the “curse 
of dimensionality” by Bellman (1961), which leads to the 
“peaking phenomenon” or “Hughes phenomenon” in classifier 
design (Hughes, 1968). The consequence is that the 
classification accuracy first grows and then declines as the 
number of spectral bands increases while training samples are 
kept the same. For a given classifier, the “curse of 
dimensionality” can only be avoided by providing a sufficiently 
large sample size. The more complex the classifier, the larger 
should the ratio of sample size to dimensionality be to avoid the 
curse of dimensionality. However, in practice, the number of 
training samples is limited in most of the hyperspectral 
applications. Furthermore, the high dimensionality of 
hyperspectral data makes it necessary to seek new analytic 
methods to avoid a vast increase in the computational time. A 
simpler, but sometimes very effective way of dealing with high-
dimensional data is to reduce the number of dimensions (Lee 
and Landgrebe, 1993; Benediktsson et al., 1995; Landgrebe, 
2001). This can be done by feature selection or extraction that a 
small number of salient features are extracted from the 
hyperspectral data when confronted with a limited set of 
training samples. 
 
1.2 Spectral Feature Extraction  

Feature extraction is generally considered a data mapping 
procedure which determines an appropriate subspace of 
dimensionality M from the original feature space of 
dimensionality N ( NM ≤ ) (Fukunaga, 1990; Lee and 
Landgrebe, 1993; Jain et al., 2000). The way of feature 
extraction can be a linear or nonlinear data transformation. 
Regardless of how the data transformation is implemented, the 
feature extraction algorithm must be designed to preserve the 
information of interest for a special problem such as 
compression, denoising, or classification. For example, in 



 

hyperspectral image classification, effective features are those 
which are most capable of preserving class separability.  
 
The most commonly used method of feature extraction is 
Principal Components Transformation (PCT) (Fukunaga, 1990; 
Jain et al., 2000; Landgrebe, 2001). PCT is an orthogonal 
transformation to produce a new sequence of uncorrelated 
images called principal components. Only the first M 
components are used as the features for the image 
representation or classification. The transformation matrix of 
PCT consists of a Karhunen-Loéve basis whose vectors are 
ordered by the decreasing sequence of the eigenvalues of 
covariance matrix of the total hyperspectral data set. This would 
result in the best fit of the approximation which has the 
minimum mean-square error (Mallat, 1999). However, it is 
sensitive to noise and has to be performed with the whole data 
set. In contrast to the PCT which takes the global covariance 
matrix into account, Linear Discriminant Analysis, or called 
Canonical Analysis (Richards, 1993), generates a transformed 
set of feature axes, in which class separation is optimized (Lee 
and Landgrebe, 1993; Jimenez and Landgrebe, 1995). This 
approach called Discriminant Analysis Feature Extraction 
(DAFE) uses the ratio of between-class covariance matrices to 
within-class covariance matrices as a criterion function. A 
transformation matrix is then determined to maximize the ratio, 
that is, the separability of classes will be maximized after the 
transformation. Although the discriminant analysis is an 
effective and practical algorithm for deriving effective features 
in many circumstances, there are several drawbacks for this 
method. First, the approach delivers features only up to the 
number of classes minus one. Second, when the mean values of 
different classes are similar or the same, the extracted feature 
vectors are not reliable. Furthermore, if a class has a mean 
vector very different from the other classes, the between-class 
covariance matrix will be biased toward this class and will 
result in ineffective features (Tadjudin and Landgrebe, 1998). 
Finally, in order to estimate the between-class and within-class 
scatter matrices reliably, the number of training samples should 
be large enough. However, this is often not a common 
circumstance for hyperspectral images. Lee and Landgrebe 
(1993) showed that useful features could be separated from 
redundant features by decision boundaries. The algorithm is 
called Decision Boundary Feature Extraction (DBFE) because 
it takes full advantages of the characteristics of a classifier by 
selecting features directly from its decision boundary. Since the 
method depends on how well the training samples approximate 
the decision boundaries, the number of training samples 
required could be much more for high dimensional data because 
it computes the class statistical parameters at full 
dimensionality. For hyperspectral images, the number of 
training samples is usually not enough to prevent singularity or 
to yield a good covariance estimate. In addition, DBFE for 
more than two classes is sub-optimal (Tadjudin and Landgrebe, 
1998). The DBFE method is also computationally more 
intensive than the other methods. 
 
 

2. WAVELET-BASED FEATURE EXTRACTION 

In the past two decades, wavelet transform (WT) has been 
developed as a powerful analysis tool for signal processing, and 
also has been successfully applied in applications such as image 
processing, data compression and pattern recognition (Mallat, 
1999). Due to the time-frequency localization properties, 
discrete wavelet and wavelet packet transforms have proven to 
be appropriate starting point for the classification of the 

measured signals (Pittner and Kamarthi, 1999). The WT 
decomposes a signal into a series of shifted and scaled versions 
of the mother wavelet function. The local energy variation of a 
hyperspectral signal in different spectral bands at each scale (or 
frequency) can be detected automatically and provide useful 
information for hyperspectral image classification. Several 
feature extraction methods based on the WT have been 
proposed for hyperspectral images (Hsu and Tseng, 2000; Hsu, 
2003). The general process of the wavelet-based feature 
extraction methods is illustrated in Figure 1. Firstly, wavelet or 
wavelet packet transforms are implemented on the 
hyperspectral images and a sequence of wavelet coefficients is 
produced. Then, a simple feature selection procedure associated 
with a criterion is used to select the effective features for 
classification. The criterion of feature selection can be designed 
for signal representation or classification. In the stage of feature 
selection shown in Figure 1, some training data may be needed 
as samples to find the effective features for classification. 
Unlike the existing feature extraction methods such as DAFE 
and DBFE which need to estimate the statistic parameters at full 
dimensionality, the wavelet-based feature extraction optimizes 
the criterion in a lower dimensional space. Thus the problem of 
limited training sample size can be avoided. 
 

 
Figure 1. The general flow chart of wavelet-based feature 

extraction. 
 
2.1 Orthogonal Wavelet Decomposition 

The orthogonal wavelet transform in terms of multi-resolution 
analysis (MRA) can decompose a signal x into the low-
frequency components that represent the optimal approximation, 
and the high-frequency components that represent the detailed 
information (Mallat, 1989. The inner coefficients of x in a 
wavelet orthogonal basis can be computed with a fast algorithm 
that cascades discrete convolutions with Conjugate Mirror 
Filters (CMF) h and g, and sub-samples the output. The 
decomposition formulas are described as following):  
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where ][][ nhnh −=  and ][][ ngng −= . 

ja  is the approximation 

coefficients at scale j2 , and 
1+ja  and 

1+jd  are respectively the 

approximation and detail components at scale 12 +j . There are 
some necessary and sufficient conditions associated with the 
conjugate mirror filters h and g, so that the perfect 
reconstruction of signal x can be achieved without losing 
information. Figure 2 shows the diagram of a fast wavelet 
decomposition calculated with a cascade of filtering with h  and 
g  followed by a factor 2 sub-sampling. Assume that the length 
of 

ja  is N, one may notice that the sub-sampling procedure in 

the wavelet decomposition shown in Figure 2 which reduces the 
length of 

1+ja  to 2/N  achieves the dimensionality reduction of 

ja . In practice, the original signal x in Figure 2 is always 

expressed as a sequence of coefficients La . A multilevel 
orthogonal wavelet decomposition of 

La  is composed of 
wavelet coefficients of signal x at scales JjL 222 ≤<  plus the 
remaining approximation at the largest scale J2 : 
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It is calculated from 

La  by iterating formula (1) and (2). 
 

 
 

Figure 2. Fast orthogonal wavelet decomposition 
 
2.2 Linear Wavelet Feature Extraction 

The sub-sampling shown in Figure 2 motives us to reduce the 
dimensionality of hyperspectral data by wavelet decomposition. 
Firstly, the wavelet decompositions of (1) and (2) were 
implemented on the hyperspectral data, and then only the 

lM −= 2  first scaling and wavelet coefficients at scales lj 22 >  
are selected as features. One may prove that the selected 
features ],}[{ JJjlj ad ≤<

 are useful for data representation. 

Because the linear wavelet transformation of x from large scale 
wavelet coefficients are equivalent to the finite element 
approximation over uniform grids, we call this method Linear 
Wavelet Feature Extraction (Linear WFE).  
 
In this method, the large amplitude wavelet coefficients at small 
scales would not be selected as features. However, the wavelet 
coefficients with large amplitudes are generated by the 
singularities of the spectral curve which may involve important 
information for representation or classification. Hsu (2003) 
suggested that the approximation and detail components at each 
scale of linear WFE should be combined together to extract 

better features of hyperspectral images for classification. This 
can be done by non-linear wavelet feature extraction. 
 
2.3 Non-Linear Wavelet Feature Extraction 

Linear WFE method which selects the M wavelet coefficients 
independently of original spectrum x at larger scales can be 
improved by choosing the M wavelet coefficients depending on 
the x. This can be done by sorting the coefficients 

],}[{ JJjLj ad ≤<
 calculated by the multilevel orthogonal wavelet 

decomposition in decreasing order. Then the M largest 
amplitude wavelet coefficients are selected as the important 
features of x for classification. The non-linear approximation 
calculated from the M largest amplitude wavelet coefficients 
including the approximation and detail information can be 
interpreted as an adaptive grid approximation, where the 
approximation scale is refined in the neighborhood of 
singularities (Mallat, 1999). Thus this feature extraction method 
based on the non-linear approximation is called Non-Linear 
Wavelet Feature Extraction (Non-linear WFE). 
 
2.4 Best Basis Feature Extraction 

2.4.1 Wavelet Packets:  Wavelet packets were introduced 
by Coifman et al. (1992) by generalizing the link between 
multiresolution approximations and wavelets. In the orthogonal 
wavelet decomposition algorithm described in Section 2.1, only 
the approximation coefficients are split iteratively into a vector 
of approximation coefficients and a vector of detail coefficients 
at a coarser scale. In the wavelet packet situation, each detail 
coefficients vector is also decomposed into two parts using the 
same approach as in approximation vector splitting. This 
recursive splitting shown in Figure 3 defines a complete binary 
tree of wavelet packet spaces where each parent node is divided 
in two orthogonal subspaces. The nodes of the binary tree 
represent the subspaces of a signal with different time-
frequency localization characteristics. Any node in the binary 
tree can be labelled by ),( pj , where j2  is the scale and p is the 
number of nodes that are on its left at the same scale. Suppose 
that we have already constructed a wavelet packet space p

jW  

and its orthogonal basis 
Z∈−= n

jp
j

p
j nt )}2({ψB  at node ),( pj . 

The two successor wavelet packet orthogonal bases at the 
children nodes are defined by the splitting relations (Coifman et 
al.; 1992; Mallat, 1999): 
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Figure 3. Fast wavelet packet decomposition 

 

2.4.2 Best Basis Feature Extraction:  For a given 
orthogonal wavelet function, one may generate a large family of 
orthogonal bases that include different types of time-frequency 
atoms. The basis family is always interpreted as a dictionary D 
that is a union of orthonormal bases in a signal space of finite 
dimension N: 
 
 
 λ

λ
BD

Λ∈
= U  (7) 

 
 
Wavelet packet is an example of dictionary where the bases 
share some common vectors. Each orthonormal basis in the 
dictionary is a family of N wavelet functions: 

Nmm ≤≤= 1}{ λλ ψB  
and offers a particular way of coding signals, preserving global 
energy, and reconstructing exact features. For discrete signals 
of size N, the number of wavelet packet bases is more than 2/2N  
(Mallat, 1999). In order to optimize the non-linear feature 
extraction of a given hyperspectral signal x, one may adaptively 
choose the “best” basis in the dictionary D depending on the 
spectral structures. Then the features are selected from the M 
largest wavelet coefficients calculated by this best basis. This 
can be done by the “fast best basis algorithm” proposed by 
Coifman and Wickerhauser (1992). This algorithm first expands 
a given signal x into a family of orthonormal bases such as the 
wavelet packets. Then a complete basis called a best basis 
which minimizes a certain cost functional ),( λBxC  is searched 
among the binary tree with a bottom-up progression. The best 
basis p

jA  at each subspace p
jW  is determined by minimizing 

the cost function C: 
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The cost function C should be defined by the Schur concave 
sum and with the additive property for efficient computation. 
The cost function used in this study is entropy of the energy 
distribution of the hyperspectral curve x for each pixel: 
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Because of the advantage of the tree structure of wavelet 
packets, the fast dynamic programming algorithm finds the best 
basis with )log( 2 NNO  operations (Mallat, 1999). 
 
2.5 Local Discriminant Basis Feature Extraction 

Entropy used in the best-basis algorithm is an index that 
measures the flatness of the energy distribution of a signal. 
Minimizing entropy will lead to an efficient representation for 
the signal. Therefore, the best-basis algorithm is good for signal 
compression but may not be good for classification problems. 
The Local Discriminant Bases (LDB) method was proposed by 
Saito and Coifman (1994) to search for a best basis for 
classification. In this method, the discriminating function D 
between the nodes of the tree is calculated from a known 
training data set. The discriminating function D can be a 
certain distance function between different classes. Then a 
complete orthonormal basis, called LDB, that can distinguish 
signal features among different classes is selected form the 
library tree. To make this algorithm fast, the discriminant 
functional D needs to be additive. In this study, J-divergence is 
used as the discriminant function. Once the discriminant 
function D is specified, the goodness of each node in the 
wavelet packet tree can be compared with the two children 
nodes for a classification problem. According the discriminant 
measure, we can determine whether we should keep the 
children nodes or not. This manner is the same as the best basis 
search algorithm. Because the discriminant measures are 
calculated within the subspace of wavelet packets, we don’t 
need too much training samples to estimate the discriminant 
measures. 
 
 

3. MATCHING PURSUIT FEATURE EXTRACTION 

Both the best basis algorithm and LDB method are based on the 
wavelet packets which divide the frequency axis into intervals 
of varying sizes. Thus a best wavelet packet basis can be 
interpreted as a “best” frequency segmentation. If the signal 
includes different types of high energy structures at different 
times but in the same frequency interval, such as the case of 
spectral mixture of hyperspectral data, the wavelet packet basis 
could not well adapt to the signal. Furthermore, the set of 
orthogonal bases in the wavelet packet is much smaller then the 
set of non-orthogonal bases which can be used to improve the 
approximation of complex signals. The pursuit algorithms 
generalize the adaptive approximation by selecting the vectors 
from redundant dictionaries of time-frequency atoms, with no 
orthogonal constraints.  
 
The Matching Pursuit (MP) introduced by Mallat and Zhung 
(1993) uses a greedy strategy to find the best basis for signal 
approximation. Vectors are selected from the dictionary one by 
one in order to best match the signal structures. It is closely 
related to projection pursuit algorithm developed by Friedman 
and Stuetzle (1981) for statistical parameter estimation. In this 
study, we attempt to use the matching pursuit algorithm to 
extract the features for hyperspectral image classification. Let 

Γ∈= γγ }{gD  be a redundant dictionary with NP > vectors,  

where 1=γg . A matching pursuit begins by projecting x on a 

vector D∈
0γ

g  and computing the residue Rx : 
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In order to minimize the residue Rx , 
0γ

g  is chosen to maximize 

0
, γgx  such that  
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In each of the consecutive steps, the vector  D∈

m
gγ

 is matched 

to the residual  xRm , which is the mth order residue left after 
subtracting results of previous iterations:  
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Summing (12) from m between 0 and M-1 yields  
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The orthogonality of xR m 1+  and 
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 in each iteration implies 

energy conservation.  
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One may prove that the residue xRm  will converge 

exponentially to 0 when m tends to infinity (Mallat, 1999). A 
matching pursuit can be implemented with a fast algorithm that 

γgxRm ,1+  is calculated from 
γgxRm , : 

 
 
 

γγγγγ gggxRgxRgxR
mm

mmm ,,,,1 −=+  (15) 

 
 
Finally, the M vectors 

Mmm
g ≤<0}{ γ

  chosen to minimize the 

residues at each iteration are directly used as the features for 
hyperspectral image classification. 
 
 

4. EXPERIMENTS 

The main purpose of this experiment is to compare the wavelet-
based feature extraction methods described in this paper in 
terms of classification accuracy. Figure 4 shows the AVIRIS 
dataset tested in this experiment which is available in the 
AVIRIS website of NASA JPL 
(http://popo.jpl.nasa.gov/html/aviris. freedata.html). This image 
was acquired in 1996 and covered the Jasper Ridge Biological 
Preserve of Stanford University. Figure 5 shows the vegetation 
map corresponding to the test field. The image size of the test 
field is 180×200. The radiance spectra have been corrected to 
surface reflectance. From the original 224 spectral channels, 98 
spectral bands corresponding to the visible and near-infrared 
regions are used in this test, discarding the atmospheric 

absorption bands and short-wave infrared region. There are 10 
known classes of different vegetation type and one class of 
water in this test field. The mean spectra of each class are 
shown in Figure 6. The results of various feature extraction 
method are fed to the Maximum Likelihood classifier (MLC) to 
test the classification effectiveness of the extracted features.  
 

 
 

Figure 4. An AVIRIS data set of Jasper Ridge Biological 
Preserve 

 

 
 

Figure 5. Jasper Ridge Vegetation Map (© JRPB, Copyright 
1996, Stanford University) 
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Figure 6. The mean spectra of 11 different classes 

 
Figure7 illustrates the classification results of the extracted 
features using the wavelet-based and matching pursuit feature 
extraction methods. In this experiment, the classification 
accuracies are calculated for various numbers of features 
extracted by different wavelet-based methods. We summarized 
the results of this experiment in the following. Firstly, as the 
number of features increase, the accuracies of classification 
increase in the beginning and then decrease. The results 
conform to the Hughes phenomenon. Secondly, the results of 
nonlinear wavelet-based methods including the matching 
pursuit, best basis algorithm and LDB methods have the similar 
results which are better than the results of linear WFE and PCT 
methods. The basic concept of linear WFE is similar to the PCT 
methods. They are based on the same criterion that the best 
approximation with the minimum error is used as a set of 
important features. The experiment results show that the 
features extracted by these two methods almost have the 
identical effectiveness. Thirdly, when the number of features is 



 

smaller than 10, the LDB methods which take into account the 
discriminant information from the training data have better 
results. Furthermore, the matching pursuit method has the best 
accuracies when the number of features is larger than 20. One 
may notice that the best classification accuracy of some 
nonlinear wavelet-based methods is occurred when the number 
of feature is 10. This corresponded with the conclusion of ideal 
features that the L-1 features are the smallest set needed to 
classify L classes where L = 11 in this experiment (FuKunaga, 
1990). 
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Figure 7. Classification results using wavelet-based feature 

extraction methods 
 

5. CONCLUSIONS 

In this study, several feature extraction methods based on WT 
and matching pursuit algorithm are used to reduce the 
dimensionality of hyperspectral data. The experiment results 
show that the WT is exactly an effective tool for feature 
extraction. Although some wavelet-based methods such as the 
nonlinear WFE, best basis algorithm and matching pursuit are 
based on the best approximation for data representation, they 
are still effective for classification. Especially, the nonlinear 
wavelet-based methods are more effective for classification 
than linear methods. In some circumstances, the matching 
pursuit basis has better results than the best wavelet packet 
basis. In the LDB methods, the resulted features are selected 
within the subspace of wavelet packets, thus the problem of 
limited training sample size is avoided.  In the future, the 
matching pursuit methods based on the discriminant 
information between different classes derived from the training 
data set will be studied for feature extraction. Furthermore, 
because the results of wavelet-based feature extraction methods 
are strongly depend on the choice of wavelet basis, the 
classification accuracies of wavelet-based features using 
different wavelets function will be tested in the future.  
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